Assessing the robustness of the U.S. power grid under extreme wind events

Tomas Scagliarini Mauro Faccin and Manlio De Domenico September 17, 2025

CCS Italy 2025

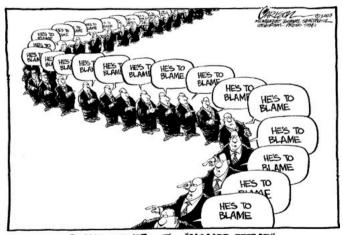
Motivation

Motivation

Iberian Peninsula blackout (2025)

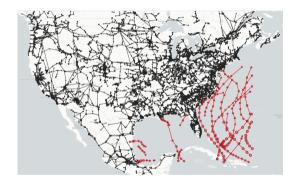
Italy blackout (2003)

What happened?



BLACKOUT OF '03 - The "CASCADE EFFECT"

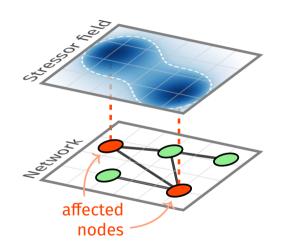
Weather is a primary cause of disruptions



Hurricane paths and US grid

Modelling

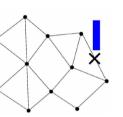
- Can we build a dynamical model of cascade spreading?
- How to model the impact of exogenous events (e.g. strong winds)?
- Can we validate using real weather data and historical blackouts?



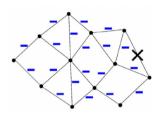
The basic framework

Flow redistibution in a power grid

Initial failure

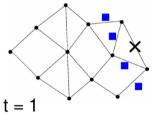


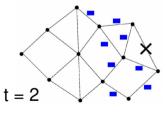
Stationary model



e.g. Motter model

Dynamic model





Flow conserving model

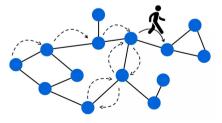
We can imagine the current flow with a random-walk like model.

$$n_{j}(t+1)-n_{j}(t) = \underbrace{\sum_{i} \frac{W_{ij}}{k_{i}} n_{i}(t)}_{\text{inflow}} - \underbrace{\sum_{i} \frac{W_{ji}}{k_{j}} n_{j}(t)}_{\text{outflow}} + n_{j}^{\pm}(t)$$

Basic ingredients:

- ✓ Flow must be conserved!
- ✔ Flow redistribution
- ✓ Initial failures triggered by weather

where $k_i = \sum_j W_{ij}$ is the degree and $T_{ij} = \frac{W_{ij}}{k_i}$ the transfer matrix from i to j.



Flow conserving model

We can imagine the current flow with a random-walk like model.

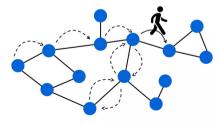
$$n_{j}(t+1)-n_{j}(t) = \underbrace{\sum_{i} \frac{W_{ij}}{k_{i}} n_{i}(t)}_{\text{inflow}} - \underbrace{\sum_{i} \frac{W_{ji}}{k_{j}} n_{j}(t)}_{\text{outflow}} + n_{j}^{\pm}(t)$$

Basic ingredients:

- ✓ Flow must be conserved!
- ✔ Flow redistribution
- ✓ Initial failures triggered by weather

where $k_i = \sum_j W_{ij}$ is the degree and $T_{ij} = \frac{W_{ij}}{k_i}$ the transfer matrix from i to j.

$$n_j(t+1) = \sum_i rac{W_{ij}}{k_i} n_i(t) + n_j^\pm(t)$$



De Groot model

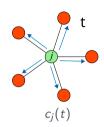
By introducing the density of walkers $ho_j(t) \equiv \frac{n_j(t)}{M}$

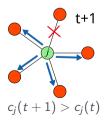
$$\rho_j(t+1) = \sum_i \frac{W_{ij}}{k_i} \rho_i(t) + \rho_j^{\pm}(t)$$

We introduce $c_j(t) \equiv rac{
ho_j(t)}{k_i}$ the outgoing current per unit weigth

$$c_j(t+1) = \sum_{i=1}^{N} \frac{W_{ij}}{k_j} c_i(t) = \sum_{i}^{N} Q_{ji} c_i(t)$$

Note that the transfer matrix $Q_{ji} = \frac{W_{ij}}{k_j} = (T_{ij})^{\mathsf{T}}$ is the transpose of a random walk.





