

The CRILIN technology: an optimised calorimeter solution for a future Muon Collider

<u>Elisa Di Meco, INFN LNF</u>

On behalf of the IMCC Collaboration

IFD 2025 - INFN Workshop on Future Detectors – 18 March 2025

- ECAL design optimized for a Muon Collider → need to cope with the Beam Induced Background (BIB)
- Semi-homogeneous, compact and flexible ECAL made of Cherenkov (PbF₂) crystal matrices interspaced and readout by SiPMs
- Able to adapt to any Collider environment by changing the crystal/SiPM model choice

Key Features:

Excellent timing: (< 50 ps) to reject the BIB out- of-time hits and for good pileup capability.

Longitudinal segmentation: allows to recognize fake showers from the BIB.

Fine granularity: reduced hit density in a single cell and distinguish the BIB hits from the signal.

Good resistance to radiation: good reliability during the experiment

Energy resolution: targeting a level of $\sigma_{\rm E}/{\rm E} \sim 10\%/{\rm \sqrt{E}}$, MC confirmed

<u>S. Ceravolo et al 2022 JINST **17** P09033</u>

Simulated performances

- The CRILIN calorimeter was implemented in the Muon Collider detector **MUSIC** (MUon System for Interesting Collisions) geometry.
- Performance studies based on the Muon Collider simulation framework using MC particle gun samples of photons and electrons, including the beam induced background contribution.

Timing results

Dedicated test beam at SPS-H2 (e⁻ 120 GeV) for time resolution evaluation on the 3x3x2 prototype (Proto-1).

- **Outstanding time resolution** of **O(20 ps)** for E_{dep} > 1 GeV was achieved in both the case of the **both layers**.
- **Excellent results** using central crystals of **different layers** with σ_t =45ps. Time resolution dominated by the 2 SiPM board synchronization jitter O(32ps).

The CRILIN technology: an optimised calorimeter solution for a future Muon Collider - E. Di Meco

Radiation hardness

Dedicated Test Beam at BTF (e⁻ 450 MeV) in single particle mode to test the LY loss due to TID

- Different wrapping tested → Teflon sensibly damaged
- Crystals evident loss of transparency → still good amount of light detectable
- SiPM dark counts increases significantly with the absorbed dose
- New tests planned to evaluate SiPMs PDE loss and optical grease degradation

The CRILIN technology: an optimised calorimeter solution for a future Muon Collider - E. Di Meco

- Time resolution: < 40 ps for single crystals, for E_{dep} > 1 GeV
- Radiation resistance: transmittance PbF₂(PbWO₄-UF) robust to > 35(200) Mrad and SiPMs validated up to 10¹⁴ n_{1MeV}/cm² displacement-damage eq. fluence → LY loss test beam showed a strong non uniformity in response between different crystals
 - Use PbWO-UF in the first calorimeter layer.
 - Conduct new irradiation tests and monitor Cherenkov light variations with a blue laser.
 - Simultaneously test crystals with SiPM and SiPM alone

DRD6-WP3 2025

- Expanding prototype to a 7x7x5(layers) configuration, with a target of 2 M_R – 22 X₀.
 - Two beam test weeks approved for 2025 to test the new FEE and DAQ options
 - Final test beam scheduled for 2026

March 18 2024

The CRILIN technology: an optimised calorimeter solution for a future Muon Collider - E. Di Meco