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QUANTUM MICROWAVES in DM search
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quantum microwaves in DARK MATTER search
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. with to match the axion mass

. itis readout with a low noise receiver

for resonant amplification

. the is within the bore of a SC magnet — By




a poor S/N ratio

— 300K
In these searches, the signal is much smaller than noise —sok
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To increase sensitivity we rely on averaging several
spectra recorded at the same cavity frequency over a
certain integration time.
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quantum-limited readout

— 300K
1 1 — 50K
kBTsys =hv (m + E +Na> , No > 0.5
Toys = Tc + Ta B
T, cavity physical temperature
T, effective noise temperature of the amplifier 600700 me
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Heavier (axions) & Harder (life)
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® heavier axions are well motivated,
BUT

the scan rate df /dt scales unfavourably with f
ﬁ o~ g37784 ngf Qu

dt T2

<xf74

(asm. quantum noise, SC cavities, relax r/L)

© (df /dt)prsz ~ 50 (df /dt)ksvz

— new cavities with larger V¢ compared to a
pill-box cavity

— QIS technologies and methods to reduce the noise
(parametric amplifiers, photon counters)

u]
|
I
il
i




photon counting vs parametric amplification at standard quantum limit (SQL)

IDEAL PHOTON DETECTOR

h
Rccunter ~ %ekﬁ-
RsqL Qu

Ex. at 7 GHz, 40 mK — gain by 10°

S. K. Lamoreaux et al., Phys Rev D 88 035020 (2013)

REAL DETECTOR WITH DARK COUNTS [’
Reounter ~ 2AVa
— gt —
RsoL

dc
7 photon counter efficiency
Ay, axion linewidth

T4 dark counts

— (x100s) gain [T, ~ 10s count/s, 7% ~ 70%)]

take more than 3 months-

- can probe in a day the same range a linear amplifier at SQL would
https:/ /arxiv.org/abs/2403.02321



https://journals.aps.org/prd/abstract/10.1103/PhysRevD.88.035020

SMPDs in the microwave range

Detection of individual microwave photons is a challenging task because of their low energy
e.g. hv =2.1x 1075eV for v = 5GHz

10% 10 10 10" 10" 10 10%

o detection of itinerant photons due to involved intense B fields

108 104 Frequency (Hz)

Requirements for dark matter search:

o lowest dark count rate I' < 100 Hz
o 2 40 — 50 % efficiency

o large “dynamic” bandwidth ~ cavity tunability



DETECTION OF QUANTUM MICROWAVES

The detection of individual microwave photons has been pioneered by atomic cavity quantum electrodynamics

experiments and later on transposed to circuit QED experiments

| 100 um

Nature 400, 239-242 (1999) Nature 445, 515-518 (2007)

In both cases two-level atoms interact directly with a microwave field mode in the cavity



itinerant vs cavity photon detector in axion experiments

transmon-based detectors do not tolerate intense B fields

CAVITY PHOTONS

ITINERANT PHOTONS

— in axion detection, itinerant photon detection is preferred, as the SMPD is located in a region
where it can be screened by the B field (but anyway at the MC stage)




TRAVELING QUANTUM MICROWAVES

ITINERANT PHOTONS

Incoming
photon

Phys. Rev. X 10, 021038 (2020) <«— 1.3 counts/ms

Nature 600, 434-438 (2021) <— spin fluorescence detection
Nature 619, 276-281 (2023) < single spin flip

Phys. Rev. Appl. 21, 014043 (2024) < 85 counts/s

wave mixing (4WM) process: the incoming
photon is converted into an excitation of the qubit

readout of the qubit state with quantum
information science (QIS) methods

efficiency n ~ 0.5,
dark counts 'y ~ 855!

~ 100 MHz tuning range

on/off resonance — monitor the dark counts,
which set the background in these experiments




calibration
¢ i port

https:/ /arxiv.org/abs/2403.02321

frequency
tuning

SMPD

qubit
readout

Qubit

wy/2m 6.222 GHz
Ty 17 — 20 ps
Ty 28 s
Xqq/27 240 MHz
Xob/ 2T 3.4 MHz
Xqu/2T 15 MHz
‘Waste mode

wy /21 7.9925 GHz
Kext/ 2T 1.0 MHz
Kint/ 27 < 100 kHz
Buffer mode

w2 7.3693 GHz
Kext /2T 0.48 MHz
Kint/ 27 40 kHz
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EXP SETUP

® atransmon-based single microwave
photon detector (SMPD) is used to
readout the cavity mode

