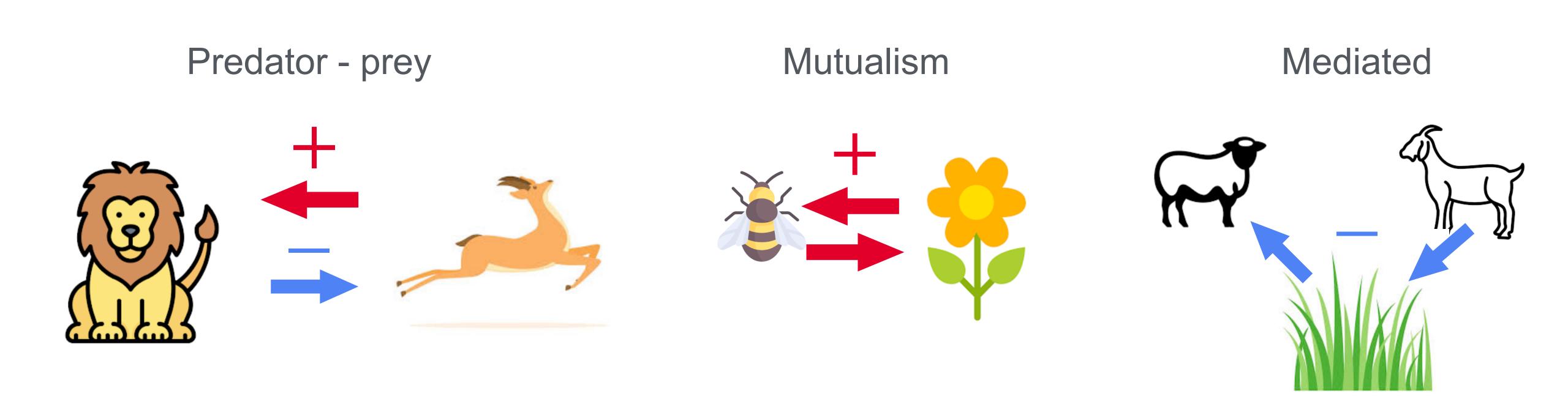
Unraveling the temporal dependence of ecological interaction measures

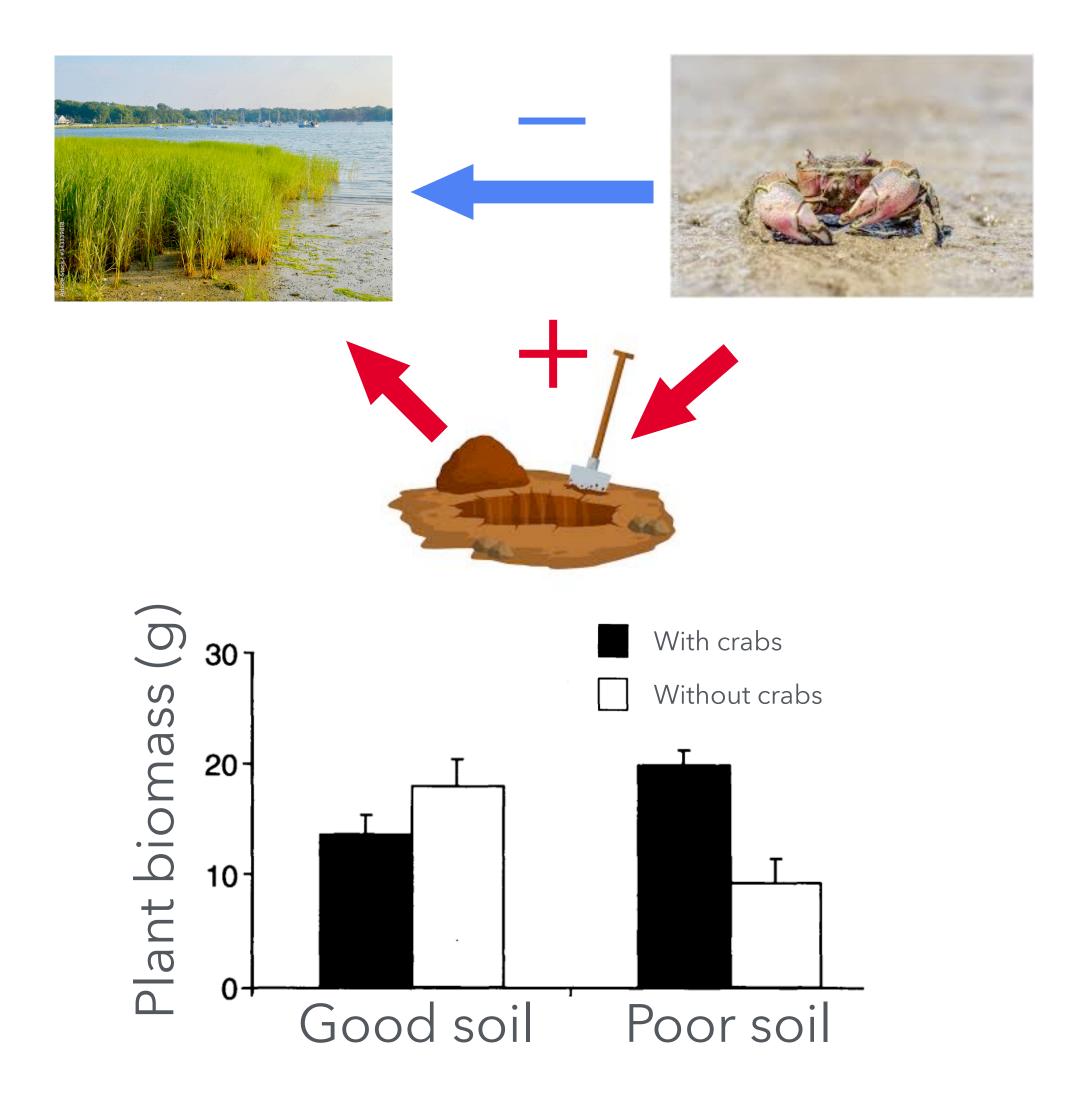
Interactions in ecology:

"Effect that a pair of organisms living together in a community have on each other."

