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BIASES RELATED TO NETWORK RECONSTRUCTION

‣ Functional MRI network reconstruction 
based on:  
i) a correlation measures  
ii) thresholding procedure
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What does the use of thresholds imply? 

‣Networks with arbitrary and variable 
edge densities, which can impact the 
evaluation of network metrics

We aim to quantify how 
threshold and network edge 

density affect the estimation of 
different metrics
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BIASES RELATED TO STATISTICAL APPROACH



BIASES RELATED TO STATISTICAL APPROACH

Convex function
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Jensen’s inequality

⟨ f(x)⟩ ≥ f⟨x⟩
Expectation of the 

function of random 
variable

Function of the 
expectation of random 
variable

We aim to quantify Jensen’s inequality 
for different metrics and how it 

depends on network edge density

Statistical Mechanics Framework:

Evaluation of a metric 
on the adjacency matrix

Application of a non linear function  
on the adjacency matrix
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NETWORK METRICS

‣Average shortest path length 
‣ Global communication efficiency 
‣ Small−world index 

‣ Modularity 
‣Global clustering coefficient 

‣ Betweenness centrality 
‣Page rank centrality 
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Can be treated analytically, if: 

‣The network is generated with a 
configuration model

‣The degree distribution is 
either: 

➡  a Poisson distribution 
➡  a distribution where it          

holds the Taylor’s law 



NETWORK METRICS
Why Taylor’s law? 

Variance V of a non-negative random function is a power function of its mean m:

‣Taylor’s law is widely observed in biological systems 

Human and Non-human connectomes



Jensen’s difference

ANALYTICAL ESTIMATION OF CLUSTERING COEFFICIENT AS A FUNCTION OF ρ
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‣For Poisson degree distribution, Jd does not depend on  and goes to 
zero for  

‣For Taylor’s law degree distribution, all estimates linearly increase with 

ρ
N → ∞
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ANALYTICAL RESULTS ARE VALIDATED IN SIMULATIONS ON SYNTHETIC NETWORKS
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       Edge density,       ρ       Edge density,       ρ

N=1000, configuration model 
with Poisson degree distribution 

N=1000, configuration model 
with Taylor law degree distribution 



OTHER METRICS: ANALYSIS OF MULTIMODAL NEUROIMAGING DATA

Real data Synthetic models
‣Nathan S. Kline Institute - Rockland 

Sample (NKI-RS): 

‣structural and functional 
connectomes 
‣196 healthy subjects 
‣N=188

‣Configuration model  
 (degree distribution)

‣ Stochastic block model  
 (modular structure/

mesoscale organization)

‣Hyperbolic model 
(degree-degree       
correlations)

Which network feature do explain 
results in real networks?



NETWORK MEASURES ARE SENSITIVE TO RECONSTRUCTION CHOICES



NETWORK MEASURES ARE SENSITIVE TO RECONSTRUCTION CHOICES
‣Real data - Ensemble mean estimates

Structural

Functional

•Strong dependency on  in 
functional networks 

•Weaker dependency on  in 
structural networks 

•Different metrics have 
different dependency trends 

ρ

ρ



FUNCTIONAL NETWORKS: COMPARISON WITH GENERATIVE MODELS
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•Hyperbolic model best approximates real data 

•At high densities real network estimates do not differ from 
estimate in random ones: effect of uncertain link



STRUCTURAL NETWORKS: COMPARISON WITH GENERATIVE MODELS
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JENSEN’S DIFFERENCE IN FUNCTIONAL NETWORKS

•Jensen’s difference itself depends on edge density 

•Jensen’s difference is zero for  (select of more than top 
weights of links) 

➡For high value of network density, results are reconciled but real 
and random networks measures are not statistically different

ρ > 0.25 60 %
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FIG. 4. Quantifying biases due to distinct ensemble averages through Jensen’s di↵er-

ence. Jensen’s di↵erence values f(hÂi)� hf(Â)i, with corresponding bars of standard deviations,

for five measures f (a-e) calculated on functional (fMRI) networks with di↵erent edge densities,

obtained from weighted empirical and synthetic networks using di↵erent thresholds. Di↵erence

between two approaches A (f(hÂi)) and B (hf(Â)i) is greater than zero at lower density, up to

⇢ = 0.25, and lower than zero at higher values of network edge density for average shortest path

length (a), small-worldness index (c), and modularity (d). This relationship is opposite for global

communication e�ciency (b), and global clustering (e).

density of the analyzed networks. Our results show that ensemble mean estimates of macro-189

and mesoscale descriptors are safely evaluated only for networks with lower edge densities,190

up to 25% of the total possible links. When the functional connectivity matrix is built by191

selecting links with a weight that is lower than 40% of the maximum edge weight, spurious192

connectivity reduces the reliability of macro- and mesoscale descriptors. In fact, at higher193

edge density, descriptors such as modularity and small-worldndess index – widely used in194

the literature to characterize the human brain – become indistinguishable in real and syn-195

thetic networks, especially the configuration model, i.e. a noisy topology. Our results are in196

agreement with other studies that investigated the role of links’ uncertainty on topological197

estimates in functional complex networks. As already reported by Zanin and colleagues [13]198

disregarding the inherent uncertainty associated with functional links introduces a bias in199

the obtained topological metrics as the link uncertainty acts like a random rewiring process,200
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KEY TAKEAWAY: UNCERTAINTY MUST BE EMBRACED

•We presented 2 types of biases (variability across subject and uncertainty 
about a link) that can affect brain network analysis 

•At high densities, measures lose discriminative power, making the 

reconstructed networks indistinguishable from random ones.  

•The results of our study highlight the limitations of  threshold-based 
reconstruction and emphasize the need to account for the inherent      variability 
in the reconstruction of a system.
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•We presented 2 types of biases (variability across subject and uncertainty 
about a link) that can affect brain network analysis 

•At high densities, measures lose discriminative power, making the 

reconstructed networks indistinguishable from random ones.  

•The results of our study highlight the limitations of        threshold-based 
reconstruction and emphasize the need to account for the inherent      variability 
in the reconstruction of a system.

How? 
Statistical Inference Methods considering 
generative models
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CLUSTERING COEFFICIENT

In a configuration model

Then we need to remove the dependency on.       to write expressions as a 
function of network density      



MICROSCALE MEASURES
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COEFFICIENT OF VARIATION



LOG NORMAL DISTRIBUTION AND TAYLOR’S LAW




