

# Summary of the neutron irradiation campaign

Nicola Rubini (1)

(1) INFN Bologna24 October 2024



## LNL irradiation set-up

#### SiPM irradiation at CN-LNL – predefined slots





#### [sipm4eic-caracterisation]

#### <u>icola.rubini@bo.infn.it</u>



| serial<br>number | irradiation<br>mode      | distance<br>(cm) | charge<br>(nC) | fluence<br>(cm <sup>-2</sup> )     | notes           |
|------------------|--------------------------|------------------|----------------|------------------------------------|-----------------|
| 19               | NORMAL 10 <sup>10</sup>  | 25               | 7.60E+06       | 1 10 <sup>10</sup> n <sub>eq</sub> | STANDARD OVEN   |
| 20               | NORMAL 5 10 <sup>9</sup> | 30               | 1.03E+06       | 5 10 <sup>9</sup> n <sub>eq</sub>  | STANDARD OVEN   |
| 21               | NORMAL 10 <sup>9</sup>   | 35               | 1.03E+06       | 1 10 <sup>9</sup> n <sub>eq</sub>  | OFFLINE FORWARD |
| 22               | NORMAL 10 <sup>9</sup>   | 35               | 1.03E+06       | 1 10 <sup>9</sup> n <sub>eq</sub>  | OFFLINE REVERSE |
| 23               | NORMAL 10 <sup>9</sup>   | 35               | 1.03E+06       | 1 10 <sup>9</sup> n <sub>eq</sub>  | INFRARED LAMP   |
| 24               | NORMAL 10 <sup>9</sup>   | 35               | 1.03E+06       | 1 10 <sup>9</sup> n <sub>eq</sub>  | ELSE            |
| 25               | SPARE                    | 35               |                | 12                                 |                 |
| 26               | SPARE                    |                  |                |                                    |                 |

Successful irradiation in 2023! We see the linear increase with fluence as per NIEL hypothesis. But how does that compare with *p*-irradiated?



Damage current: current at given overvoltage after irradiation subtracted the current of a new sensor at the same overvoltage



| serial<br>number | irradiation<br>mode      | distance<br>(cm) | charge<br>(nC) | fluence<br>(cm <sup>-2</sup> )     | notes           |
|------------------|--------------------------|------------------|----------------|------------------------------------|-----------------|
| 19               | NORMAL 10 <sup>10</sup>  | 25               | 7.60E+06       | 1 10 <sup>10</sup> n <sub>eq</sub> | STANDARD OVEN   |
| 20               | NORMAL 5 10 <sup>9</sup> | 30               | 1.03E+06       | 5 10 <sup>9</sup> n <sub>eq</sub>  | STANDARD OVEN   |
| 21               | NORMAL 10 <sup>9</sup>   | 35               | 1.03E+06       | 1 10 <sup>9</sup> n <sub>eq</sub>  | OFFLINE FORWARD |
| 22               | NORMAL 10 <sup>9</sup>   | 35               | 1.03E+06       | 1 10 <sup>9</sup> n <sub>eq</sub>  | OFFLINE REVERSE |
| 23               | NORMAL 10 <sup>9</sup>   | 35               | 1.03E+06       | 1 10 <sup>9</sup> n <sub>eq</sub>  | INFRARED LAMP   |
| 24               | NORMAL 10 <sup>9</sup>   | 35               | 1.03E+06       | 1 10 <sup>9</sup> n <sub>eq</sub>  | ELSE            |
| 25               | SPARE                    | 35               |                |                                    |                 |
| 26               | SPARE                    |                  |                |                                    |                 |

Successful irradiation in 2023! We see the linear increase with fluence as per NIEL hypothesis. The results from the *n*-irradiated clashes with the ones from the *p*-irradiated, showing roughly twice the damage current





| serial<br>number | irradiation<br>mode      | distance<br>(cm) | charge<br>(nC) | fluence<br>(cm <sup>-2</sup> )     | notes           |
|------------------|--------------------------|------------------|----------------|------------------------------------|-----------------|
| 19               | NORMAL 10 <sup>10</sup>  | 25               | 7.60E+06       | 1 10 <sup>10</sup> n <sub>eq</sub> | STANDARD OVEN   |
| 20               | NORMAL 5 10 <sup>9</sup> | 30               | 1.03E+06       | 5 10 <sup>9</sup> n <sub>eq</sub>  | STANDARD OVEN   |
| 21               | NORMAL 10 <sup>9</sup>   | 35               | 1.03E+06       | 1 10 <sup>9</sup> n <sub>eq</sub>  | OFFLINE FORWARD |
| 22               | NORMAL 10 <sup>9</sup>   | 35               | 1.03E+06       | 1 10 <sup>9</sup> n <sub>eq</sub>  | OFFLINE REVERSE |
| 23               | NORMAL 109               | 35               | 1.03E+06       | 1 10 <sup>9</sup> n <sub>eq</sub>  | INFRARED LAMP   |
| 24               | NORMAL 109               | 35               | 1.03E+06       | 1 10 <sup>9</sup> n <sub>eq</sub>  | ELSE            |
| 25               | SPARE                    | 35               |                |                                    |                 |
| 26               | SPARE                    |                  |                |                                    |                 |