Ecological interactions are both diverse and ever-present

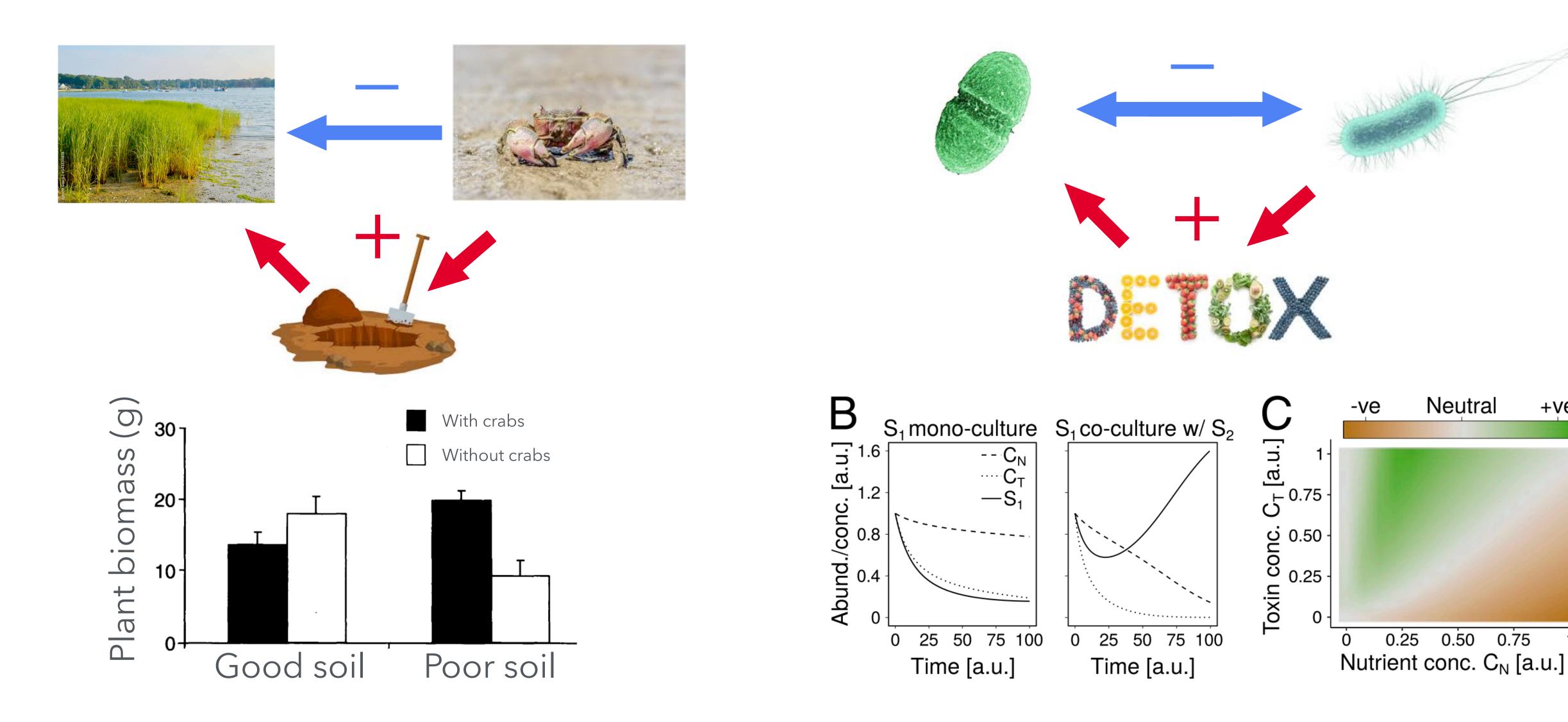


Interactions are contextual: Stress-gradient hypothesis



Daleo and Iribarne, 2009

Interactions are contextual: Stress-gradient hypothesis

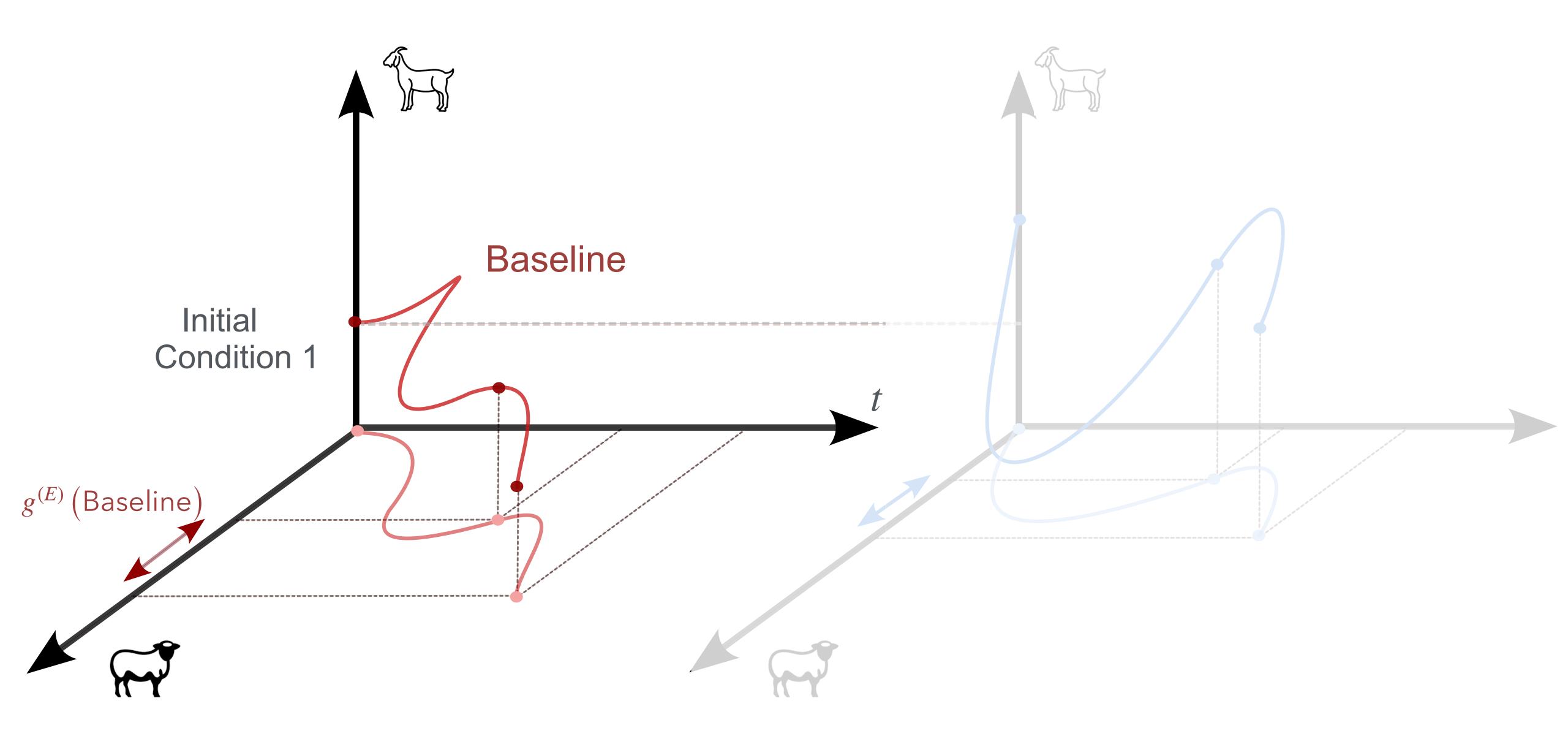


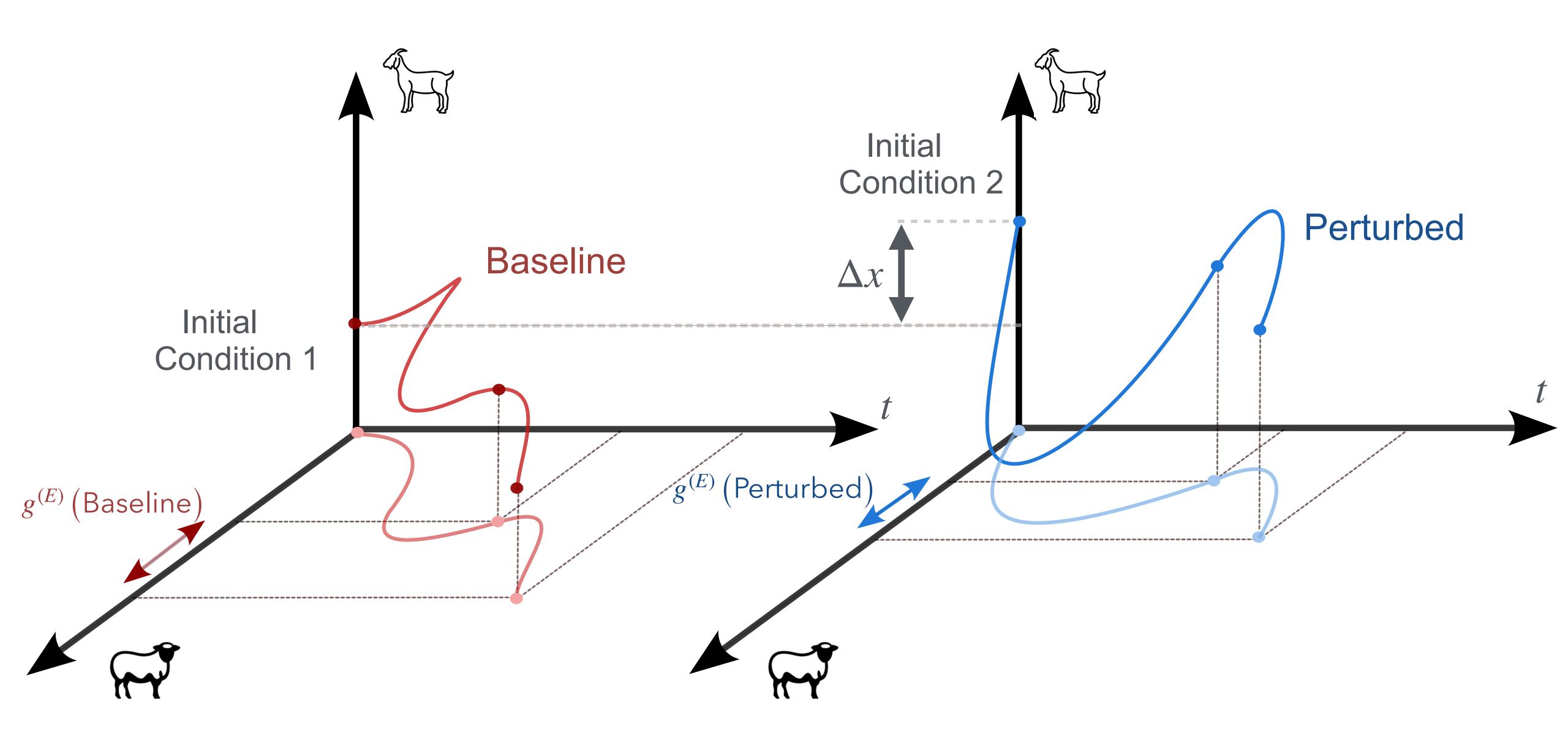
Daleo and Iribarne, 2009

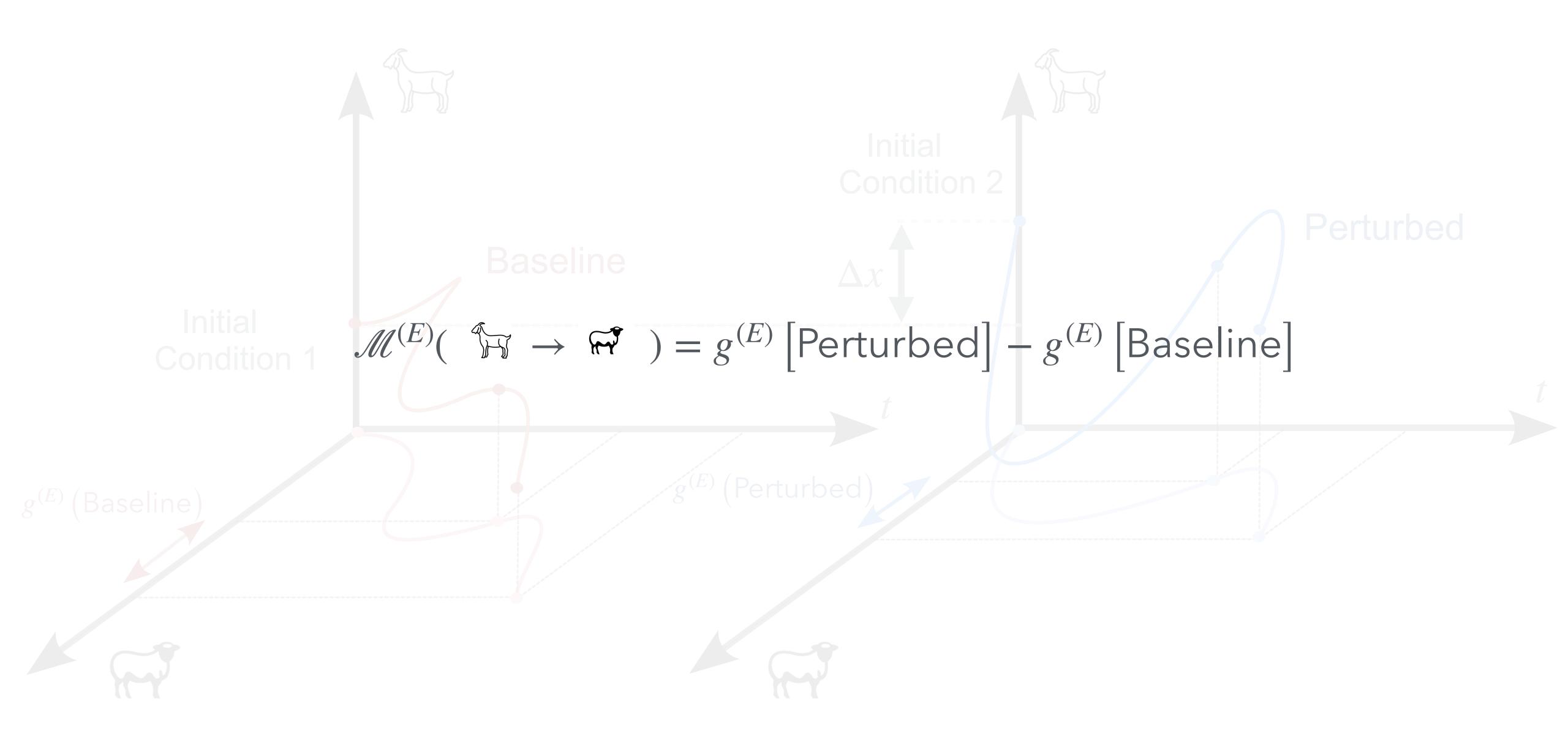
Piccardia, Vessmana, and Mitri, 2019

+ve

0.75





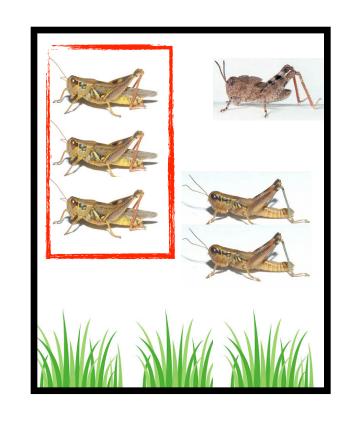


M. femur-rubrum

S. collare

P. nebrascensis

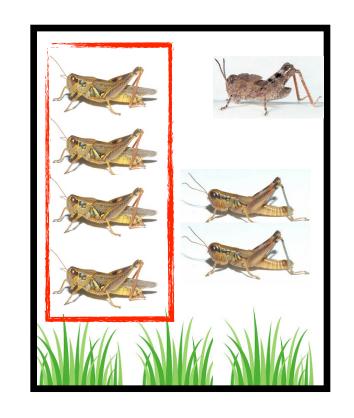
Initial Condition 1



Experiment duration

 $g^{(E)}$ [Baseline]

Initial Condition 2



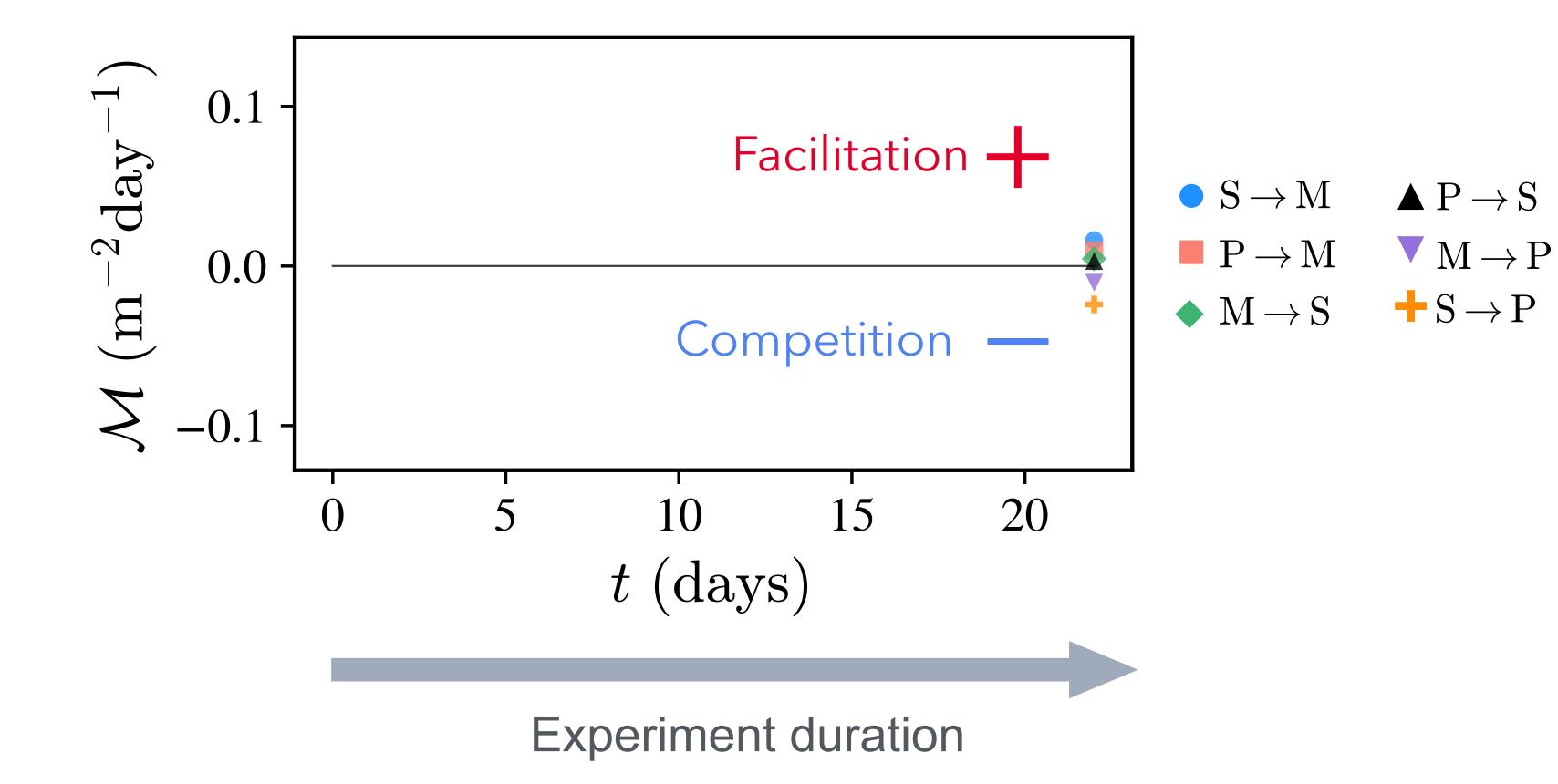
Experiment duration

 $g^{(E)}$ [Perturbed]

M. femur-rubrum

S. collare

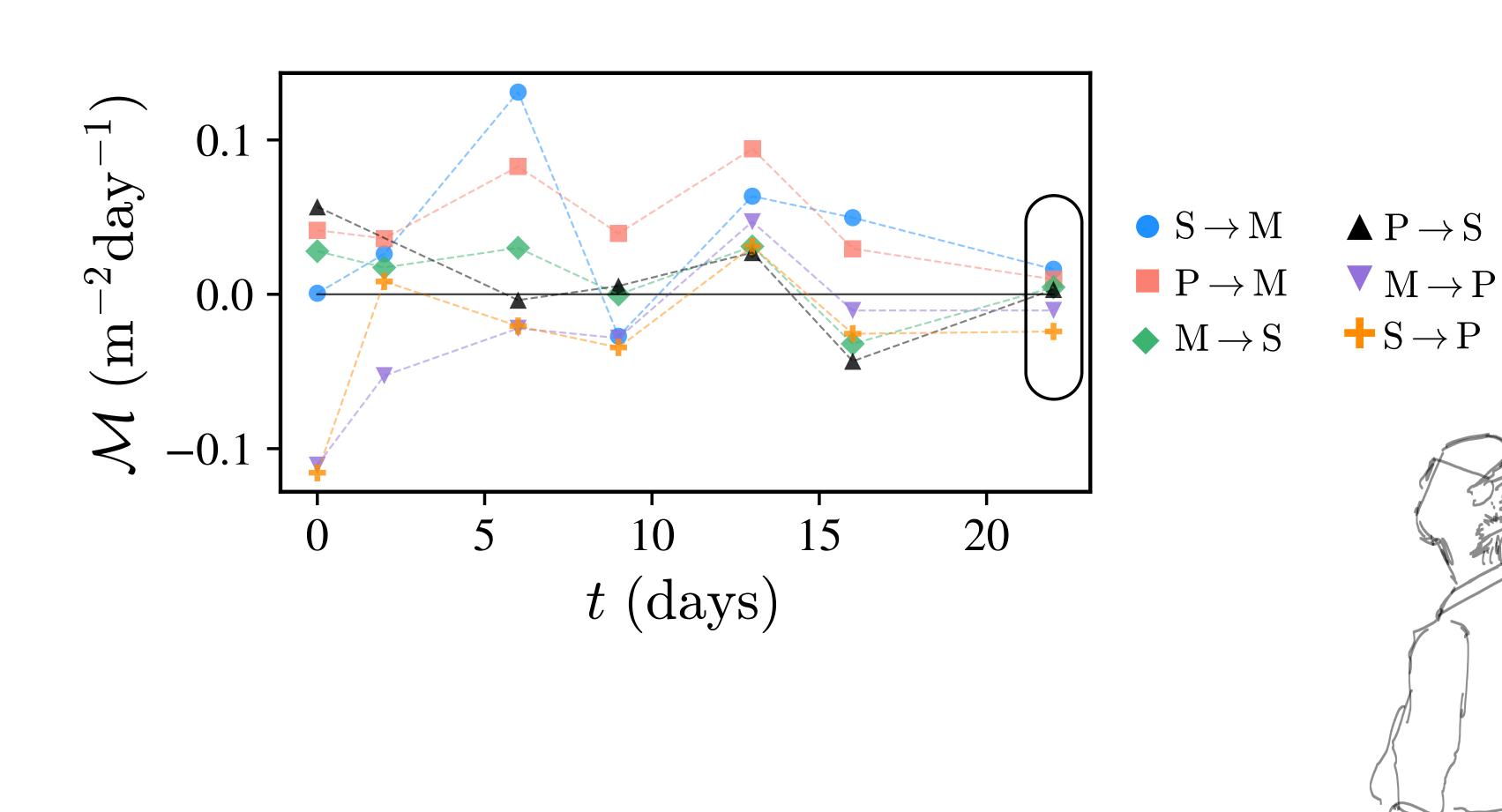
P. nebrascensis



M. femur-rubrum

S. collare

P. nebrascensis



Questions:

