Electron Diagnostics for plasma accelerators

Nicolas Delerue, LAL CNRS and Université Paris-Sud XI

Diagnostics for plasma accelerators

- Plasma based accelerators have a tremendous potential.
- However the beams they produce needs to be characterised accurately.
- This must be done on a shot to shot basis as repeatability is not always good.
- Such beam are typically very short (fs) but with a high energy.
- Example of diagnostics developed recently:
 - Single shot OTR based emittance measurements
 - High Energy Pepper-Pots
 - Longitudinal profile reconstruction using Smith-Purcell radiation

Multiple Optical Transition Radiation profile measurements

- When an electrically charged particle experience a change of medium it radiates => Transition Radiation
- Optical Transition Radiation is commonly used at accelerators to image high energy beams but it scatters the beams.
- Unlike phosphorescence, OTR is a surface effect, independent of the screen thickness.
- The scattering induced by an ultra-thin screen may be acceptable.

Effect of the scattering

 $mc\epsilon_n$

• The condition for the scattering to be negligible can be derived:

 $\sigma_0 << N_{\rm screens}$

- For a small (focussed) beam the natural divergence will dominate the effect of the scattering whereas for a collimated beam the scattering will dominate.
- GEANT4 simulations were used to validate these calculations.

Delerue et al., arXiv:1005.2417

Experimental validation

- This was verified experimentally using the DIAMOND (UK) BTS (3 GeV electrons).
- The beam optics validates the condition on x and is close to it in y.
- Scattering with OTR screens is seen in y and not in x.

Nicolas Delerue, LAL Orsay

Single shot beam envelope

measurement

- Tested at DIAMOND
- Beam dispersion correction required.
- Good agreement with quadrupole scan.

Thomas, Bartolini and Delerue, Jinst 6 p07004 (2011)

OTR summary

- We have shown that thin OTR screens can be used to measure the emittance of a high energy beam in a single shot.
- An attempt was made to make a similar measurements at a plasma accelerator last June but was hampered by coherent effects.
 => more R&D needed to address those.

Issues with COTR

- Several accelerators using shorts bunches have seen problem with OTR becoming (partially) coherent.
- This issue needs to be investigated, for example by making measurements at shorter wavelength.
- Issue is worse with laser-driven plasma accelerators.
- This problem could be addressed at a test facility with short bunches.

Pepper-pots

- At low energy the usual transverse emittance measurement methods uses an array of slits or holes to split the incoming beam into several beamlets.
- For each hole the position of the beamlet is known.
- A screen located downstream measures the divergence of each beamlet.

Extended pepper-pots

 Instead of a thin foil deep channels can be used to form the beamlets.

- Two challenges:
 - Mechanical assembly
 - Phase-space preservation

Nicolas Delerue, LAL Orsay

High energy pepper-pots (extended pepper-pots)

- Creating thin channels is quite challenging from a mechanical point of view.
- We form them by stacking absorbers and shims.
- Require ultra-flat Tantalum (or Tungsten)
 => industrial collaboration.

Nicolas Delerue, LAL Orsay

Extended PP: Beam tests at DAFNE

 Beam tests at DAFNE BTF: 508 MeV electrons Single shot mode possible

High energy pepper-pots (extended pepper-pots)

RMS Emittance= 4.0 mm.mrad (geometric) Shearing: 0.32mrad/mm Calculated distance to waist: 3.1m

> Delerue et al. PAC'09 TH5RFP065

Nicolas Delerue, LAL Orsay

Pepper-pot summary

- We have demonstrated that extended pepperpot can work when positioned correctly.
- We have shown that it is possible to measure the emittance and reconstruct the phasespace of a 508 MeV beam in a single shot.
- Tests are on-going at DIAMOND to extend this method to 3 GeV!

Nuclear emulsions based tracking

- Perfect emittance measurement

 > position + direction of each particle.
- Nuclear emulsions can resolve particles with a resolution of about 1um.
- Stacks of thin emulsions can resolve the direction and the position of a beam.
- Damaging an emulsion plate with a high power laser is less of a problem than damaging an expensive camera!