Stationary solution

This model was introduced to describe opinion dynamics (De Groot model, 1974) In vector form, and inserting source/sink terms \vec{j}^{\pm}

$$ec{c}(t+1) = ec{c}(t)\hat{Q} + ec{j}^{\pm}$$

Stationary solution

This model was introduced to describe opinion dynamics (De Groot model, 1974) In vector form, and inserting source/sink terms \vec{j}^{\pm}

$$ec{c}(t+1) = ec{c}(t)\hat{Q} + ec{j}^{\pm}$$

If $ec{j}^\pm=0$ then the stationary solution is a constant vector $c_i^{(0)}(\infty)\sim rac{1}{\sqrt{N}}$

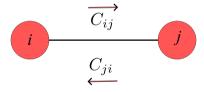
If $\vec{j}^{\pm} \neq 0$, it can be expressed as

$$ec{c}(\infty) = ec{c}^{(0)}(\infty) + (ec{1} - ec{Q})^+ ec{j}^\pm$$

When does a link fail?

Total directed current on link $i \rightarrow j$ becomes

$$C_{ij}(t) = W_{ij}c_j(t)$$



from which we can compute the total current on link $j \leftrightarrow i$

$$L_{ij}(t) = C_{ij}(t) + C_{ji}(t)$$

When does a link fail?

Maximum capacity \mathcal{M} is related to the initial load (L_{ii}^0) via a tolerance parameter $\alpha > 0$

$$\mathcal{M}_{ij} = (1 + \alpha) L_{ij}^0$$

A link fails whenever its current load L_{ij} exceed the capacity of that link

Link
$$i - j$$
 fails if

$$L_{ij}(t) > \mathcal{M}_{ij}$$

When does a link fail?

Maximum capacity \mathcal{M} is related to the initial load (L_{ii}^0) via a tolerance parameter $\alpha > 0$

$$\mathcal{M}_{ij} = (1 + \alpha) L_{ij}^0$$

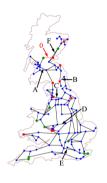
A link fails whenever its current load L_{ii} exceed the capacity of that link

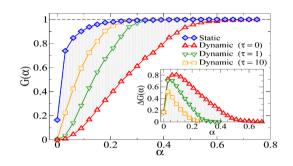
Link i - j fails if

$$L_{ij}(t) > \mathcal{M}_{ij}$$

A second discrete parameter is the overload exposure time au > 0: the system will have to be overloaded for a certain time before causing a failure.

Simulation on the UK power grid





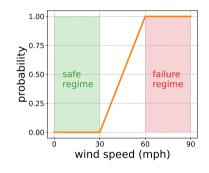
$$G(\alpha) = \frac{\mathcal{N}(\mathsf{Survived\ links})}{\mathcal{N}(\mathsf{Links})}$$

(Simonsen, et al. Physical review letters 100.21 (2008): 218701.)

Fragility model: initial failures

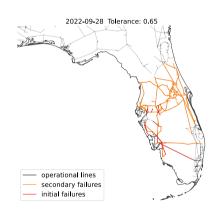
Link failure with probability p and wind speed w (mph)

$$p(w) = \begin{cases} 0, & w < 30 \\ (w - 30)/30 & 30 \le w < 60 \\ 1 & w \ge 60 \end{cases}$$



(Mathaios et al. 2017. "Power System Resilience to Extreme Weather: Fragility Modeling, Probabilistic Impact Assessment, and Adaptation Measures." IEEE Transactions on Power Systems 32 (5): 3747–57.)

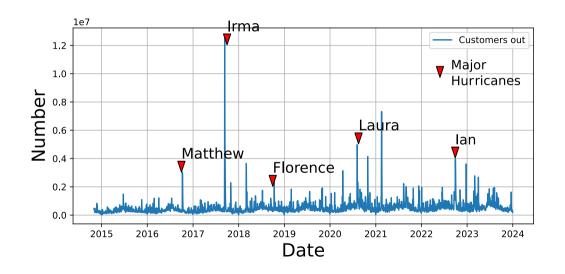
Hurricane hits Florida (2022)



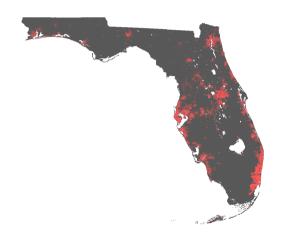
Wind strength

Simulated cascade

Blackout time series



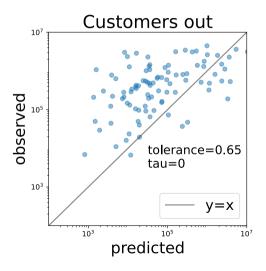
Estimation of customers out



Population density

Voronoi tesselation of Florida grid

Best fit



- Each dot represents an extreme event in our dataset
- We find significant (p << 0.01) Spearman correlation between predictions and observations
- Best fitted parameter are $\alpha = 0.65$ and $\tau = 0$

Questions?

Joint work with:

Manlio De Domenico

Mauro Faccin

- Model of flow propagation in power grids
- Use of weather data to fit the model
- Use of historical data for validation

Università degli Studi di Padova

Thanks for your attention!