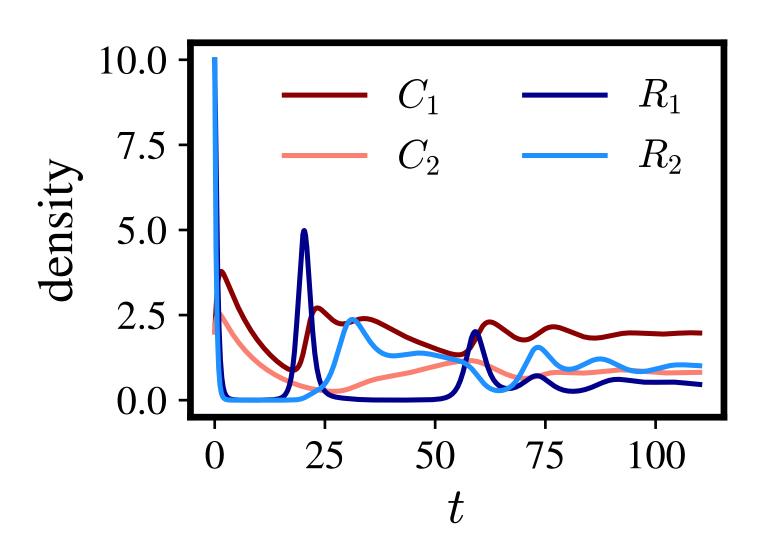
How do changes in the sign of interactions emerge?

How can we differentiate between direct and indirect interactions?

Synthetic datasets:

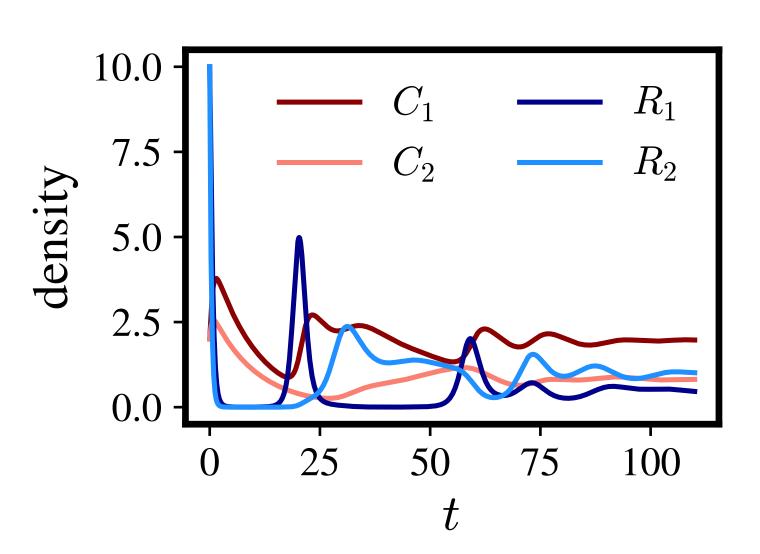
Generative model
$$\rightarrow \dot{x}_i = x_i g_i(\vec{x})$$

Test datasets



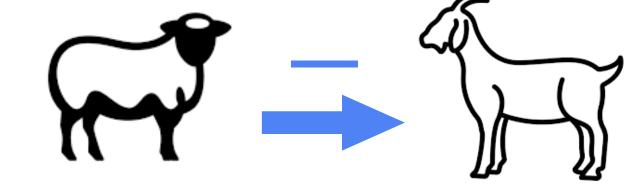
Synthetic datasets:

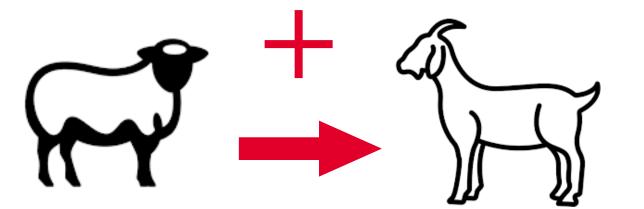
Generative model $\rightarrow \dot{x}_i = x_i g_i(\vec{x})$



Analytical evaluation

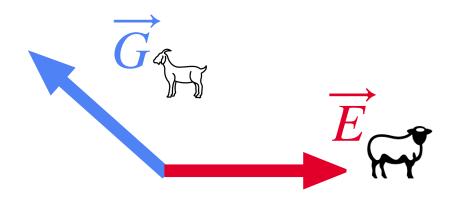
$$\mathcal{M}_{i,j}^{(E)} pprox \overrightarrow{G}_i \cdot \overrightarrow{E}_j \Delta x$$

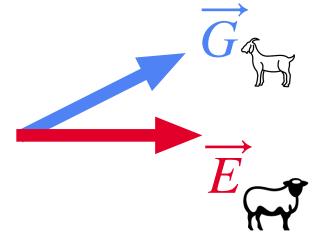




Gradient vector:
$$\overrightarrow{G}_i(\overrightarrow{x}) = \nabla g_i(\overrightarrow{x})$$

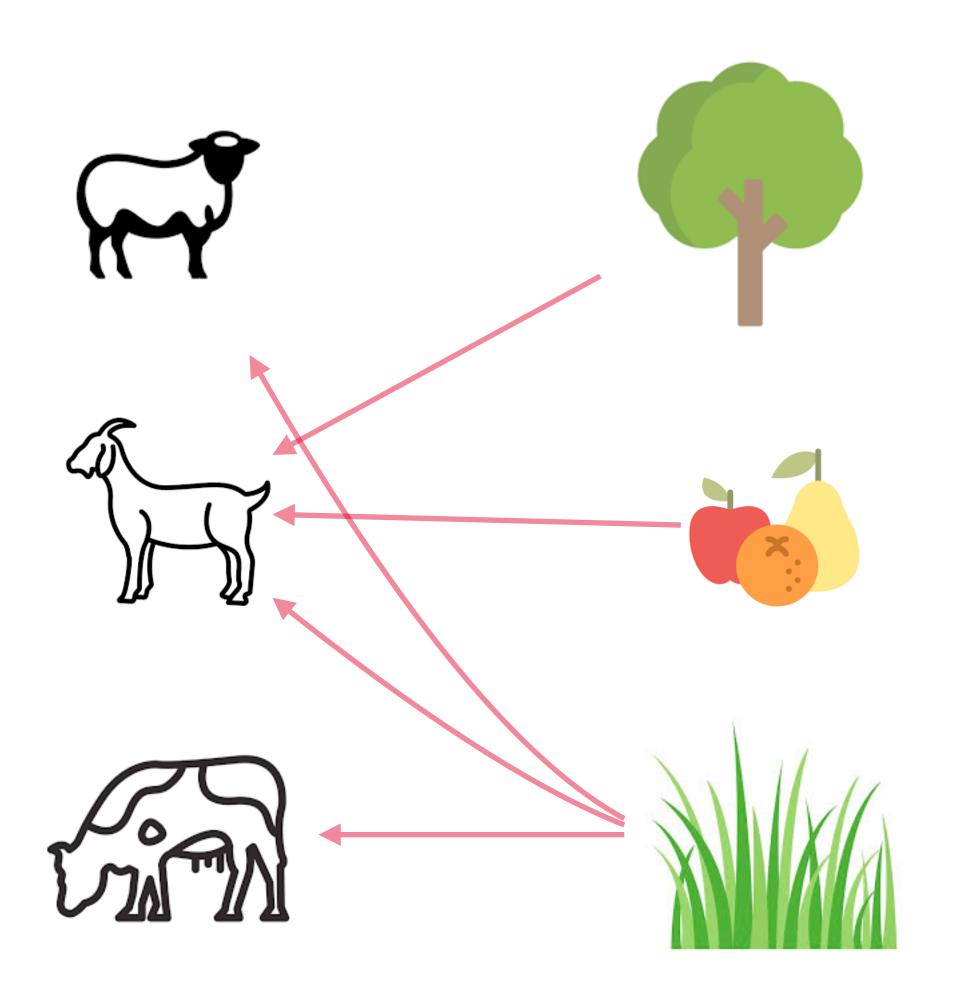
Evolution vector:
$$\overrightarrow{E}_j = \partial_{x_i^{(0)}} \overrightarrow{x} (t | \overrightarrow{x}^{(0)})$$





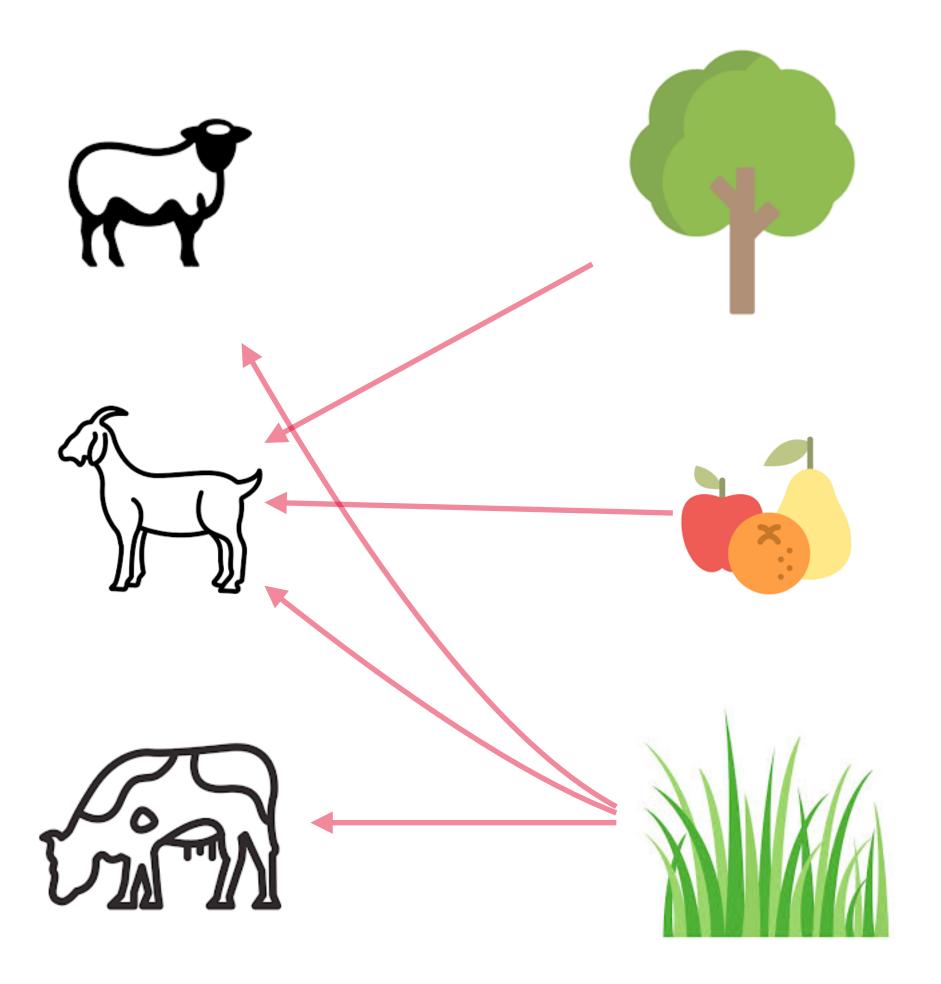
The consumer-resource model

Species within the same trophic level



The consumer-resource model

Species within the same trophic level



$$\begin{cases} \frac{d}{dt}C_i = & \varepsilon_i \sum_{\ell=1}^{n_R} \alpha_{i\ell} C_i R_{\ell} - d_i C_i, \\ \frac{d}{dt}R_{\ell} = & -\sum_{j=1}^{n_C} \alpha_{j\ell} C_j R_{\ell} + h_{\ell}. \end{cases}$$

No direct coupling between species

 $\alpha_{ij} > 0$: Consumer-Resource coupling (uptake rate)

 n_R : number of resources

 n_C : number of "consumers"

