Si-microstrip LGAD detectors for cosmic-ray space-borne instruments

Martina Savinelli⁵

on behalf of the PTSD team: M. Barbanera², E. Cavazzuti¹, M. Duranti², V. Formato⁴, J. Hu², M. Mergè¹, M. Miliucci¹, M. Movileanu², B. Negri¹, A. Oliva³, V. Vagelli ¹⁻²

- 1) Italian Space Agency
- 2) INFN Sezione di Perugia
- 3) INFN Sezione di Bologna
- 4) INFN Sezione di Tor Vergata
- 5) Università degli Studi di Perugia
- + many thanks to L. Pacini (INFN Sezione di Firenze)

Collaboration:

- Italian Space Agency
- INFN

Goal:

2

Adapt the LGAD to the spatial environment by means of special geometries to keep under control the electrical capacity while maintaining unchanged the temporal performance.

For SiPMs:

- ➢ a) «serial» readout:
- × bias voltage doesn't scale with the number of sensors
- \checkmark total capacity decreases with increasing number of sensors
- ≻ b) Traditional «parallel» readout:
- \checkmark bias voltage independent on number of sensors
- **X** total capacitance increase with the increasing number of sensors

Can we do the same for LGADs?

$$ENC_{preamp} \propto C_{tot}$$

$$\downarrow$$

$$C_{tot} = \left(\frac{1}{C_1} + \frac{1}{C_2}\right)^{-1}$$

LAB TEST

We started with the characterization (Thanks to F.Moscatelli) of 7 pairs of PIN-LGAD test structures (FBK from the MoveIT project)

3

LAB TEST

IFD 2025 – INFN Workshop on Future Detectors

4

$$\frac{1}{d} \propto C \propto \frac{1}{\sqrt{V}}$$
-CV:
PIN ~ 13.9 -14.7 ± 0.2 pF
LGAD ~ 13.9 -14.7 ± 0.2 pF

LAB TEST

IFD 2025 – INFN Workshop on Future Detectors

 $i_m = -qvE_w$ -IV: ► **PIN** 0.5-1.5 nA **– LGAD ~** 250–350 nA

MEASUREMENTS MADE ON THE FINAL DEVICE:

IFD 2025 – INFN Workshop on Future Detectors

6

I-V: LGAD-LGAD \sim 200nA, PIN-LGAD ~ 1nA

Both work!

Since the current flowing through the devices must be the same, the total leakage current is determined by the device with the lowest current. In the LGAD-LGAD case, it is even lower than expected.

MEASUREMENTS MADE ON THE FINAL DEVICE:

C-V: LGAD ~ 13.9 -14.7 ± 0.2 pF **PIN** ~ 13.9 -14.7 ± 0.2 pF LGAD-LGAD $\sim 8.3 \pm 0.2 \text{ pF}$ PIN-LGAD ~ 13.9 -14.7 ± 0.2 pF

For the LGAD-LGAD case everything seems to work, even though we were expecting to measure 7pF and we measured 8pF. To be understood. For the PIN-LGAD case we hadn't thought but the result is obvious

Thanks for the attention!

IFD 2025 - INFN Workshop on Future Detectors

SIMULATION

IFD 2025 – INFN Workshop on Future Detectors

Circuit diagram of an LGAD

SIMULATION

Circuit diagram of the LGAD-LGAD couple

10

Circuit diagram of the LGAD-PIN couple

PROBE STATION

Probe station used in the Perugia's Clean Room

11

IMPROVEMENTS ENABLED BY TEMPORAL MEASUREMENTS

Improvements that temporal measurements can implement:

•They can be complementary to those performed by ToF (on the order of picoseconds). •They improve the identification of particle trajectories in environments with a high interaction rate.

•They help remove ghost hits by better separating the signals received by the strips.

12

Other noise sources include:

- •Jitter: fluctuations in time measurement due to electronic noise.
- •Ionization: statistical variations in the primary charge generation process.
- •Signal distortion: alterations of the signal during transport and readout.
- •**TDC:** uncertainty arising from the fact that the TDC, having a finite number of bins, discretizes the signal.

FUTURE POSSIBILITY

Possibility for future devices

IFD 2025 – INFN Workshop on Future Detectors

EXPERIMENTAL SETUP

Two devices (sample 3 and sample 5) had been glued together with two little drops of connective glue

15