| serial<br>number | distance<br>(cm) | charge<br>(nC) | fluence<br>(cm <sup>-2</sup> )     | time<br>(hours) | notes           |
|------------------|------------------|----------------|------------------------------------|-----------------|-----------------|
| 19               | 25               | 5.28E+06       | 1 10 <sup>10</sup> n <sub>eq</sub> | 16.3            | repeat LNL 2023 |
| 20               | 30               | 3.80E+06       | 5 10 <sup>9</sup> n <sub>eq</sub>  | 11.7            | repeat LNL 2023 |
| 23               | 35               | 1.03E+06       | 1 10 <sup>9</sup> n <sub>eq</sub>  | 3.2             | repeat LNL 2023 |
| 24               | 35               | 1.03E+06       | 1 10 <sup>9</sup> n <sub>eq</sub>  | 3.2             | repeat LNL 2023 |
| 25               | 35               | 1.03E+06       | 1 10 <sup>9</sup> n <sub>eq</sub>  | 3.2             | repeat LNL 2023 |
| 28               | 35               | 1.03E+06       | 1 10 <sup>9</sup> n <sub>eq</sub>  | 3.2             | NEW             |
| 26               | 35               | 1.03E+05       | 1 10 <sup>8</sup> n <sub>eq</sub>  |                 | repeat LNL 2023 |

#### Successful irradiation in 2023!

We see the linear increase with fluence as per NIEL hypothesis. The results from the *n*-irradiated clashes with the ones from the *p*-irradiated. We try to repeat the measurement to see if we did something wrong, using (mostly) the same boards\*



\*they have been "scratched" with annealing (more than what is shown, not all are shown), they will have a residual damage (~3%) to deal with but we characterise them before irradiation

| serial<br>number | distance<br>(cm) | charge<br>(nC) | fluence<br>(cm <sup>-2</sup> )     | time<br>(hours) | notes           |
|------------------|------------------|----------------|------------------------------------|-----------------|-----------------|
| 19               | 25               | 5.28E+06       | 1 10 <sup>10</sup> n <sub>eq</sub> | 16.3            | repeat LNL 2023 |
| 20               | 30               | 3.80E+06       | 5 10 <sup>9</sup> n <sub>eq</sub>  | 11.7            | repeat LNL 2023 |
| 23               | 35               | 1.03E+06       | 1 10 <sup>9</sup> n <sub>eq</sub>  | 3.2             | repeat LNL 2023 |
| 24               | 35               | 1.03E+06       | 1 10 <sup>9</sup> n <sub>eq</sub>  | 3.2             | repeat LNL 2023 |
| 25               | 35               | 1.03E+06       | 1 10 <sup>9</sup> n <sub>eq</sub>  | 3.2             | repeat LNL 2023 |
| 28               | 35               | 1.03E+06       | 1 10 <sup>9</sup> n <sub>eq</sub>  | 3.2             | NEW             |
| 26               | 35               | 1.03E+05       | 1 10 <sup>8</sup> n <sub>eq</sub>  |                 | repeat LNL 2023 |





## **First results**

Characterisation finished yesterday for the last two fluences, so they are (very) freshly baked results!





Damage current: current at given overvoltage after irradiation subtracted the current of a new <u>or "scratched"</u> sensor at the same overvoltage

[sipm4eic-caracterisation]

## **First results**

The linearity is still preserved, but we seem to have a consistently lower damage across all fluences.





#### nicola.rubini@bo.infn.it



normalised to p-irradiated eq.

## **First results**

The linearity is still preserved, but we seem to have a consistently lower damage across all fluences.





K \$13360-3050VS

[sipm4eic-caracterisation]



## **First results**

The linearity is still preserved, but we seem to have a consistently lower damage across all fluences.

For all sensors we seem to have  $\sim$ 75% of the damage we had the first round.





## Conclusions

The LNL-puzzle saga continues and will need further investigation on what is the source of these discrepancies. We successfully irradiated and characterised all target boards.

Up next: laser measurements to evaluate window damage



# Thank you! Any questions?

[sipm4eic-caracterisation]

nicola.rubini@bo.infn.it



## Back-up

nicola.rubini@bo.infn.it - Nicola Rubini