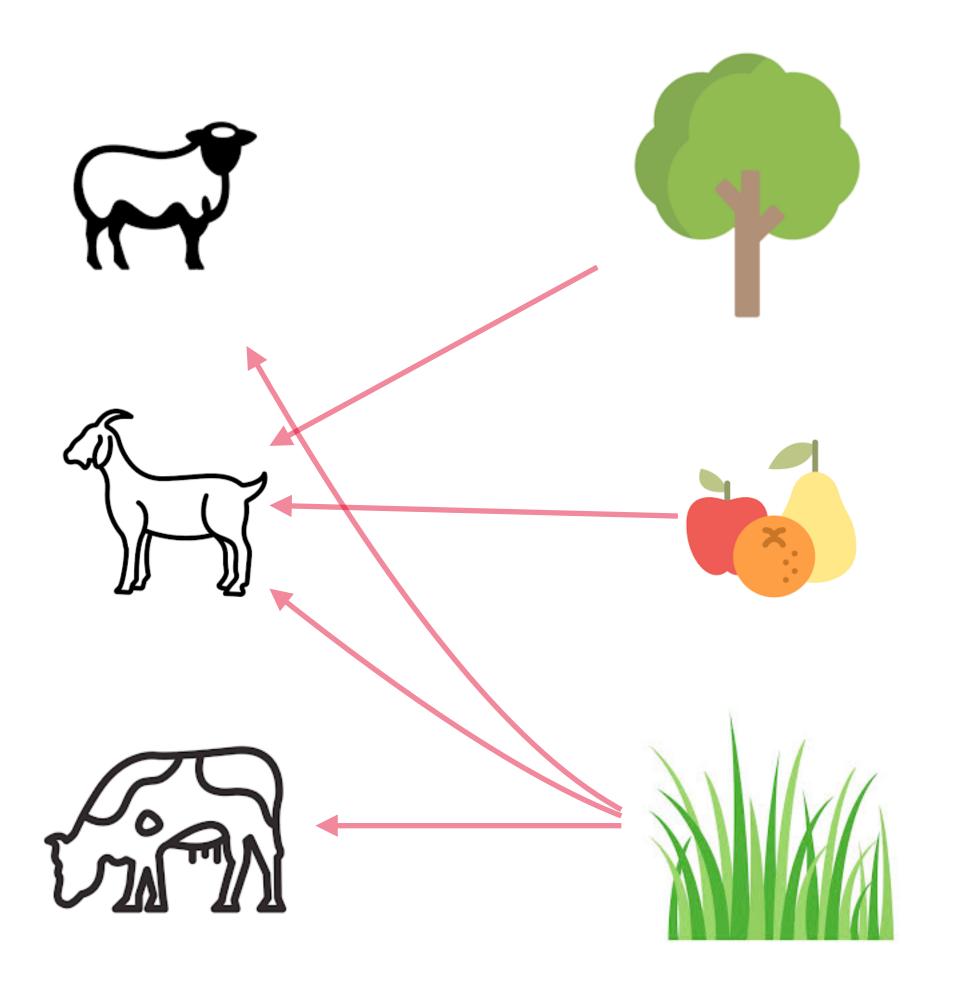
 $\varepsilon_i > 0$: uptake efficiency

 $d_i > 0$: death rate

 $h_{\ell} > 0$: Renewal function

The consumer-resource model

Species within the same trophic level



$$\begin{cases} \frac{d}{dt}C_i = & \varepsilon_i \sum_{\ell=1}^{n_R} \alpha_{i\ell} C_i R_{\ell} - d_i C_i, \\ \frac{d}{dt}R_{\ell} = & -\sum_{j=1}^{n_C} \alpha_{j\ell} C_j R_{\ell} + h_{\ell}. \end{cases}$$

No direct coupling between species

$\alpha_{ii} > 0$: Consumer-Resource coupling (uptake rate)

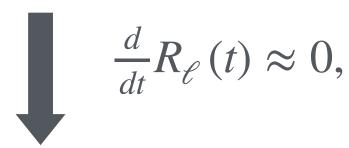
 n_R : number of resources

 n_C : number of "consumers"

 $\varepsilon_i > 0$: uptake efficiency

 $d_i > 0$: death rate

 $h_{\ell} > 0$: Renewal function



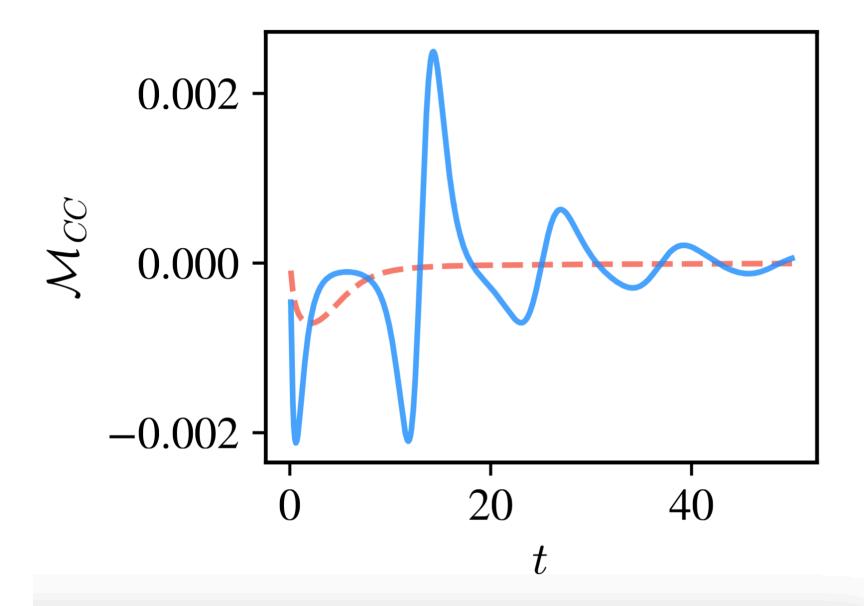
Effective Lotka-Volterra model

$$\frac{d}{dt}C_i(t) \approx \varepsilon_i C_i(t) \left(\tilde{K}_i + \sum_{\ell=1}^m \tilde{\alpha}_{i\ell} C_j(t)\right), \quad \frac{\tilde{\alpha}_{ij} < 0}{\text{Competitive system}}$$

Interactions in stationary regime

$$\mathcal{M}_{C_i,C_j}^{(E)} \approx \epsilon_i \sum_{\ell} \left(e^{\hat{J}t}\right)_{j,\ell} a_{i,\ell} \Delta x$$

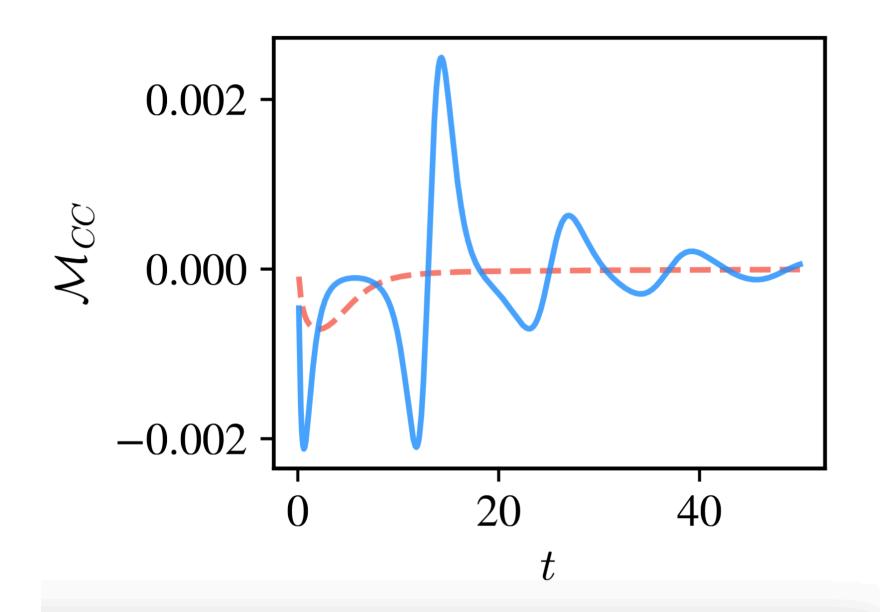
Changes of sign may arise in purely competitive systems!



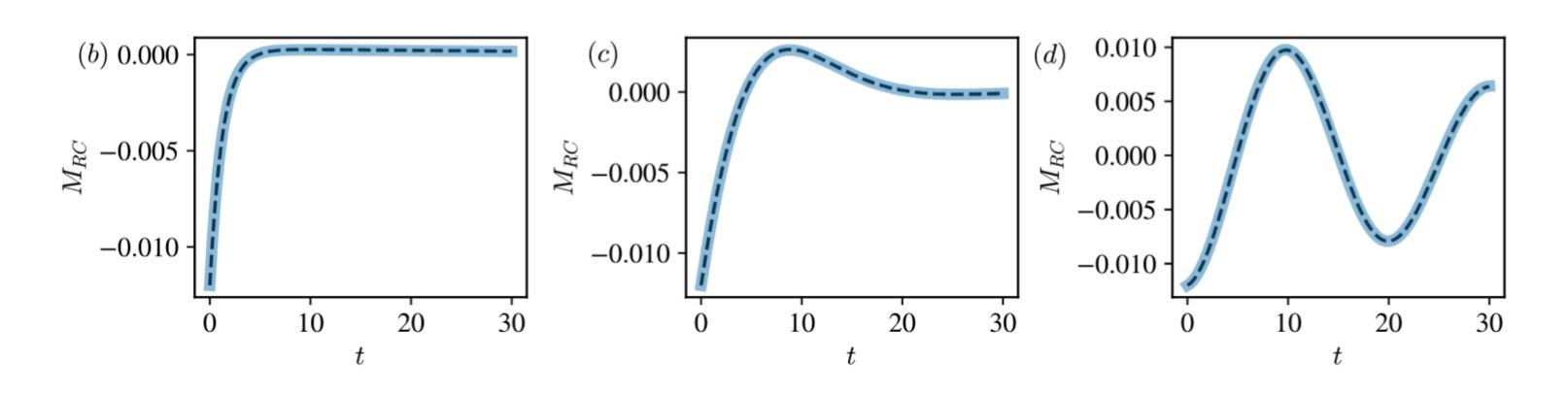
Interactions in stationary regime

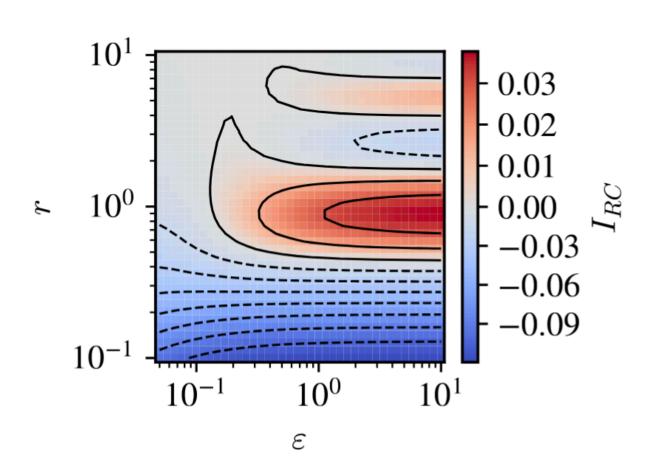
$$\mathcal{M}_{C_i,C_j}^{(E)} pprox \epsilon_i \sum_{\ell} \left(e^{\hat{J}t}\right)_{j,\ell} a_{i,\ell} \Delta x$$
.

Changes of sign may arise in purely competitive systems!



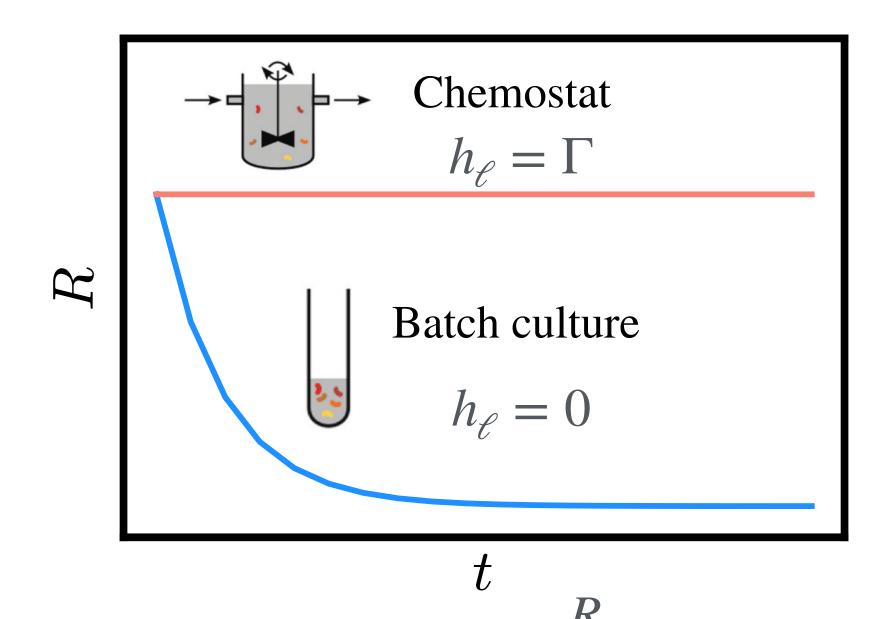
Measures of interactions have its own non-trivial dynamics!





