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Iberian Peninsula blackout (2025)
Italy blackout (2003)



What happened?




Weather is a primary cause of disruptions

Hurricane paths and US grid



Modelling

m Can we build a dynamical model of
cascade spreading?

m How to model the impact of
exogenous events (e.g. strong winds)?

m Can we validate using real weather
data and historical blackouts?

The basic framework



Flow redistibution in a power grid

Initial failure Stationary model = Dynamic model

e.g. Motter model




Flow conserving model

We can imagine the current flow with a
random-walk like model. Basic ingredients:

v’ Flow must be conserved!

B W; W N v’ Flow redistribution
nj(t+1)—nj(t) = Z ki ni(t) - Z k; nj(t) +; (t) v |Initial failures triggered by
! . weather

inflow outflow

where k; = Zj Wi is the degree and Tj; = % the transfer matrix from Jj to .
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De Groot model

t
By introducing the density of walkers p;(t) = nj,\(ﬂt) W /
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Note that the transfer matrix Q;; = > = (Tj;)7 is the transpose
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of a random walk.
¢(t+1)>¢(t)



Stationary solution

This model was introduced to describe opinion dynamics (De Groot model, 1974)
In vector form, and inserting source/sink terms j*

gt+1)=2et)Q+/*



Stationary solution

This model was introduced to describe opinion dynamics (De Groot model, 1974)
In vector form, and inserting source/sink terms j*

t+1)=2a6)Q+/*

If j£ = 0 then the stationary solution is a constant vector c,.(o)(oo) ~

sl

IffjE # 0, it can be expressed as



When does a link fail?

Total directed current on link i — j becomes

Gi(t) = Wig(t)
—
O——@
(___

from which we can compute the total current on link j <+ i

Lij(t) = Cy(t) + Gii(t)



When does a link fail?

Maximum capacity M is related to the initial load (Lg-) via a tolerance parameter @ > 0
M= (1+a)L

A link fails whenever its current load L;; exceed the capacity of that link

Link i — j fails if
Ly(t) > M;



When does a link fail?

Maximum capacity M is related to the initial load (Lg-) via a tolerance parameter @ > 0
M= (1+a)L

A link fails whenever its current load L;; exceed the capacity of that link

Link i — j fails if
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A second discrete parameter is the overload exposure time 7
7 > 0: the system will have to be overloaded for a certain time before

causing a failure.




Simulation on the UK power grid

AT OO Static
A-A Dynamic (T=0)
v Dynamic (t=1)

Dynamic (t=10)

T T

N (Survived links)
N (Links)

G(a) =

(Simonsen, et al. Physical review letters 100.21 (2008): 218701.)



Fragility model: initial failures

1.00

Link failure with probability p
and wind speed w (mph)
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0, w < 30 Fesime fegime
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(Mathaios et al. 2017. “Power System Resilience to Extreme Weather: Fragility Modeling,
Probabilistic Impact Assessment, and Adaptation Measures.” |IEEE Transactions on Power
Systems 32 (5): 3747-57.)



Hurricane hits Florida (2022)

number = 0 [1], valid_time = 2022-09-28T11:00:0... . 2022-09-28 Tolerance: 0.65
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Blackout time series
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Estimation of customers out

Voronoi tesselation of Florida grid

Population density
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m Each dot represents an extreme event
in our dataset

m We find significant (p << 0.01)
Spearman correlation between
predictions and observations

m Best fitted parameter are o = 0.65
and 7 =0



Joint work with:

m Model of flow propagation in power
grids

m Use of weather data to fit the model

m Use of historical data for validation
Mauro Faccin
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Thanks for your attention!
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