
Workshop on
management of distributed resources for genomic communities

29-30 October 2024

Review argomenti trattati

Antonio Sandroni

Docker, K8s, Open-ID

Workshop on management of distributed resources for genomic
communities

2

Containers

Virtualization & Containers

Workshop on management of distributed resources for
genomic communities

3

From Virtualization to Containers: why?

Virtualization: creation of a virtual version of "something",
like an OS, a storage device, a network

In building a web service on Ubuntu, it works on our
machine but not on the remote server.
Reasons: different OS, missing libraries, incompatible
version of software.

Each virtualized application includes not only the
application but also an entire operating system.

Workshop on management of distributed resources for
genomic communities

4

Containers

• Docker is a platform for running applications in lightweight units
called containers.

• The Docker container engine comprises just the application and its
dependencies. It runs an isolated process on the host operating
system.

• It's much more portable, fast and efficient, a container is a lightweight
VM.

• This provides enormous simplifications to software development and
deployment processes

Workshop on management of distributed resources for
genomic communities

5

Docker
• Docker is an open-source platform that automates the development and deployment

of applications inside portable and self-sufficient software “containers”.

• Main Components:

o Docker Engine: the core
technology behind Docker that
enables building, running, and
managing containers.

o Docker Hub: is a cloud-based
registry that stores and distributes
Docker images, allowing users to
find, share, and collaborate on
containerized applications

Workshop on management of distributed resources for
genomic communities

6

Containers & Images

Images can exist without containers, whereas a container
needs to run an image to exist

• A Docker image is an unalterable, read-only
file with all necessary software components—
source code, dependencies, libraries, and
tools—to ensure the application operates as
intended across various environments.

• A Container is the active instance created
when a Docker image is deployed,
representing a running, isolated environment
based on that image.

Workshop on management of distributed resources for
genomic communities

7

Images blueprint: ex uno plures

A Docker image typically outlines:

•The base image to use as a starting point for
the container.

•The commands that should execute upon
container startup.

•Instructions for setting up the container’s file
system.

•Configuration details, such as which ports to
expose and how to handle data transfers
between the container and the host system.

Workshop on management of distributed resources for
genomic communities

8

Docker Images

• Search for an image on Docker
Hub:

• docker search ubuntu

• Pull (download) an image
• docker pull ubuntu

• List downloaded images:
• docker images

• Run a container:
• docker run -it ubuntu /bin/bash

Workshop on management of distributed resources for
genomic communities

9

Image extension
• If a Docker image lacks a command (e.g., ping), install it in the container:

o docker run ubuntu /bin/bash -c "apt update; apt -y install inetutils-ping"

• However, re-running the container will lose the installation, as each docker run
starts a new container from the original image.

• Instead of manually modifying a container, you can streamline the process by
creating a Dockerfile, which contains all necessary commands to build an
image.

Workshop on management of distributed resources for
genomic communities

10

Docker compose
• The next step involves creating application stacks, which

means linking multiple containers to provide a cohesive
multi-container service, all hosted on a single virtual
machine.

• This is achieved using the docker-compose command.

• Docker Compose is a tool for defining and running multi-
container Docker applications, using a straightforward YAML
syntax to describe the services, networks, and volumes
needed for your application.

11

docker-compose.yml

version: '3'

services:

database:

image: mysql:5.7

environment:

- MYSQL_USER=wordpress

- MYSQL_PASSWORD=olss_passwd

- MYSQL_DATABASE=wordpress

- MYSQL_RANDOM_ROOT_PASSWORD=true

networks:

- backend

wordpress:

image: wordpress

depends_on:

- database

environment:

- WORDPRESS_DB_HOST=database

- WORDPRESS_DB_USER=wordpress

- WORDPRESS_DB_PASSWORD=olss_passwd

- WORDPRESS_DB_NAME=wordpress

ports:

- 8080:80

networks:

- backend

- frontend

networks:

backend:

driver: bridge

frontend:

driver: bridge

This builds the container for the database,
with only the “backend” network

This builds the container for WordPress,
with both the “backend” and “frontend” networks

Port 8080 on the host (VM)
is mapped to port 80 on the

container

“Obvious” note: although this is just for a demo,
do not use the passwords shown in this screen!

Note that here we refer
to the other containerContainer image for mySQL

(from Docker Hub)

Container image for WordPress
(from Docker Hub, latest)

Configuration variables
for the container software

Workshop on management of distributed resources for
genomic communities

12

Best practices

• Use shared base images: Whenever possible, leverage common base images to minimize size.