Interactions depend on the experimental protocol

Abiotic resources



Biotic resources
$$h_{\ell} = rR_{\ell}(1 - \frac{R_{\ell}}{K})$$
A: Chlorella

O 5 10 15 20 25 30

Time, d

Time, d

$$\frac{d}{dt}R_{\ell} = -\sum_{j=1}^{n_C} \alpha_{j\ell} C_j R_{\ell} + h_{\ell}.$$

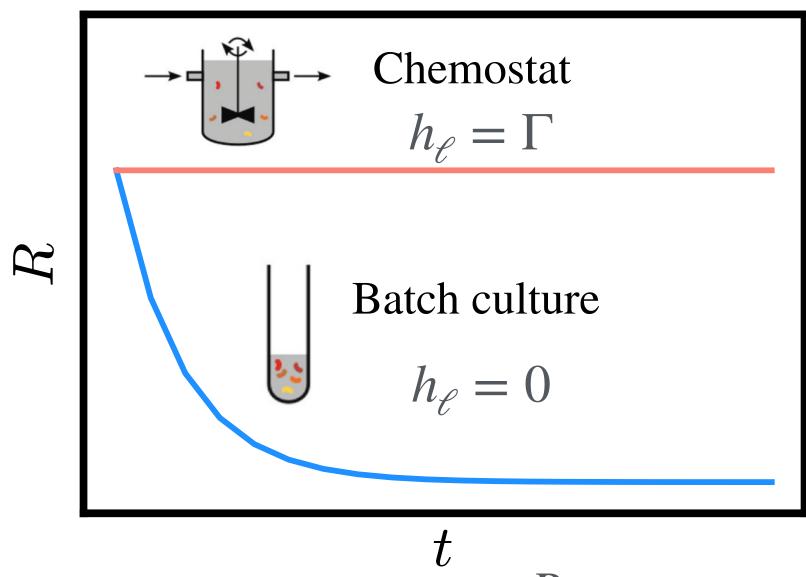
Kiørboe, 2008

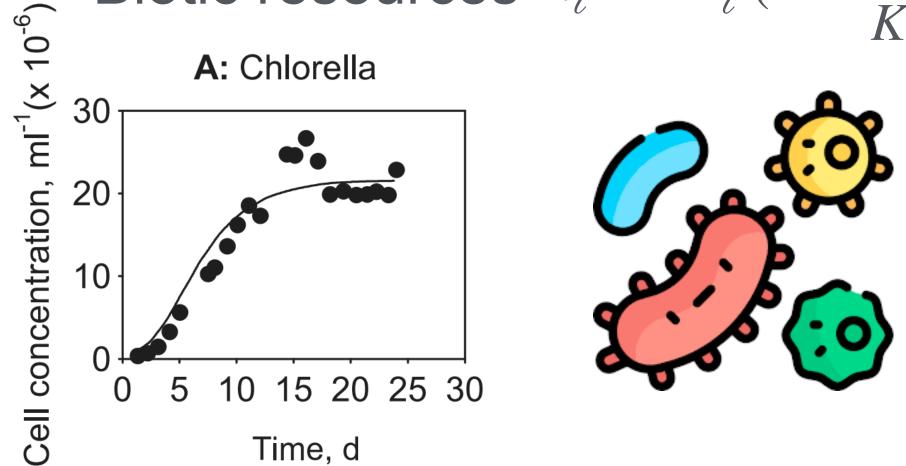
Picot, Shibasaki, Meacock, Mitri 2023

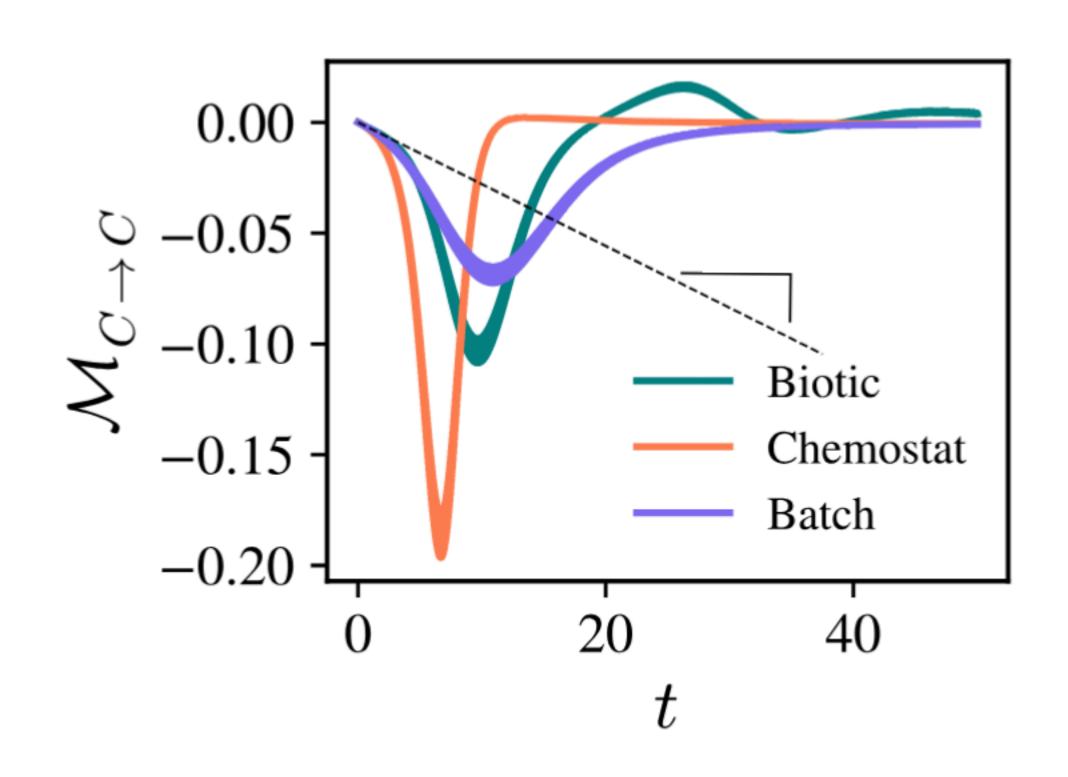
Interactions depend on the experimental protocol

$\frac{d}{dt}R_{\ell} = -\sum_{j=1}^{n_C} \alpha_{j\ell} C_j R_{\ell} + h_{\ell}.$

Abiotic resources







Kiørboe, 2008

Picot, Shibasaki, Meacock, Mitri 2023

$$\mathcal{M}_{i,j}(\vec{x},t) = \mathcal{M}_{i,j}^{(0)}(\vec{x}) + \mathcal{M}_{i,j}^{(1)}(\vec{x}) t + \mathcal{M}_{i,j}^{(2)}(\vec{x}) t^2 + \dots$$

$$\mathcal{M}_{i,j}(\vec{x},t) = \mathcal{M}_{i,j}^{(0)}(\vec{x}) + \mathcal{M}_{i,j}^{(1)}(\vec{x}) t + \mathcal{M}_{i,j}^{(2)}(\vec{x}) t^2 + \dots$$

$$\mathcal{M}_{i,j}^{(0)}(\vec{x}) = \frac{\partial}{\partial x_i} g_i(\vec{x}) \Delta x$$
 Direct interactions

$$\mathcal{M}_{i,j}(\vec{x},t) = \mathcal{M}_{i,j}^{(0)}(\vec{x}) + \mathcal{M}_{i,j}^{(1)}(\vec{x}) t + \mathcal{M}_{i,j}^{(2)}(\vec{x}) t^2 + \dots$$

$$\mathcal{M}_{i,j}^{(0)}(\vec{x}) = \frac{\partial}{\partial x_j} g_i(\vec{x}) \Delta x$$
 Direct interactions

$$\mathcal{M}_{i,j}^{(1)}(\vec{x}) = \sum_{k} x_k \, \partial_{x_k} g_i(\vec{x}) \, \partial_{x_j} g_k(\vec{x}) \longrightarrow \text{Indirect interactions}$$

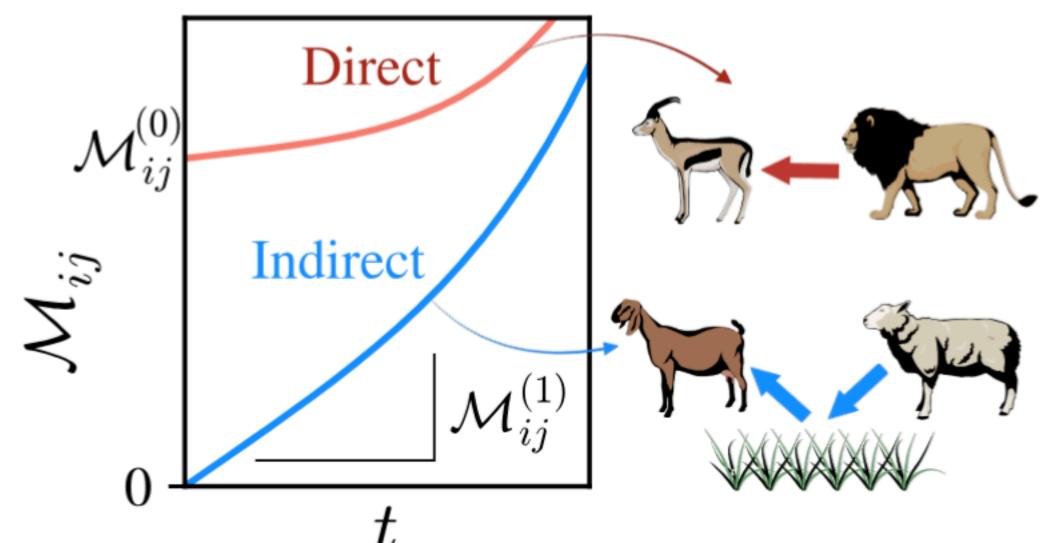
As the experiment duration goes on, more indirect effects come into play

Consumer-resource model:
$$\mathcal{M}^{(0)}_{C_i,C_j}(\vec{x}) = 0 \qquad \qquad \mathcal{M}^{(1)}_{C_i,C_j} = -\varepsilon_i \sum_{\ell=1}^{n_R} R_\ell \, \alpha_{i,\ell} \, \alpha_{j,\ell} < 0$$

$$\mathcal{M}^{(2)}_{C_i,C_i}(\vec{x}) = F_2[\{h_\ell\}]$$

$$\mathcal{M}_{i,j}(\vec{x},t) = \mathcal{M}_{i,j}^{(0)}(\vec{x}) + \mathcal{M}_{i,j}^{(1)}(\vec{x}) t + \mathcal{M}_{i,j}^{(2)}(\vec{x}) t^2 + \dots$$

$$\mathcal{M}_{i,j}^{(0)}(\vec{x}) = \frac{\partial}{\partial x_i} g_i(\vec{x}) \Delta x$$
 Direct interactions



$$\mathcal{M}_{i,j}^{(1)}(\vec{x}) = \sum_{k} x_k \, \partial_{x_k} g_i(\vec{x}) \, \partial_{x_j} g_k(\vec{x}) \longrightarrow \text{Indirect interactions}$$

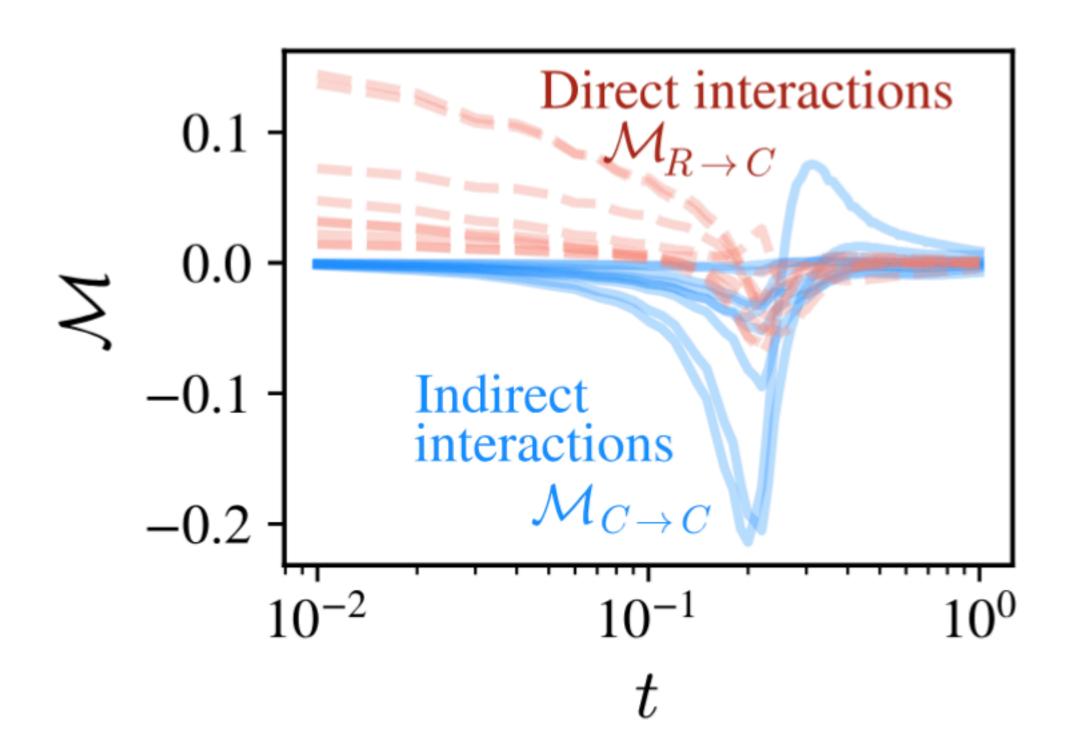
As the experiment duration goes on, more indirect effects come into play

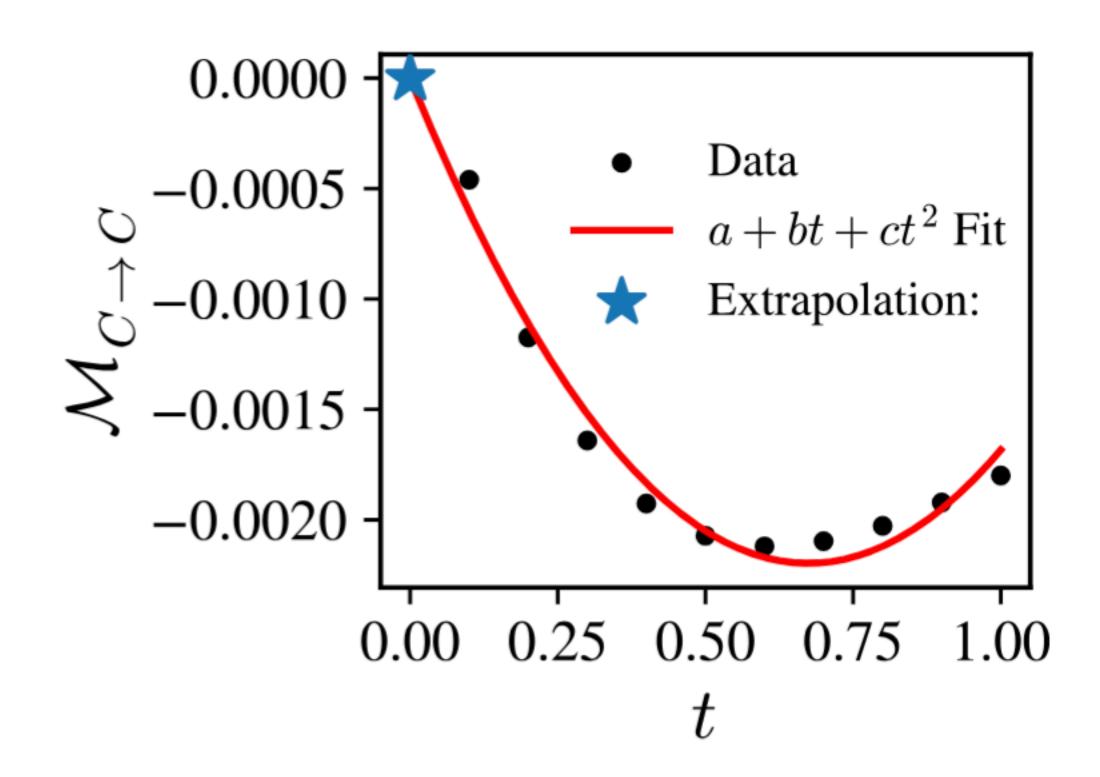
Consumer-resource model:

$$\mathcal{M}_{C_i,C_j}^{(2)}(\vec{x}) = F_2[\{h_\ell\}]$$

$$\mathcal{M}_{C_i,C_j}^{(1)} = -\varepsilon_i \sum_{\ell=1}^{n_R} R_\ell \alpha_{i,\ell} \alpha_{j,\ell} < 0$$

