

A hadronic calorimeter based on resistive microppattern gaseous detectors

IFD 2025 – INFN Workshop on Future Detectors

Sestri Levante (GE), 18-03-2025

Lisa Generoso¹, A. Zaza¹, A. Colaleo¹, A. Stamerra¹, A. Pellecchia¹, D. Zavazieva², F. M. Simone¹, G. Sekhniaidze³, L. Moleri², L. Longo¹, M. Alviggi³, M. Bianco⁴, M. Biglietti⁵, M. Della Pietra³, M. Maggi¹, M. Buonsante¹, M. T. Camerlingo¹, M. Borysova², M. Iodice⁵, P. Iengo³, P. Verwilligen¹, R. Di Nardo⁵, R. Radogna¹, R. Venditti¹, L. Scharenberg⁴, E. Oliveri⁴, K. Flöthner⁴

¹University & INFN of Bari – Italy ²Weizmann Institute of Science – Israel ³University Federico II and INFN Naples – Italy ⁴CERN, Geneva – Switzerland ⁵INFN Roma Tre – Italy

MPGD-HCAL

A hadronic calorimeter based on resistive MPGDs

PROPOSALProject framed within the **DRD6/DRD1 collaborations**

SAMPLING HADRONIC CALORIMETER FOR EXPERIMENTS AT FUTURE CIRCULAR LEPTON COLLIDERS (Muon Collider, FCC-ee ...)

- **Resistive Micro Pattern Gaseous Detectors (MPGDs)** as active layers (with Argon-based gas mixture)
- Iron as absorber

Novel MPGD-based readout

+

- Radiation hardness up to several C/cm²
- Time resolution of O(ns)
- Longitudinal segmentation
- High rate-capability O(MHz/cm²)
- Cost-effective for large-area instrumentation

SIMULATIONS

Charged monochromatic pion guns up to 100 GeV

Shower containment in Geant4

- Geometry of single layer:
 - o 2 cm of iron for absorbers
 - 5 mm gas (Ar/CO₂)
- Readout granularity 1x1 cm²

Result: longitudinal containment in 10 λ , transversal in 3 λ

Energy resolution in the 3 TeV Muon Collider framework

π

Absorber 2 cm

Readout 5 mm

Fraction of deposited energy

0.8

0.7

0.5

04

0.3

0.2

0.1

E_{MC} [GeV]

 Energy resolution saturates with digital readout for energies > 40 GeV

Depth []

20 GeV

- 40 GeV

- 60 GeV

 Better performance with semi-digital readout

 $\sigma/E = 46\%/\sqrt{E \oplus 12\%}$

IFD Genova 2025 | A hadronic calorimeter based on resistive MPGDs | Lisa Generoso

SPS TEST BEAMS 2023 & 2024

MPGD prototyope characterization with **MIPs**

SET UP: external trigger and tracking system + pads chambers under test

- Consistent results for <u>APV25</u> and <u>VMM3a</u> ASIC as front-end electronics
- Gain uniformity: Best values for MM ($\sigma/\mu \sim 10\%$)
- Full turn-on **efficiency vs gain :**
 - Plateau > 90% for MMs, ~ 90% for μ -RWELL s
- Time resolution: Best values of ~ 6 ns for μ -RWELLs in Ar:CO₂:CF₄ at a 560 V top voltage and ~5 kV/cm drift field

IFD Genova 2025 | A hadronic calorimeter based on resistive MPGDs | Lisa Generoso

18/03/2025

7

PS TEST BEAMS 2023 & 2024

Study of pion showers in a cell HCAL prototype

Goal: Measuring the energy resolution of a 1 nuclear interaction length (λ) calorimeter prototype (8 layers of 20x20cm² MPGDs) with 1-10 GeV pion beam

<u>Preliminary results</u> for digital readout:

- Good data/MC agreement in the number of hits per shower
- Good linearity in the number of hits with energy
- Saturation at high energy due to shower containment

FUTURE PLANS R&D of a new cell prototype

4 new large 50x50 cm² detectors to be produced and tested:

- 121 mm² pads, read out by 16 APV/VMM cards
- For μ-RWELLs : novel <u>PEP-DOT DLC grounding</u>
- Timing studies
- Response uniformity test

Integration with fast, high-rate read-out electronics :

- Continuing studies with VMM3a
- Test with FATIC3 chips

Further studies :

- Energy resolution using the semi-digital approach
- Optimization of the drift gap width for timing and gain
- Alternative gas mixtures

Common project:

o TB with ECAL CRILIN in 2026

THANK YOU FOR THE ATTENTION

BACKUP SLIDES

SIMULATIONS

Pion Guns + background in the Muon Collider framework

Simulation of Beam Induced Background (BIB) (at a center of mass energy of 1.5 TeV)

- BIB containment within the first 20 layers
- Uniform distribution of arrival time in the range 7-20 ns

ARRIVAL TIME

- Signal arrival time peaks at ~ 6ns;
- Discrimination possible for t > 9/10 ns \rightarrow achievable with MPGD detectors

IFD Genova 2025 | A hadronic calorimeter based on resistive MPGDs | Lisa Generoso

SPS TEST BEAMS 2023 & 2024 µ-RWELL characterization with MIPs

- For a high enough amplification field, the efficiency increases with the drift field despite a drop in the ADC MPV
- Efficiency drop due to PEP lines with dead areas of ~1 mm
- At increasing DF, the efficiency drop region gets thinner and smaller

Interpretation :

- The DF increases the charge collection close to the PEP lines, enhancing the overall efficiency, provided the amplification field is larger than 520 V
- Otherwise, acceptance is reduced by lower collection efficiency in the holes

SPS TEST BEAMS 2023 & 2024

μ-RWELL characterization with MIPs

Analog Threshold Comparison

THL 1 fC Vs 2 fC

• Plateau reached almost for the same charge value, independently of the drift field :

THL 1 fC @ ~80 ADC counts **THL 2 fC** @ ~100 ADC counts

• The lower the THL the larger the saturating efficiency

IFD Genova 2025 | A hadronic calorimeter based on resistive MPGDs | Lisa Generc

Charge vs Field Ratio

THL 1 Ar:CO₂:CF₄

• Maximum charge at a voltage ratio of ~40