© TWPA for dispersive readout of the qubit
state

©® hybrid (normal-superconducting) cavity
TM at 7.37 GHz
tunable by a triplet of rods
Qo =9 x 10° at 2 T-field

® T=14mK
@ fridge Quantronics lab (CEA, Saclay)

— investigated the background,
and set a limit to g4~ [0.5 MHz band]

SMPD (top) and cavity SC magnet

https:/ /arxiv.org/abs/2403.02321 . = _ .



readout protocol: the SMPD is operated through nested cycles

a
nanopositioner Ve

voltage control

\\_J‘ A AN 2-101 2

J_r_; Ve
cavity frequency

) time | -4 -2 0 2
frequency(MHz)

0012210000-1-2-2-100
L\J—‘ signal OFF ’ |signa| ON‘

c

xNTI

St>=124ps

= multi-core pulse processing unit (OPX+): classical
calculation and quantum control pulses in real time

1

1

basic block (d) is detection + qubit readout

~ (10 +2) us

measure SMPD efficiency and cavity parameters
control the nanopositioner for cavity frequency
tuning

monitor dark counts under different conditions:
at resonance wy, = w, and at 4 sidebands
wp = we = 1MHz, w, = we £ 2MHz
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How long can we integrate to improve S/N?

00
—— v, [N=0]=7.369355 GHz

=
pu o
< 50- . . . .
3 ©® counts at wy, = w, registered in a time interval of 28.6s
o (set by readout protocol structure)
R <= average ~ 90 Hz dark count rate
8700 ® both the counts at resonance and on sidebands
S . . .
86007 g0 oot —awi Y 1 wp = we = 1,2 MHz vary beyond statistical uncertainty
—dc cav/4 —2MHz —-2 MHz . .
— 41 MHz — 1 MHz (b) expected for poissonian counts
5000 2 4 6 8 10
® notice a correlation between the two channels
3000 - 1
2800 W . .
2 W\,\M ©® and a systematic excess at cavity frequency
2400 [ o —sidobands ©" — the cavity sits at a higher T
22000 2 4 6 8 10

https:/ /arxiv.org/abs/2403.02321
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Long-term stability

We compute the Allan variance to assess the long term stability of the detector

— counts fluctuations decrease as 1/7, up to a
maximum observation time 7, of about
10 min

|~differential signal
—cavity
[—sidebands

e
/ . .
\\/ \/\\—// — for 7 > 7, the Allan variance increases —

system drifts

— the differential channel follows the 1/7
trend up to a longer time interval
Ee® b | 7 ~ 30min — small correlation

) \_/
5 — no additional noise in the data recorded
‘ between successive step motion intervals
10° 10! 102 100 10! 102 d t turbed it
time (min) time (min) compared to unperturbed cavity
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beyond SMPD diagnostics: UPDATING THE EXCLUSION PLOT FOR ggy~
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— data analysed in 420 kHz ~ 14Av, range
— reached the extended QCD axion band with a short integration time (10 min), in spite of the small B-field
©®O® x20 gain [conservative] in scan speed vs linear amplifiers https:/ /arxiv.org/abs/2403.02321
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BACKUP SLIDES



fer PL!mp Was!e Waste =
m 50K @ CP @ — 2 RF lines more than plain JPA/TWPA cavity
[.Q readout

{orh{oeH

N - BB — dilution refrigerator base temperature must not
=il o ey [T exceed ~ 20 mK

10 mK

fridge temp, (mK)

30000 40 000

time ()

— used only passive screening due to the relatively
low field employed (B = 2T).
Bucking coil necessary to run at higher fields.

transmon §
qubit

(b)

cryoperm-Cu-Al shields )
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SQL IN LINEAR AMPLIFICATION

The quantum noise is a consequence of the base that we want to use to measure the EM field in the cavity. A
linear amplifier measures the amplitudes in phase and in quadrature.
Any narrow bandwidth signal Av, < v can in fact be written as:

V(t)

Vo[X1 cos(2rvet) + X sin(2muet)]
Vo/2[a(t) exp(—2mivct) + a* (t) exp(+2mivet))

Xj and X; signal quadratures
Alternatively, with [X, X;] = 4

the hamiltonian of the HO is written as:

PHOTON COUNTER: measuring N

H= %(X% )

a,a* — to operators 4, at with [2,a'] = 1and N = aat
Hamiltonian of the cavity mode is that of the HO:

2

[m]

1
H = hi, (N + 7>
Photon counting is a game changer (high frequency, low T): in the energy eigenbasis there is no intrinsic limit
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