Disentangle direct and indirect interactions





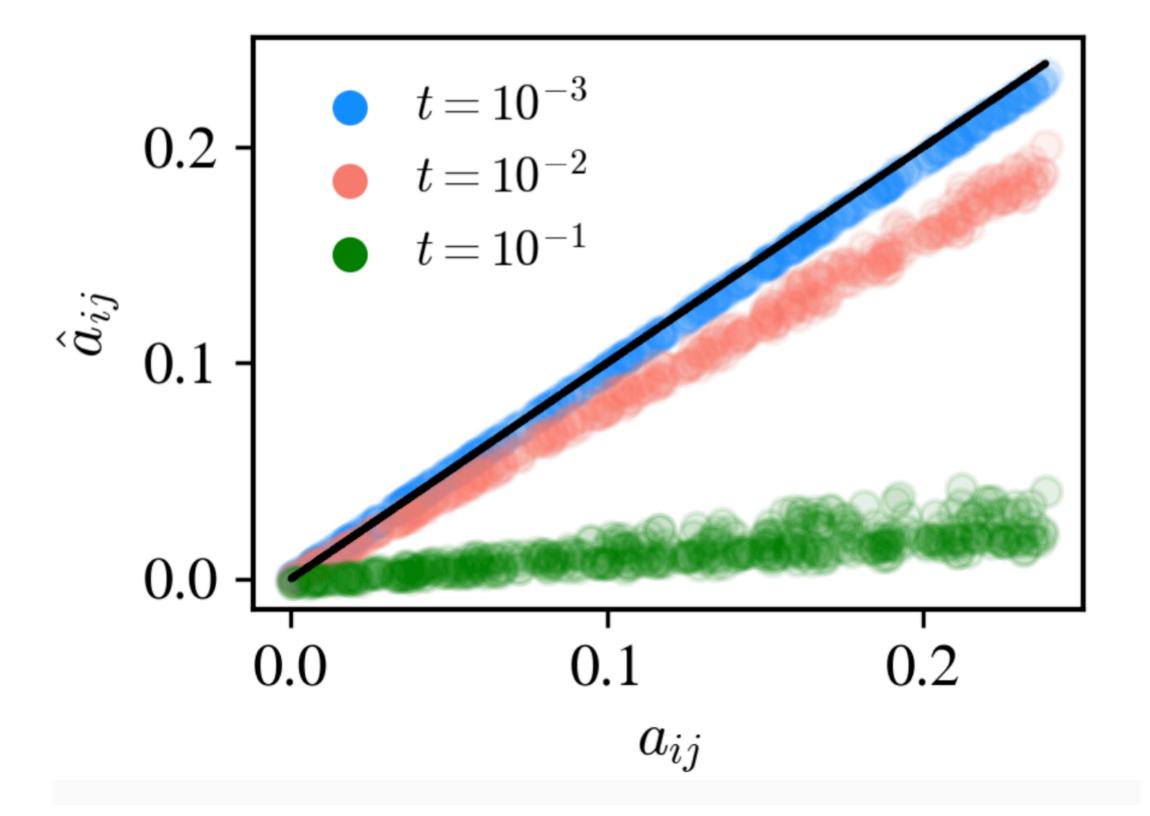
Inferring model from interactions

Measures:
$$\hat{a}_{ij} = \frac{1}{\Delta x} \mathcal{M}_{i,j}(\vec{x}, t, \Delta x, \Delta t)$$

Inferring model from interactions

Measures:
$$\hat{a}_{ij} = \frac{1}{\Delta x} \mathcal{M}_{i,j}(\vec{x}, t, \Delta x, \Delta t)$$
Inference

$$\dot{x}_i = x_i \sum_{j} \int_0^{x_j} \hat{a}_{ij} \left(x_1, \dots, x_{j-1}, s, x_{j+1}, \dots \right) ds_j + x_i c_i.$$



Inferring model from interactions

Measures:
$$\hat{a}_{ij} = \frac{1}{\Delta x} \mathcal{M}_{i,j}(\vec{x}, t, \Delta x, \Delta t)$$
Inference
$$\dot{x}_i = x_i \sum_j \int_0^{x_j} \hat{a}_{ij} \left(x_1, \dots, x_{j-1}, s, x_{j+1}, \dots \right) ds_j + x_i c_i.$$
Approximation

Approximation
$$\hat{a}_{ij}(\vec{x}) \approx \hat{a}_{ij}$$
 constant

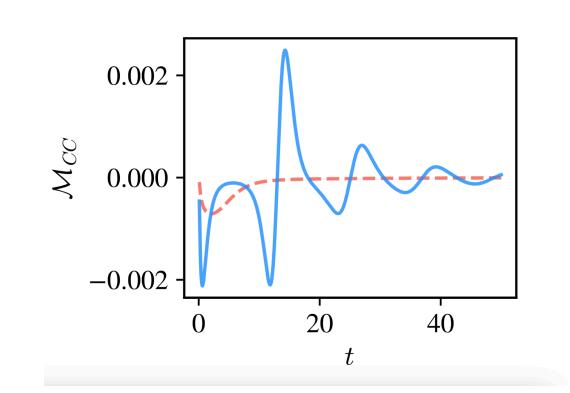
$$0.2 - \begin{array}{c} & t = 10^{-3} \\ & t = 10^{-2} \\ & t = 10^{-1} \\ & 0.0 - \begin{array}{c} & & & \\ & \\ & & \\ & & \\ & &$$

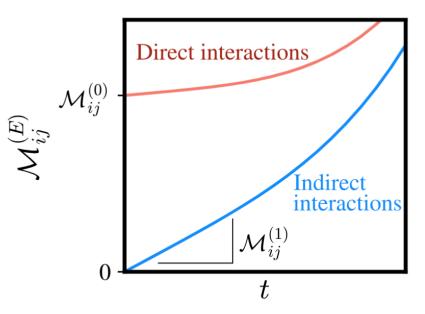
$$\dot{x}_i = x_i \sum_j \hat{a}_{ij} x_j + x_i c_i.$$

Lotka-Volterra as a first-order approximation of any inference!

Conclusions

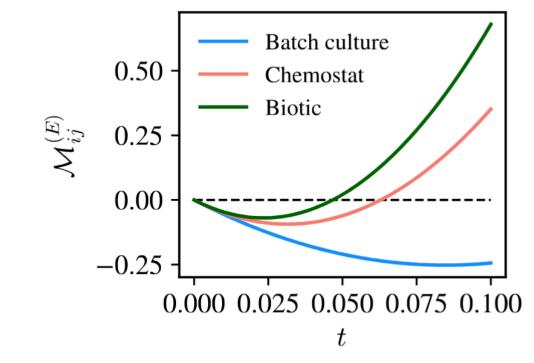
Sign of interactions depends on the experiment duration

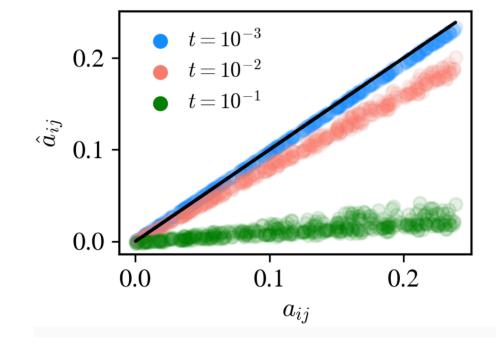




Scaling with experiment duration determine nature of interactions

Measured interactions depend on the experimental setup





Interaction measures provides a method to infer models

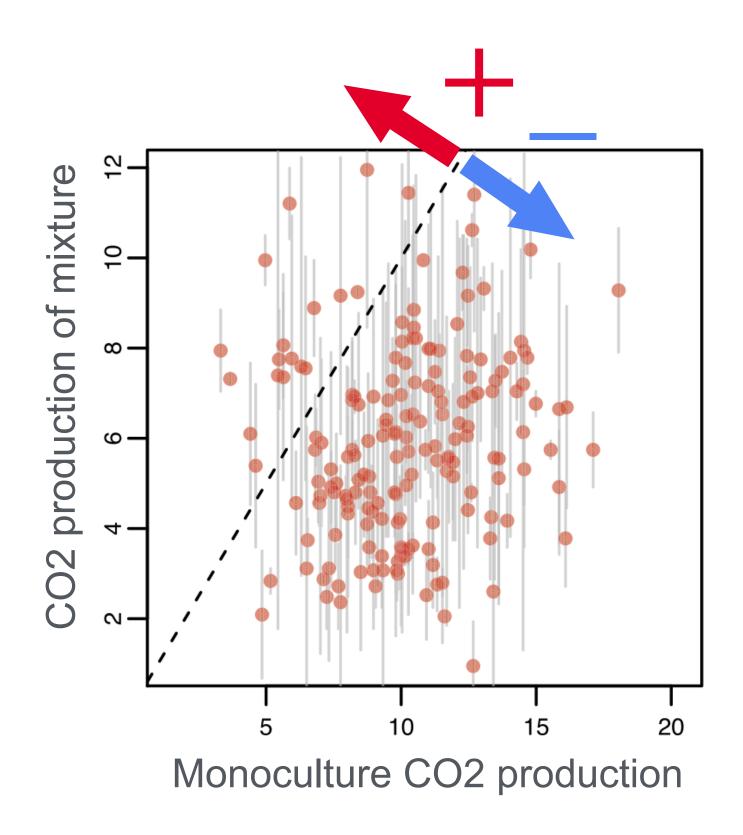
Thank you for your attention!