• Limit data in container layers: Keep the amount of data written to container layers to a minimum.

• Chain RUN statements: Combine multiple commands in a single RUN statement to reduce the
number of layers created.

• Each container should host a single application. For instance, avoid running both an application
and its database in the same container.

• Place frequently changing layers at the bottom of the Dockerfile.

• Use proper tagging for your images to clearly indicate which version of the software they
correspond to.

• Do not confuse RUN with CMD

Workshop on management of distributed resources for
genomic communities

13

Pros Cons
•Lightweight: Docker images are much smaller
(e.g., 70MB for Ubuntu) compared to full OS
distributions, which saves storage.

•Fast Startup: Containers launch in seconds, far
quicker than virtual machines, enhancing
productivity.

•Efficient Resource Use: Containers share the host
OS kernel, allowing more efficient use of CPU and
memory than VMs.

•Portability: Docker ensures consistency across
environments, making deployment reliable.

•Isolation: Containers keep apps and
dependencies separate, reducing conflicts and
simplifying management.

•Applications that require direct hardware access or
real-time performance may not perform as well in
containers compared to bare metal or VMs.

•Security: it’s not as secure as full virtual machines.
Containers share the OS kernel, so a vulnerability in the
kernel could potentially affect all containers.

•Persistent Storage: By default, containers are
ephemeral.

•Overhead in Orchestration: As applications scale and
involve multiple services, managing Docker containers
can become complex.

Workshop on management of distributed resources for genomic
communities

14

Kubernetes

K8s

Workshop on management of distributed resources for
genomic communities

15

Kubernetes
• Kubernets is a container orchestrator. It makes the

changes to reach the desired state

• A cluster is a single logical unit composed of many
server nodes.

• Each node has a container runtime installed, for
example Docker.

• ControlPlane: is responsible for managing the
overall state and behavior of the Kubernetes
cluster.

• Worker: Worker Nodes are the machines (either
physical or virtual) that run containerized
applications in Kubernetes.

Workshop on management of distributed resources for
genomic communities

16

Control Plane

• API Server: The Kubernetes API server is the main gateway through which
users, services, and components communicate with the cluster.

• Etcd: This is the distributed key-value store that keeps all cluster data, storing
configuration details, status, and metadata.

• Controller Manager: This manages the controllers that monitor the state of the
cluster and make adjustments as needed.

• Scheduler: The scheduler determines which nodes in the cluster will run each
pod, based on resource requirements, workload priorities, and constraints. It
ensures efficient resource allocation.

Workshop on management of distributed resources for
genomic communities

17

Worker Nodes

• Kubelet: This is the agent on each node that
communicates with the API server. It receives and
executes instructions, ensuring that containers are
running as specified in the pod manifest.

• Container Runtime: This is the software responsible for
running containers

• Kube-proxy: A network component that runs on each
worker node, managing networking rules and facilitating
communication between pods and services both within
and outside the cluster.

• Pods: The smallest deployableunits in Kubernetes. A pod
can contain one or more containers

Workshop on management of distributed resources for
genomic communities

18

Rules and policies

• kubectl is the command-line tool used to
interact with a Kubernetes cluster

• RBAC (Role-Based Access Control) manages
user access to resources through roles and
bindings.

• A Role defines a set of permissions within a
specific namespace (e.g., view or edit Pods).

• RoleBinding assigns a Role to a user or group
within a namespace.

Workshop on management of distributed resources for
genomic communities

19

The Pod
• Pod is the smallest and most basic deployable unit.

• It represents a single instance of a running application or
process within the Kubernetes cluster.

• It is ephemeral

• Containers inside a Pod share the same IP address

• Lives on one node

Workshop on management of distributed resources for
genomic communities

20

Pod specifications
• Each Pod belongs to one namespace and cannot exist in more than

one. Namespaces are distinct environments, and they can’t be
nested.

• Labels are metadata assigned to Kubernetes objects, such as Pods,
for identification and grouping. Labels can be used in selectors to
match.

• Resources control the CPU and memory (RAM) allocations for Pods,
defining the computing power a Pod can request and consume.

• ConfigMaps is an API object store non confidential data in key-value
format, keeping configuration separate from container images.

• Secrets are similar to ConfigMaps but designed to store sensitive
information, such as passwords, SSH keys, and certificates.

Workshop on management of distributed resources for
genomic communities

21

Volumes

• Pods are ephemeral and so is their filesystem, built
by Kubernetes on multiple sources, from the
container image to writable layer for the container.