Nicolas Delerue, LAL Orsay

Particle tracking

- Electrons above 100 MeV are not significantly scattered by a thin layer of Nuclear Emulsions.
- We used a technique called "image registration" to match (rotate, scale,...) the simulated images from two consecutive emulsion plates.
- A motorised microscope allows the scanning of a large area.
- A low particle density is necessary. At a LPA this is usually achieved because the beam has a strong divergence.

- We demonstrated that all the bits work but did not have time to put them together within the duration of the grant.
- There may be applications with ion beams. 17

Nicolas Delerue, LAL Orsay

Why 3 techniques

 The 3 techniques we studied are meant to be complementary: - Multi-OTR requires an intense beam to have enough OTR signal. - At low energy scattering is too intense.

Why 3 techniques

Pepper-pots won't work with electron
beams of several GeV
but they can work
with very high density
beams.

Why 3 techniques

- Emulsions only work with low density beams.

- They work over a large range of energy.

The information provided by the 3 methods is also slightly different.

Longitudinal profile measurement

Longitudinal profile measurement

- There are several techniques to measure longitudinal profiles of electron bunches.
- The most straightforward is to use a RF deflecting cavity (or a streak camera) => but not suitable for ultra short beams.
- Electro-optic sampling uses the wakefield induced by the beam in a crystal to modulate the field of a laser.
 but unable to reach ultra short bunches (below 30 fs)
- Several techniques (CTR, CDR, ...) use the radiation emitted by a relativistic bunch when passing trough/near an interface.

Nicolas Delerue, LAL Orsay

Plasma Accelerators

6 August 2010

Smith-Purcell radiation

- Smith-Purcell radiation is emitted when relativistic charged particles pass near a grating.
- Pioneering work on its use as longitudinal profile monitor done in Oxford by George Doucas (in the picosecond regime).

Nicolas Delerue, LAL Orsay

Plasma Accelerators

6 August 2010

Nicolas Delerue

Smith-Purcell radiation

In a Smith-Purcell detector, radiation of a certain wavelength is emitted in a fixed direction.
 => Allows to measure these different wavelength "easily" (the grating acts as spectrometer).
 => Give access to the Fourier transform of the bunch profile.

=> An inversion technique can then be used to reconstruct the bunch length but also the profile of the electron bunch.

Smith-Purcell detector

- The existing detector uses an array of 11 pyroelectric detectors able to detect far-infrared radiation.
- To increase the range of wavelengths that can be measured
 3 sets of filters can be inserted in front of the detectors.

Nicolas Delerue, LAL Orsay

Bunch profile reconstruction

Different bunch profiles will give different radiation spectrums which can be reconstructed.

Nicolas Delerue, LAL Orsay

Smith-Purcell radiation at a LPA

- To extend the range of the detector from ps to fs the wavelength sensitivity needs to be modified.
- The previous experiment used mm radiation whereas fs electron will emit micrometric radiations.
- Simulations show that we are also sensitive to small satellites.
- Test done at FACET (SLAC) last summer.

Nicolas Delerue, LAL Orsay

E-203 experiment at FACET

- FACET is the new test facility at SLAC (20 GeV, ~200fs).
- Preliminary measurements in August 2011
- Next data taking in March 2012.

Outlook

- Single shot diagnostics are necessary to measure the beam produced by plasma accelerators.
- Two emittance measurement techniques suitable for plasma accelerators have been validated on conventional accelerators.
- Preliminary tests at FACET show that Smith-Purcell radiation can be used to measure longitudinal profile in the 100fs range.
- Disclaimer: Any involvement of LAL needs to be approved by its science board (next meeting in January).

Thank you for your attention

Other activity at LAL: Compton scattering

 Mighty Laser: Fabry-Perot cavity (gain 1000 -> 10000) with digital feedback for Compton scattering. Tested at the KEK ATF.

Nicolas Delerue, LAL Orsay