

Resistive Silicon Detector: 4D tracking with low electrode density

M. Ferrero (INFN Torino)

on behalf of the 4DSHARE project

R. Arcidiacono, N. Cartiglia, M. Ferrero, L. Menzio, F. Siviero, V. Sola (Univ. & INFN Torino, UPO) M. Centis Vignali, M. Boscardin, O. Hammad Ali, G. Paternoster (FBK) A. Morozzi, T. Croci, A. Fondacci, F. Moscatelli, D. Passeri (Univ. & INFN Perugia, CNR) L. Viliani, M. Bartolini, G. Bardelli, A. Cassese, M. Lizzo, G. Sguazzoni (INFN Firenze)

IFD 2025 – INFN Workshop on Future Detectors

17-19 Mar 2025, Sestri Levante, Italy

The motivation: silicon trackers using "resistive read-out"

Resistive Silicon Detector (RSD)

- Standard pixel sensor: binary read-out with a space resolution $\sigma_{Pixel} \sim 0.3$ ·pitch
- **Resistive silicon detector** based on LGAD technology:
 - space resolution $\sigma_{Pixel} \approx 0.03-0.05$ ·pitch (3%-5% of the pitch)
 - Time resolution of 30-40 ps
 - Fill factor close to 100%

RSD sensors have similar space resolution of standard pixel sensors, with number of read-out channels ~100 lower

lower material budget and power consumption

Resistive silicon Detectors – the technology

AC-Coupled Resistive silicon Detectors

Main Characteristics of AC-RSD:

- Fill factor of 100%
- Bipolar signals with long second lobe
- Baseline fluctuation (leakage current collected at the sensor edge)
- Signal confinement determined by the resistive electrode and coupling capacitance

DC-Coupled Resistive silicon Detectors

Main Characteristics of DC-RSD:

- Excellent Signal confinement obtained with trenches
- Fill factor ~ 99%
- Unipolar signals

AC-Resistive silicon Detectors

AC-Coupled Resistive silicon Detectors

The proof-of-concept of signal sharing with resistive read-out in silicon sensors

- RSD1 batch
- RSD2 batch

The RSD batches have been funded by INFN CSN5

- Bipolar signals with long second lobe
- Signal amplitude related to the position of the hit

DC-Resistive silicon Detectors

DC-Coupled Resistive silicon Detectors

The first DC-RSD production was released by FBK in November 2024

The production was funded by INFN CSN5 through the 4D-SHARE project

Several test structures implemented:

- Squared or hexagonal matrix of electrodes with multiple pitch options
- Strips with multiple pitch options and multiple length

DC-Resistive silicon Detectors

DC-Coupled Resistive silicon Detectors

The first DC-RSD production was released by FBK in November 2024

The production was funded by INFN CSN5 through the 4D-SHARE project Hit inside the pixel:

- Signal sharing between 4 electrodes
- **Perfect isolation**: the signal is seen only in the electrodes belonging to the hit pixel

Beam test activities

Space and time resolutions have been studied in several beam tests at DESY facility

Beam test setup for study of spatial resolution

AC-RSD (5x5 matric) read out by FAST ASIC

DC-RSD (Square pixel -500µm pitch) wire bonded to 16ch board

RSD resolution: space and time

Space resolution for DC-RSD 500-µm pitch square and AC-RSD 450-µm pitch square (crosses electrode)

- Space resolution < 20 μm for S/N ratio larger than 40
- Space resolution is **4-5% of the pixel** pitch

Time resolution for the 500-µm pitch square and triangular pixel matrix

 Time resolution ~40 ps for gain larger than 40

References

- L. Menzio et al, "First test beam measurement of the 4D resolution of an RSD 450 microns pitch pixel matrix connected to a FAST2 ASIC",)NIMA 1065 (2024), 169526
- F. Moscatelli et al, <u>https://www.sciencedirect.com/science/article/pii/S0168900224003061</u>
- A. Fondacci's, "Design and optimisation of radiation resistant AC- and DC-coupled resistive LGADs", Pixel2024, <u>https://indico.in2p3.fr/event/32425/contributions/142737/</u>
- M. Centis Vignali's, "Development and Wafer-level Characterization of the First Production of DC-RSD Sensors at FBK", TREDI2025, <u>https://indico.cern.ch/event/1455346/abstracts/185675/</u>
- N. Cartiglia, "Test beam characterisation of the first DC-coupled Resistive Silicon Detector FBK production", TREDI2025, <u>https://indico.cern.ch/event/1455346/abstracts/185577/</u>
- R. Arcidiacono, "Innovative DC-coupled Resistive Silicon Detector for 4D tracking", VCI2025, https://indico.cern.ch/event/1386009/contributions/6279050/

Acknowledgment

This work has received funding from:

- INFN CSN5 through the 4DSHARE research project
- PRIN MIUR project 2017L2XKTJ '4DInSiDe'
- PRIN MIUR project 2022KLK4LB '4DSHARE' European Union-Next Generation EU, Mission
- 4 Comp. 2, CUP C53D23001510006
- Compagnia San Paolo (TRAPEZIO grant)
- European Union's Horizon Europe research and innovation program under grant agreement no. 101057511 (EuroLABs)

We acknowledge the fruitful discussions with the RD50 and DRD3 collaborations, CERN.

In particular, measurements leading to these results have been performed at the testbeam facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF).

Backup

Fill factor of DC-RSD

Selections:

- Events with tracks inside the active area and
- Amplitude of the signal < 25 mA

Fill Factor of ~ 99%

DC-RSD signal containment

Average signal amplitude seen by each electrode as a function of the (X,Y)_{TRACKER}

