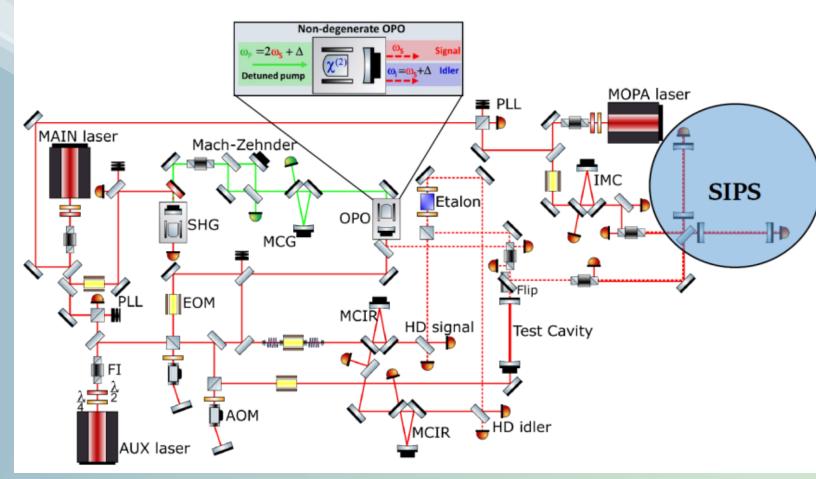


Entangled Squeezed Light for Quantum Noise Reduction in Small-Scale suspended Interferometers

Presented By:

Wajid Ali

Ph.D. Student University of Genova, Italy

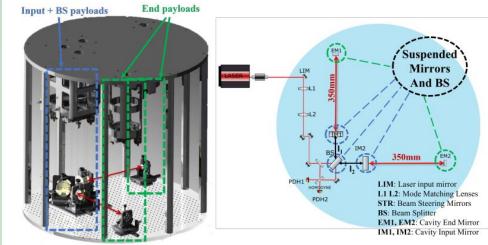

IFD 2025- INFN Workshop on a future detectors

Mar 17-19, 2025

Integration of the optical bench of the EPR squeezing table-top experiment with the SIPS interferometer

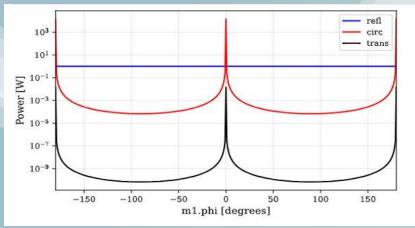
In the proposed design, the EPR signal field matches the interferometer's laser frequency, making it resonant in the Fabry-Perot arm cavities. Meanwhile, the EPR idler beam is slightly detuned, treating the interferometer as a filter cavity that rotates the squeezing ellipse.

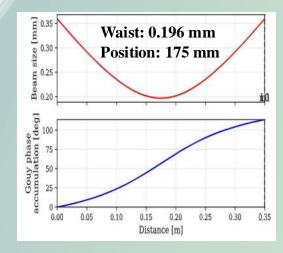
Suspended Interferometer for Ponderomotive Squeezing (SIPS)

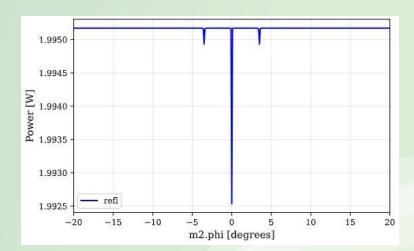

SIPS (Suspended Interferometer for Ponderomotive Squeezing) is an optical system designed to reduce quantum noise in gravitational wave (GW) detection.

Generate Frequency-Dependent Squeezing (FDS)

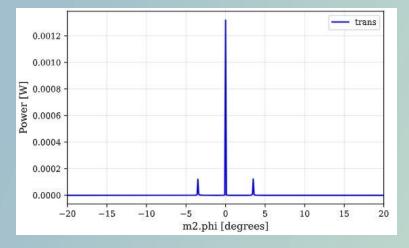
Michelson interferometer with Fabry-Perot arm cavities, similar to Virgo & LIGO

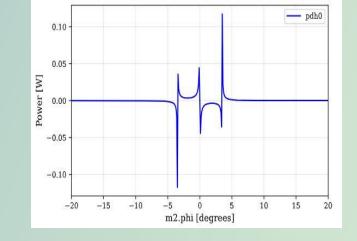

Utilizes Einstein-Podolsky-Rosen (EPR) entanglement to mitigate Shot Noise (SN) at high frequencies and Radiation-Pressure Noise (RPN) at low frequencies


> SIPS has been designed by Roma1 group to be sensitive to RPN in all the detection band of GW interferometers (1 Hz - 1 kHz).

