Einstein-Podolsky-Rosen quantum entanglement for future gravitational-wave detectors

<u>Francesco De Marco</u> on behalf of the EPR working group Sapienza University of Rome and INFN Roma1 INFN Workshop on Future Detectors - Sestri Levante (GE), 17-19 March 2025

Istituto Nazionale di Fisica Nucleare

Quantum noise in

- The Einstein Telescope (ET) is the next-generation gravitational-wave observatory
- Underground and cryogenic
- 10 km Triangle vs 15 km 2L
- High R&D effort for cutting-edge technologies!

EINSTEIN IELESCOPE

Quantum noise reduction via EPR entanglement

Today: squeezer + detuned filter cavity L=300 m

- long, high-finesse and suspended cavity
- works only for tuned interferometer

EPR conditional squeezing

- avoids filter cavity
- can work with detuned interferometer

EPR working principle

1. Signal and idler are vacuum squeezed beams, EPR-entangled and detuned by Δ

EPR working principle

EPR working principle

1. Signal and idler are vacuum squeezed beams, EPR-entangled and detuned by Δ

2. The **idler** sees the interferometer as a filter cavity and acquires frequency-dependence

3. Combined measurement transfers the frequency dependence to the **signal** via EPR entanglement

Simulation of EPR effect in GW detectors

- Fundamental to assess potential advantage w.r.t. filter cavity for ET and 3rd gen detectors
- Lack of a tool for EPR simulation available to the GW community
- We aim to provide EPR results in all the possible configuration with our EPRsimulator

Preliminary result with realistic losses in Advanced Virgo+ (150 ppm arms, 300 ppm BS, 10% INJ and DET) <u>De Marco et al. - Nucl. Instr. and Meth. for Phys. A 1070, 170008 (2025)</u>

Highlights and next steps

- It is crucial to enhance the astrophysical outreach of modern and future GW detectors to probe new models in astrophysics, cosmology and fundamental physics
- The EPR experiment will investigate an alternative technique to achieve freq.-dependent squeezing with less infrastructural effort
- An experimental demonstration in the 100 Hz 10 kHz band would be fundamental in view of ET and next-gen detectors
- First squeezing data will be collected by the first half of 2025
- Expansion of the setup and development of controls for EPR testbed (see <u>Wajid Ali's talk</u>) to be completed by the end of 2025

Thank you for your attention!

Sapienza University of Rome

INFN-Rome

Sibilla Francesco De Marco Di Pace (co-PI)

Pietro Luca Naticchioni Laudenzi

Sapienza Università di Roma

Fiodor Barbara Sorrentino Garaventa Wajid Ali

University of Genova **INFN-Genova**

Chang-Hee Kim (KASI) Hojae Ahn (KHU) Sungho Lee (KASI) Soojong Pak (KHU) June-Gyu Park (Yonsei University) Sumin Lee (KHU) Yunjong Kim (KASI) Kyungmin Kim (KASI)

Byeong-Joon Park (KASI)

Andrea Svizzeretto

University of Perugia **INFN-Perugia**

Bawaj

EPR entanglement for GW detectors

KYUNG HEE

Backup slides

Gravitational-wave astronomy

- Detector figure of merit: Binary Neutron Star Horizon (today ~50-55 Mpc for Virgo, ~160 Mpc for LIGOs)
- Multimessenger astronomy!

Worldwide network of GW detectors

- And the observations?
 - 90 events in the past observing runs (O1, O2, O3)
 - O4 run ongoing
 - 195 detection candidates at Feb 13th, 2025

Credits: Bailes et al. - Nature Rev. Phys. 3, 344-366 (2021)

EPR entanglement for GW detectors

Check out the public alerts web page and keep counting!

Gravity at its strongest regime

- GWs are (almost) not perturbed by matter
- Generated in very strong regime

- source study
- multi-messenger observations
- **Fundamental physics** Cosmology
 - **Neutron Star EOS**
 - **BH** population
 - H_o tension
 - Primordial GW

Gravitational-wave (GW) interferometers

Sensitivity curve

- Amplitude Spectral Density of (independent and stationary!) noise sources
- Expressed in terms of equivalent strain amplitude
- Bandwidth: 10 1000 Hz **Compact Binary Coalescence**
 - Burst Ο
 - **Continuous Waves** Ο
 - Astrophysical background Ο

EPR entanglement for GW detectors

- Originated by vacuum field entering the output port of the interferometer
- 2 contributions
 - back-action: Radiation-Pressure Noise
 - detection: Shot Noise
- They meet at the Standard Quantum Limit

- Originated by vacuum field entering the output port of the interferometer
- 2 contributions
 - back-action: Radiation-Pressure Noise
 - detection: Shot Noise
- They meet at the Standard Quantum Limit

- Originated by vacuum field entering the output port of the interferometer
- 2 contributions
 - back-action: Radiation-Pressure Noise
 - detection: Shot Noise
- They meet at the Standard Quantum Limit

- Originated by vacuum field entering the output port of the interferometer
- 2 contributions
 - back-action: Radiation-Pressure Noise
 - detection: Shot Noise
- They meet at the Standard Quantum Limit

EPR entanglement for GW detectors

Quantum Noise reduction with squeezing

Vacuum states of light normally enter the interferometer from the output port

Squeezed states of light have reduced variance along one quadrature

 $r[dB] = 10 \log_{10}(e^{2r})$

Quantum Noise reduction with squeezing

Vacuum states of light normally enter the interferometer from the output port

Squeezed states of light have reduced variance along one quadrature

r[dB] = 10 log₁₀(e^{2r})

$$S_h(\omega) = \frac{h_{SQL}^2}{2} \left(\frac{1}{\mathcal{K}(\omega)} + \mathcal{K}(\omega) \right) e^{-2r}$$

Suppression with freq.-dependent squeezing

Frequency-Dependent Squeezing (FDS) reduces quantum noise along the whole detection band!