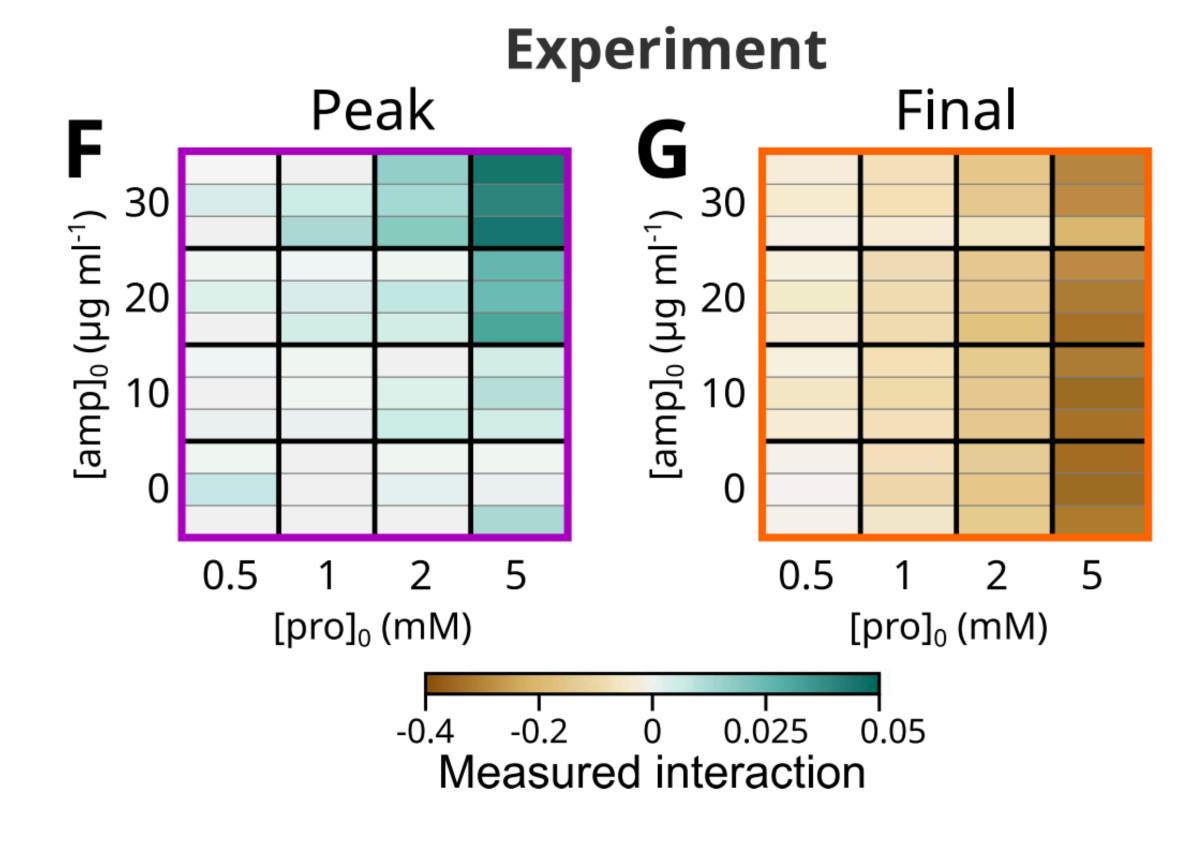
bioRxiv, 2025.08. 29.673018

Sandro Azaele

Samir Suweis

Interaction measures

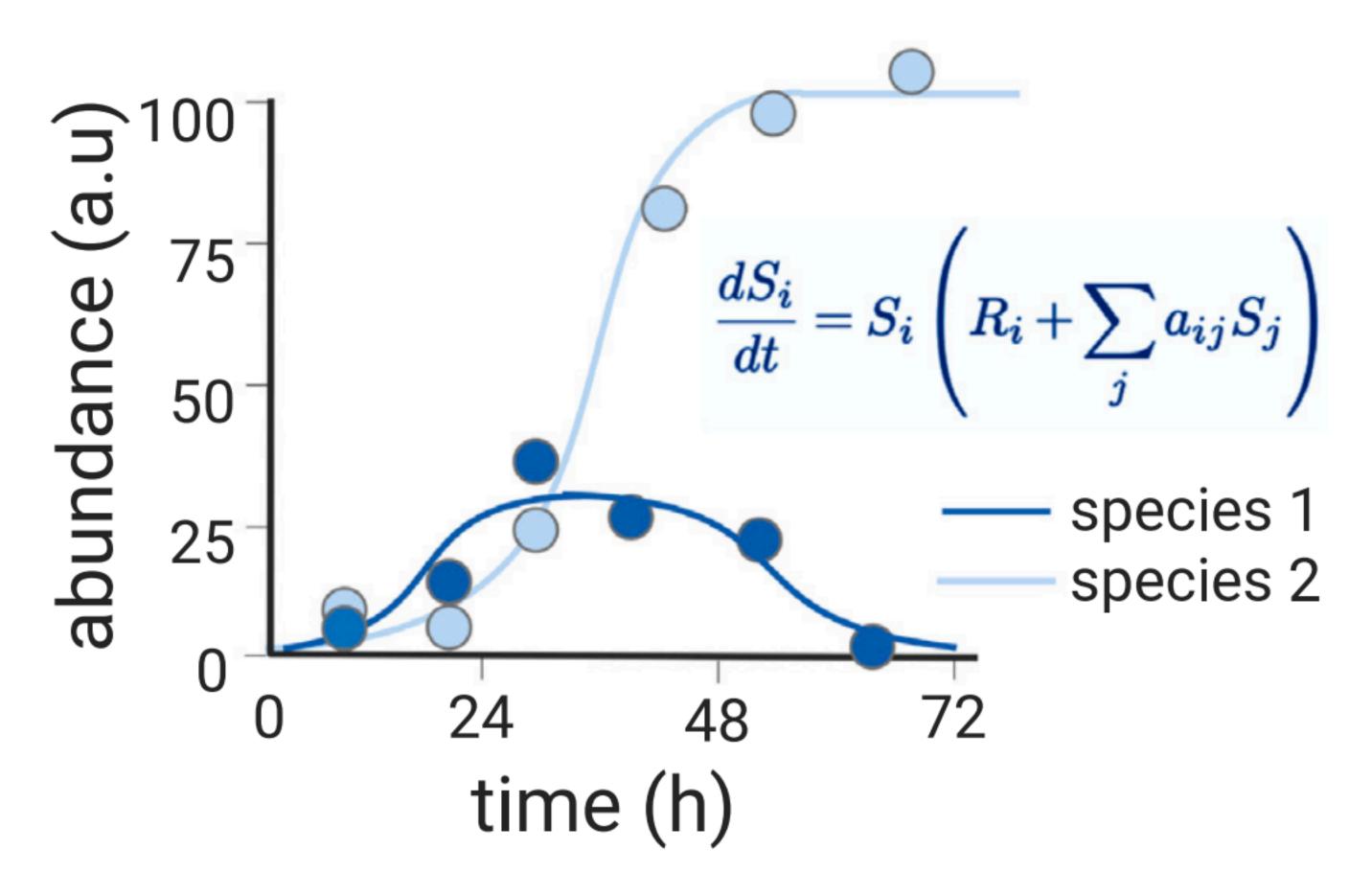




$$a'_{\alpha\beta}(\mathbf{r}) \equiv \nabla g_{\alpha}(\mathbf{r}) \cdot \mathbf{f}_{\beta}(\mathbf{r})$$

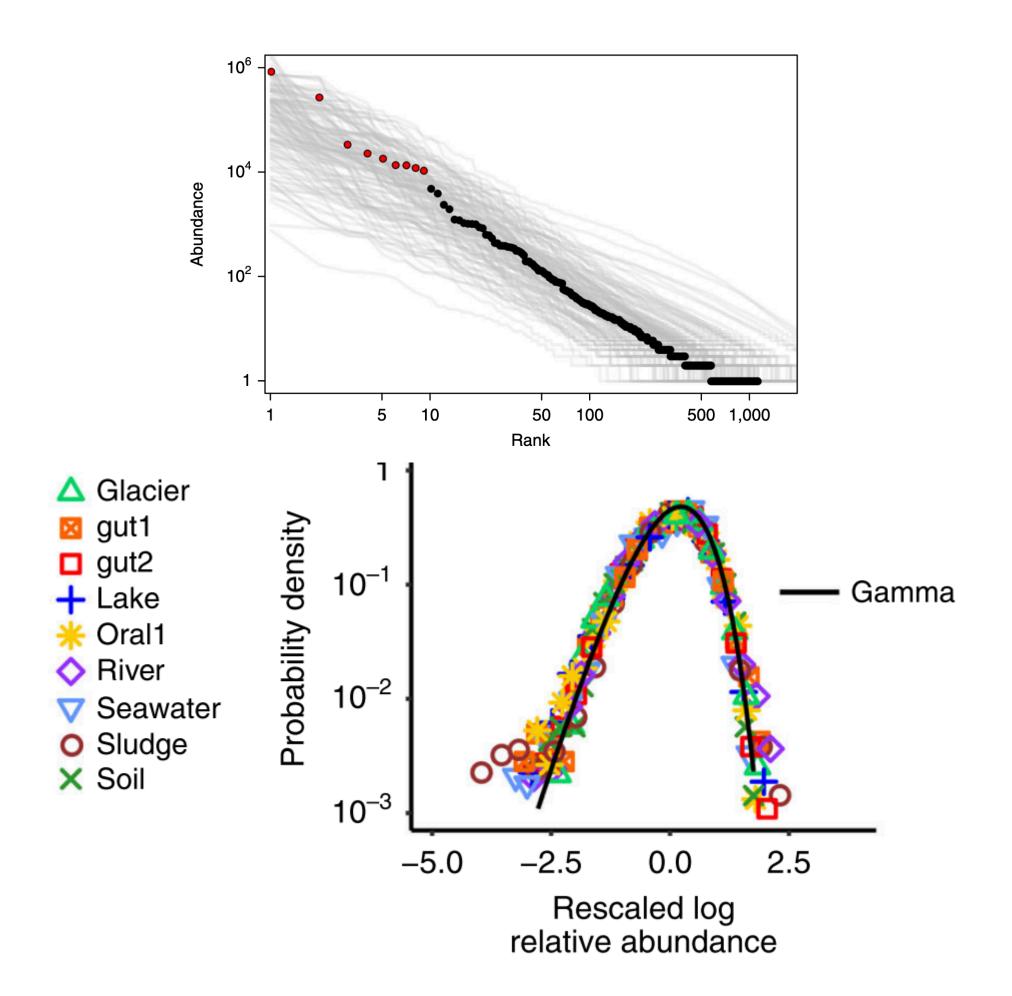
Measures of interactions: Parametric inference

Generalized Lotka-Volterra model (gLV)



How to deal with complex interactions?

Approach I: Neglect them

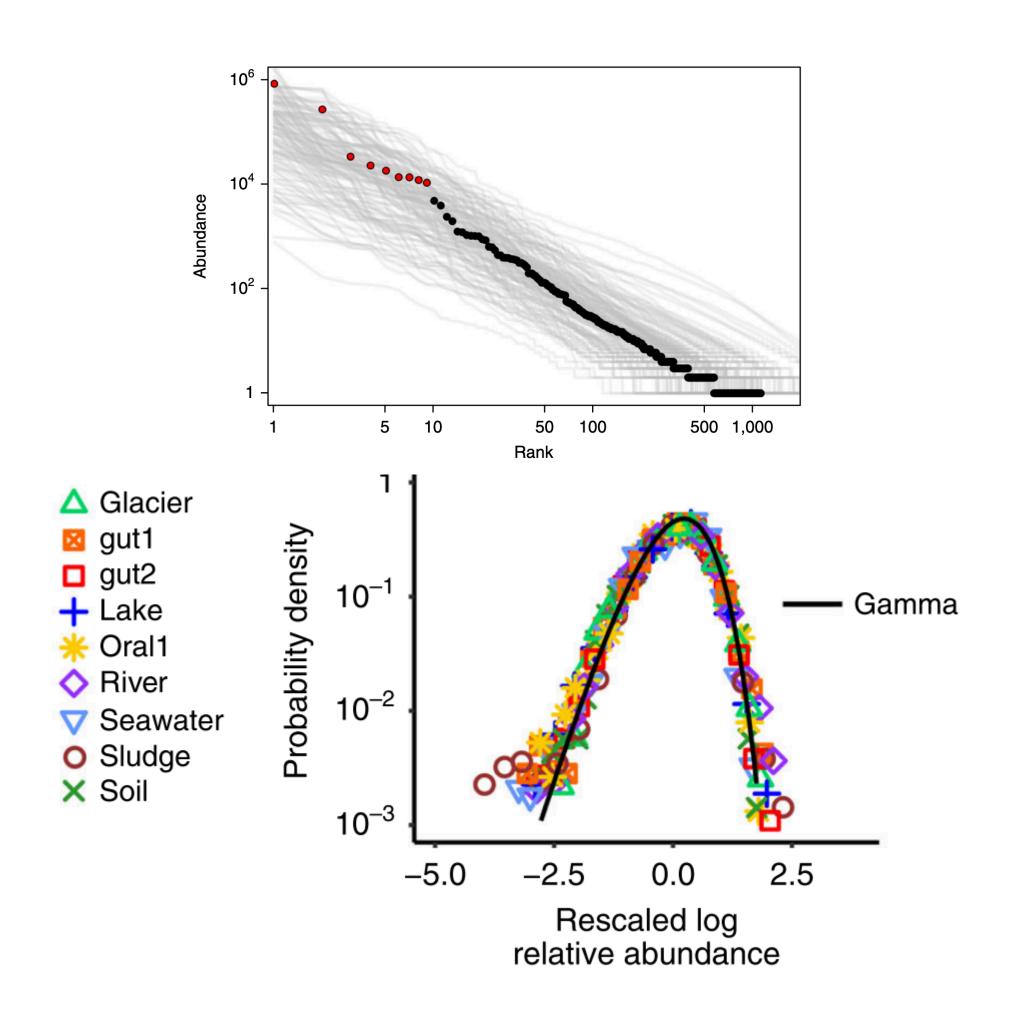


Ser-Giacomi et al. 2018 Grilli 2020

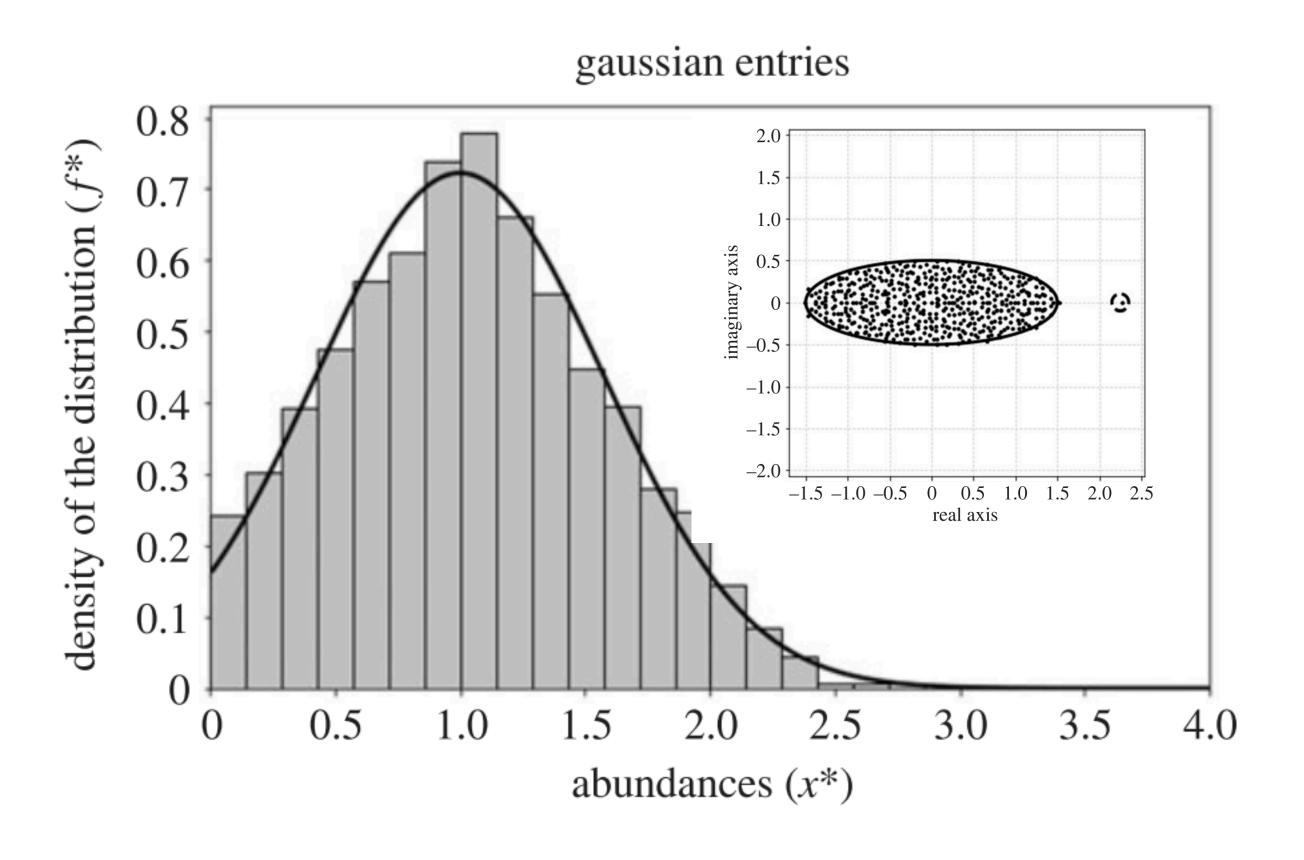
Interactions in a changing environment:

How to deal with complex interactions?