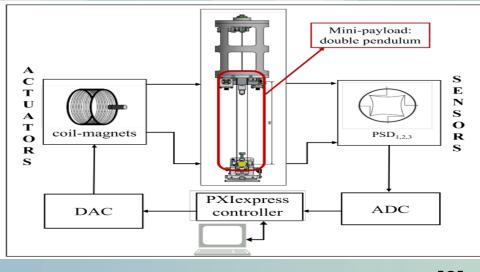

Preliminary study with FINESSE3: SIPS Arm Cavity

Mirrors RoC: 250 mm Stability 0< g1 g2 <1 : 0.16



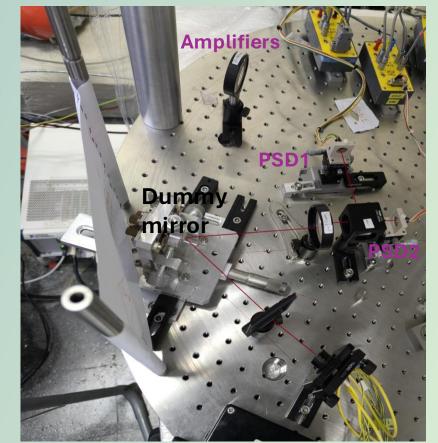

Phase shift between the carrier and sidebands, making the sideband contributions more prominent in the error signal.

Pound–Drever–Hall Technique

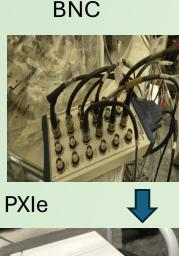

The Pound-Drever-Hall (PDH) locking technique stabilizes the laser frequency by detecting phase shifts in the reflected light using an electro-optic modulator (EOM) and photodetectors (PDs) to generate an error signal that corrects the laser frequency.

Local control digital system

The end mini-payload of SIPS ITF is monitored by three PSDs, with sensor signals processed via ADC, PXI-express controller, and DAC to generate feedback for actuators.

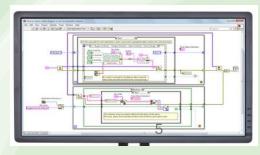

[3]

The variations along the two coordinates of the PSD are given by

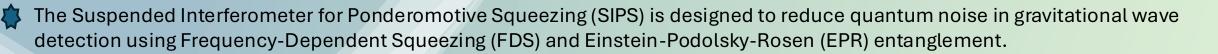

 $\frac{(UR+DR)-(DL+UL)}{UL+UR+DL+DR}=A_x$

 $\frac{(UL+UR)-(DL+DR)}{UL+UR+DL+DR}=A_y$

Current Status



To optimize the alignment of the beam to ensure proper focusing on the image plane and minimize aberrations.



Conclusion

The system includes a Michelson interferometer with Fabry-Perot arm cavities, stabilized using the Pound-Drever-Hall (PDH) technique.

A local control system with PSDs, PXI controllers, ADC, and DAC ensures accurate alignment and feedback control.

Next Step

Testing and Calibration

Conduct performance tests on the SIPS mini-payload.

Fine-tune sensor alignment and actuator response.

Data Acquisition and Analysis

Collect and analyze data from PSD signals using PXI and LabVIEW.

Optimize signal processing for improved noise reduction.

References

[1] Di Pace, Sibilla, et al. "Small scale Suspended Interferometer for Ponderomotive Squeezing (SIPS) as test bench of the EPR squeezer for Advanced Virgo." 2 nd Gravitational-waves Science & technology Symposium (GRASS 2019). 2020.

[2] Giacoppo, L. (Year). Towards an optimal control system of an opto-mechanical resonator for quantum noise reduction in GW interferometers (Thesis). Tutor: Prof. Ettore Majorana, Docente guida: Prof. Antonio Carcaterra.

[3] Giacoppo, L. (Year). *Towards an optimal control system of an opto-mechanical resonator for quantum noise reduction in GW interferometers* (Thesis). Tutor: Prof. Ettore Majorana, Docente guida: Prof. Antonio Carcaterra.

Any Question?