• If a Pod is storing data on a node and suddenly
crashes, if it is recreated on another node, how can he
reach his older data?

How to extend the lifetime of data beyond the life of a
Pod?

• We can create PersistentVolumes (PV), an abstraction
of piece of storage, and connect them to the Pod
trough a PersistentVolumeClaim (PVC).

Workshop on management of distributed resources for
genomic communities

22

Controllers: managing resources

• Pods are too simple to be useful on their own, what happens if
is lost?

• We can manage them with controllers, resources that manages
other resources.

• To scale the app we use Replicaset: manages the number of
Pods

• On top of ReplicaSets the Deployment.

o Manages the creation of Pods and their number

o Substitute the old Pods with new one (Rollout)

Workshop on management of distributed resources for
genomic communities

23

Pod Networking

• Each Pod is assigned a unique IP address
• What if a Pod dies and changes IP? How do I refer to

it?

• Services are abstraction over network layer that facilitate
communication between Pods.

• To handle the fact that Pods may have changing IP
addresses, Kubernetes provides Services

• Ingress is a Kubernetes resource that manages external
access to services within a cluster, routing traffic to
different Services based on request URL

Workshop on management of distributed resources for genomic
communities

24

An Authentication layer on
top of OAuth2.0

OIDC

Workshop on management of distributed resources for
genomic communities

25

Motivation

• Centralized user management through a
centralized Identity Provider (IdP), such as
Keycloak.

• Authorization based on Role-Based Access
Control (RBAC), assigned according to user
group memberships.

• Each group associated with a user is
mapped to a specific namespace in
Kubernetes to control access accordingly
(group mapping).

Workshop on management of distributed resources for
genomic communities

26

OAuth2 & OIDC

• OAuth2: Standard framework to delegate
authorization.

• OIDC: built on top of OAuth for Authentication

• Based on JWT (Jason We Token)

o Header: Contains basic metadata, such as
the hashing algorithm used to sign the
token.

o Payload: The core content of the token,
detailing specific information about the
user or token.

o Signature: A digital signature generated by
the Identity Provider (IdP) that issued the
token, confirming its authenticity and
ensuring it hasn't been tampered with.

•

Workshop on management of distributed resources for
genomic communities

27

oidc-agent: token request
• To request an Access Token

oidc-token sorsola

• To save the token

token=$(oidc-token sorsola)

• To use the token with Kubernetes:

kubectl --token=$token get pod

or

alias k="kubectl --token=$token"

k get pod

Note: Each time a new token is requested, you'll need to reset the alias.

Workshop on management of distributed resources for
genomic communities

28

Best practises

• Login and password
La password:
• DEVE avere elevata robustezza (per Epic min 14
caratteri di 3 classi diverse), non essere banale o
presente nei dizionari di qualsiasi lingua
• DEVE essere modificata con sufficiente frequenza
• NON DEVE essere la stessa per più di un servizio
• NON DEVE essere salvata in chiaro
• NON DEVE essere salvata se il pc è condiviso
• NON DEVE essere inserita in pagine web di dubbia
provenienza (es: siti che ti calcolano quanto è robusta la
tua password)

•Tokens
•MAI inviare il proprio token a qualcun altro
•NON salvare i token in chiaro

	Diapositiva 1: Review argomenti trattati
	Diapositiva 2: Virtualization & Containers
	Diapositiva 3: From Virtualization to Containers: why?
	Diapositiva 4: Containers
	Diapositiva 5: Docker
	Diapositiva 6: Containers & Images
	Diapositiva 7: Images blueprint: ex uno plures
	Diapositiva 8: Docker Images
	Diapositiva 9: Image extension
	Diapositiva 10: Docker compose
	Diapositiva 11: docker-compose.yml
	Diapositiva 12: Best practices
	Diapositiva 13: Pros           Cons
	Diapositiva 14: K8s
	Diapositiva 15: Kubernetes
	Diapositiva 16: Control Plane
	Diapositiva 17: Worker Nodes
	Diapositiva 18: Rules and policies
	Diapositiva 19: The Pod
	Diapositiva 20: Pod specifications
	Diapositiva 21: Volumes
	Diapositiva 22: Controllers: managing resources
	Diapositiva 23: Pod Networking
	Diapositiva 24: OIDC
	Diapositiva 25: Motivation
	Diapositiva 26: OAuth2 & OIDC
	Diapositiva 27: oidc-agent: token request
	Diapositiva 28: Best practises

