Contribution ID: 10

Entangled Squeezed Light for Quantum Noise Reduction in Small-Scale suspended Interferometers

Monday, 17 March 2025 17:59 (7 minutes)

Abstract for IFD 2025 - INFN Workshop on Future Detectors, on March 17-19, 2025

(https://agenda.infn.it/event/43956/abstracts/\#submit-abstract)

Title: Entangled Squeezed Light for Quantum Noise Reduction in Small-Scale suspended Interferometers

Presentation type: SIPS

Authors: W. Ali¹ (On behalf of the EPR-SIPS team)

Affiliations: ¹ INFN Genova, ² University of Genova,

Abstract

Gravitational wave (GW) detectors are fundamentally limited by quantum noise, affecting sensitivity across their detection bandwidth (10–10,000 Hz). Quantum shot noise dominates at high frequencies, while quantum radiation-pressure noise limits performance at low frequencies. To overcome these constraints, modern interferometers utilize Frequency-Dependent Squeezing (FDS) with a detuned filter cavity (300m), reducing quantum noise dynamically. However, an alternative approach using Einstein-Podolsky-Rosen (EPR) entanglement offers a promising method for broadband noise suppression. The Suspended Interferometer for Ponderomotive Squeezing (SIPS) serves as a small-scale experimental platform to explore these noise reduction techniques. Designed with a Michelson configuration and high-finesse Fabry-Perot arm cavities, SIPS investigates ponderomotive squeezing, where quantum correlations are induced between the light field and suspended optics. SIPS will operate with a double-pendulum and monolithic suspension system made of fused silica fibers for reducing thermal noise and providing stable optical alignment. The high-precision local control system, based on PXI-based data acquisition and position-sensitive detectors (PSDs), continuously monitors angular (pitch, yaw) and linear (z-pendulum) displacements. Real-time feedback through LabVIEW-based control enables corrective actuation, achieving angular stability. The talk will give an overview of the SIPS status, from simulation and setup point of view.

Primary author: ALI, Wajid (University of Genova, Italy)Presenter: ALI, Wajid (University of Genova, Italy)Session Classification: Quantum sensors and technologies

Track Classification: Quantum sensors and technologies