

Photon Number-Resolving Detectors for Integrated Quantum Sensing

L. Limongi, M. Bernard, H. Hasnaoui, M. Lobino, I. Lopez-Gonzalez, A. Quaranta

IFD Workshop 2025, Sestri Levante

Department of Industrial Engineering Università di Trento Center for Sensor and Devices – Integrated & Quantum Optics Fondazione Bruno Kessler

leonardo.limongi@unitn.it llimongi@fbk.eu www.fbk.eu

Presentation Overview

 \rightarrow Photon-number resolving detectors Introduction:

Available technologies:

 \rightarrow Current state of PNRDs \rightarrow Our approach: SNSPDs for PNRD \rightarrow Why lithium niobate?

Desing and simulations: \rightarrow Detector architecture

 \rightarrow FEM Simulations

 \rightarrow Key challenges and solutions

Implementation and Future Perspectives: — Fabrication of the device

Conclusions and Q&A

Introduction

Photon number resolving detectors (PNRDs)

How many photons are here?

Introduction

Photon number resolving detectors (PNRDs)

How many photons are here?

m = 6 photons

Current state of PNRDs

Transition Edge Sensors (TES):

- <u>Pro</u>: high quantum efficiency (~98%) and few photon-number resolution
- <u>Con</u>: very low working temperatures (few mK) and slow response time (1us)

Avalanche PhotoDiodes (APD):

- <u>Pro</u>: no needing of cryogenic temperature and high sensitivity
- <u>Con</u>: lower quantum efficiency (>50%) and high noise

Superconducting Nanowires Single-Photon Detectors (SNSPD):

- <u>Pro</u>: high quantum efficiency (80-95%), low dark counts rates (mHz) and low response time (<10ps)
- <u>Con</u>: single-photon resolution and needing of low temperatures (few K).

a) M. De Lucia *et al., Instruments* 2024, 8(4), 47
b) K. A. Lozovoy *et al., Nanomaterials* 2023, 13(23), 3078
c) J. A. Sutton's Master Thesis, Aalto University of Electrical Engineering

a)

c)

Our approach: integrated SNSPDs for PNRD

Lithium Niobate (LN) waveguide

Why Lithium Niobate?

- Negative uniaxial birefringent material (i.e., $n_e < n_o$) with $n_o \sim 2.21$, $n_e \sim 2.14$ at 1550 nm
- Transparent for wavelengths between 0.4 μm (blue) and 5 μm (mid-infrared)
- Can be adopted for optical waveguides, optical modulators and various other linear and non-linear optical applications.

Trigonal structure⁺

Ref: Xiao Y. et al., "Ultra-high-Q Optical Microcavities", World Scientific (2020); [†]Picture from https://en.wikipedia.org/wiki/Lithium_niobate

Why Lithium Niobate?

Direct dry-etching (DE)

• Waveguides made totally of LiNb0₃

Cons:

- Difficult fabrication technique
- Non-vertical or non-smooth walls

Heterogeneous integration (HI)

Pros:

- Exploits mature fabrication techniques.
- LiNbO₃ is kept etchless

Cons:

• Quality factors still less than dry-etching or mechanical polishing fabrications.

Ref: Xiao Y. et al., "Ultra-high-Q Optical Microcavities", World Scientific (2020)

Linear multiplexing of SNSPDs

Hypothesis (\star) implies that, given m photons to be number-resolved, the fidelity of the system is equivalent to evaluate the probability of disposing m balls inside N boxes, with at most 1 ball per box.

Leonardo Limongi– UniTN & FBK

FEM Simulations: free propagation

List of parameters

$\lambda = 1.55 \mu\mathrm{m}$	SiO ₂	LiNbO ₃	Si ₃ N ₄	NbN
Refractive index n	1.44	2.21(<i>o</i>) 2.14(<i>e</i>)	1.88	5.23+ <i>i</i> 5.82
Thickness $h(\mu m)$	3.00	0.3	0.2	0.006
Width (µm)	slab	slab	1.20	0.08

Cross section of the waveguide

Strip-loaded mode

Ref: Limongi L. et al., Optics Communications 575, 131244 (2025)

FEM Simulations: bends

Ref: Limongi L. et al., Optics Communications 575, 131244 (2025)

Desing challenges and solutions

<u>Pro</u>: continuously tunable absorption <u>Con</u>: 90° bend (dead) on top of the waveguide

<u>Pro</u>: 90° bend (dead) away from the waveguide <u>Con</u>: discretization of the absorption

<u>Pro</u>: Only active nanowire, continuously tunable absorption <u>Con</u>: Very challenging fabrication

Implementation and Future Perspectives

Fabrication of the device

Not to scale; *Fabrication at CNR-IFN facilty, Rome

Conclusions and Q&A

Summary and takeaways

- **PNRDs are pivotal for quantum sensing**, with various available technologies.
- **SNSPDs integrated on lithium niobate offer a promising alternative**, combining high efficiency with photonic integration
- **Technological challenges remain** (e.g., complex fabrication, efficiency optimization), but recent advancements open new possibilities.
- Next steps: device fabrication and experimentally test its performance.