Approach I: Neglect them

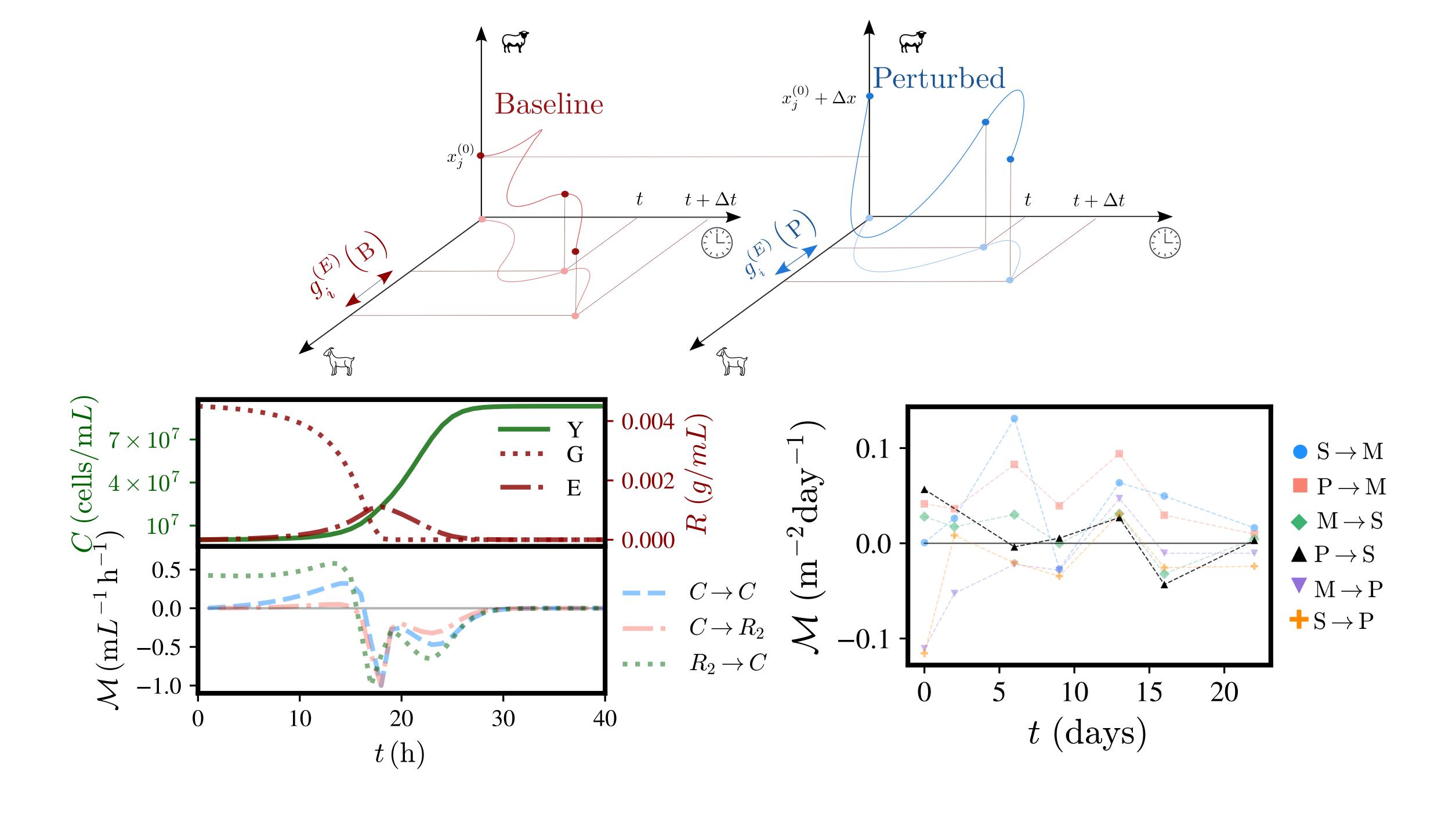


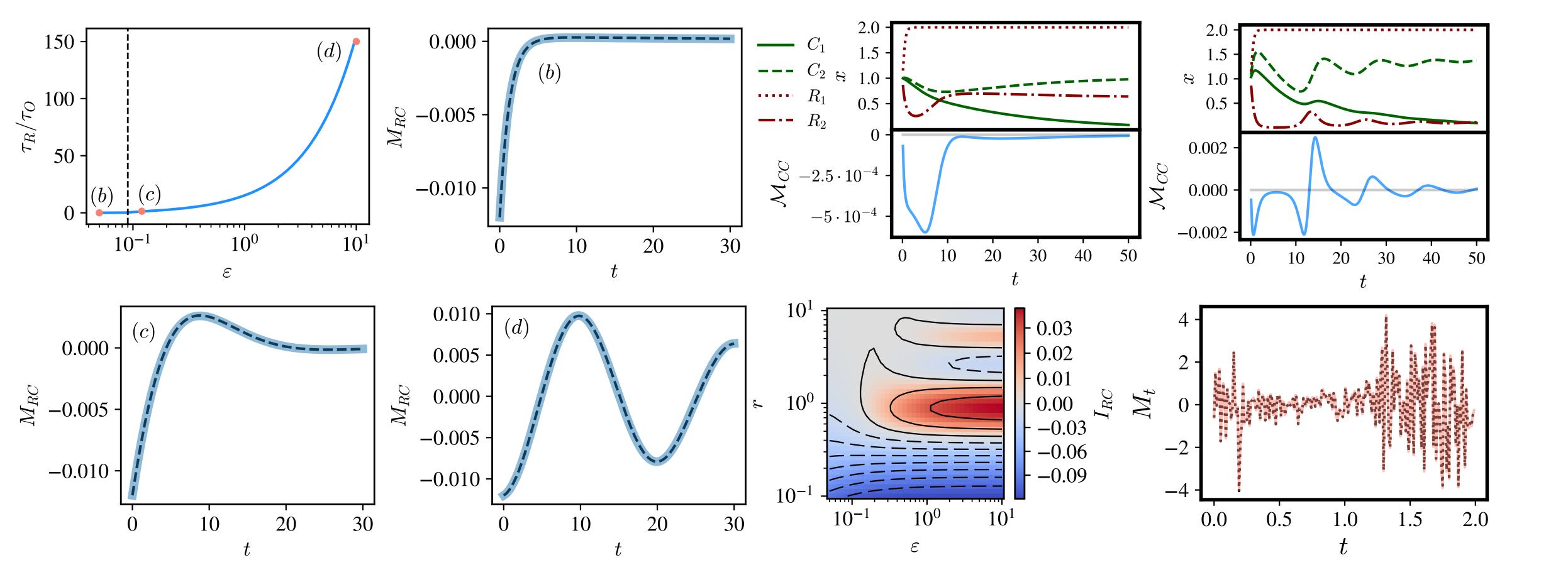
Approach II: Treat as random

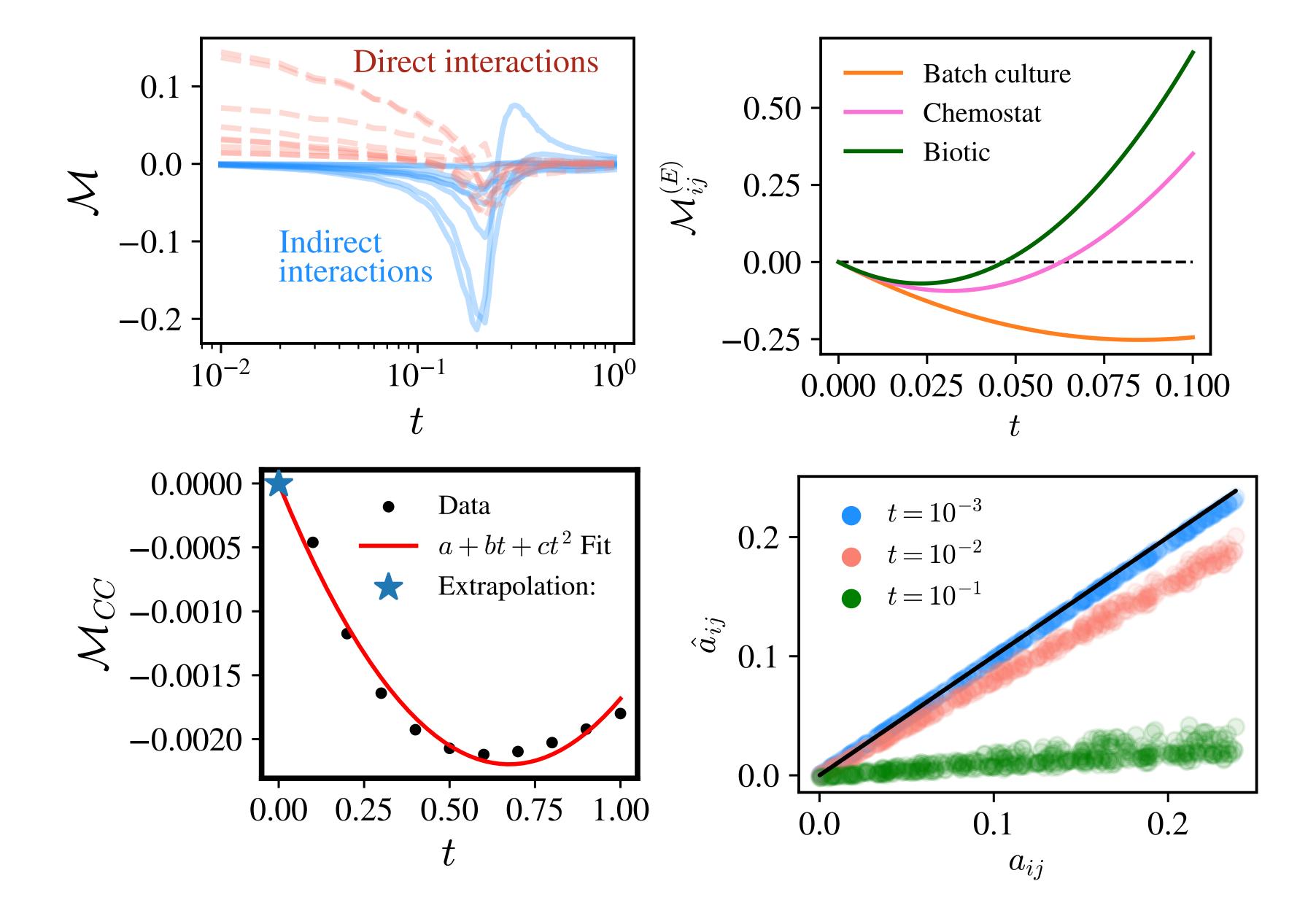


Ser-Giacomi et al. 2018 Grilli 2020

Akjouj et al. 2024

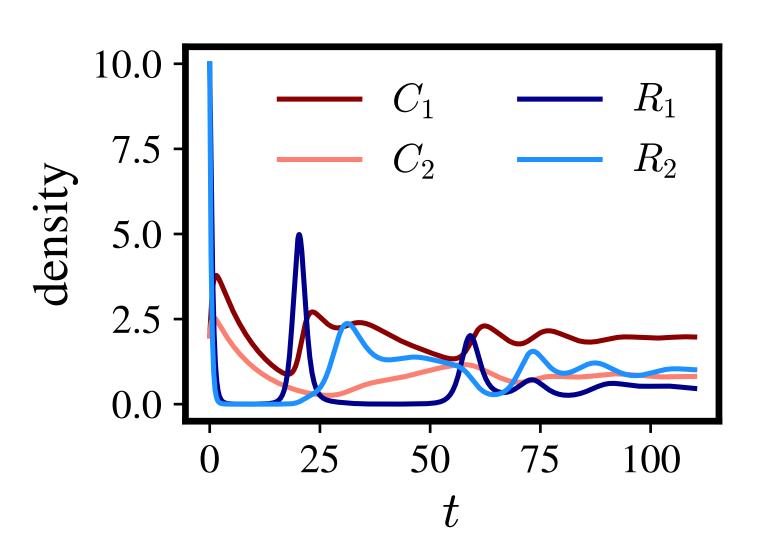






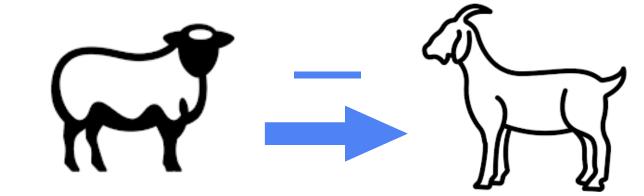
Synthetic datasets:

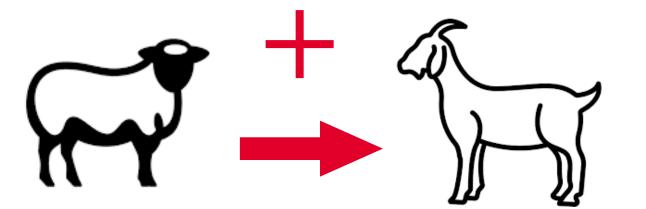
Generative model $\rightarrow \dot{x}_i = x_i g_i(\vec{x})$



Analytical evaluation

$$\mathcal{M}_{i,j}^{(E)} pprox \overrightarrow{G}_i \cdot \overrightarrow{E}_j \Delta x$$





Gradient vector:
$$\overrightarrow{G}_i(\overrightarrow{x}) = \nabla g_i(\overrightarrow{x})$$

Evolution vector:
$$\overrightarrow{E}_j = \partial_{x_i^{(0)}} \overrightarrow{x} (t | \overrightarrow{x}^{(0)})$$

