

Advancing Proton Therapy with Prompt Gamma-Based Monitoring Methods

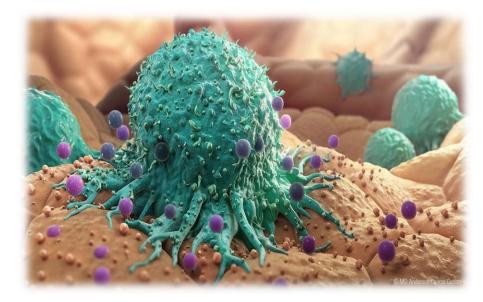
Aleksandra Wrońska Jagiellonian University in Kraków SiFi-CC group

https://bragg.if.uj.edu.pl/sificc

DeSyT2025 - International Workshop on Detection Systems and Techniques in Nuclear and Particle Physics Catania, 24-26 February 2025

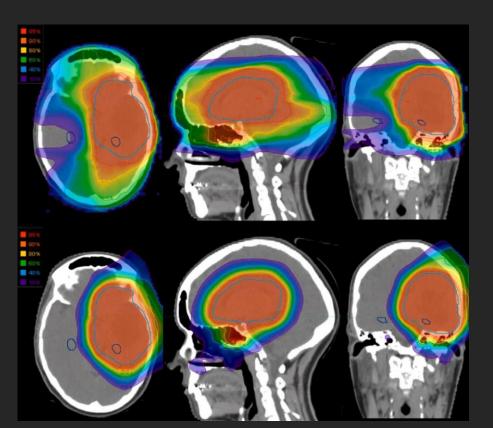
Cancer – a scare and a challenge

Statistics

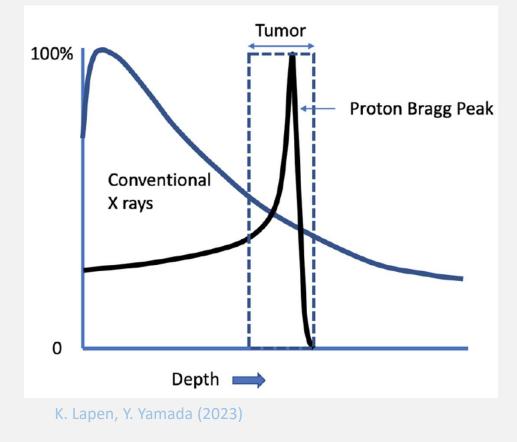

- 1 in 4 deaths caused by cancer in the EU
- Organ. responsible for more than 35% of deaths among those aged less than 65, and under 25% amongst those aged 65 and over
- >3.7 million new cases and ~1.9 million deaths/year make cancer the second most important cause of death and morbidity in Europe
- main causes: tobacco and alcohol • consumption, inappropriate diet, obesity and insufficient physical activity, longer life
- trend: increasing...

Norld

Treatment methods


- Surgery
- Chemotherapy
- Radiotherapy
- Immunotherapy (Nobel 2018)

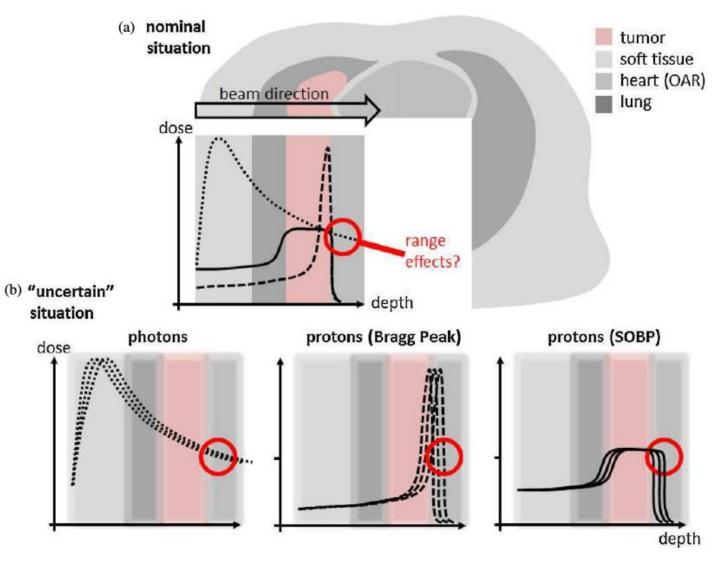
X-ray *versus* hadron therapy


photons

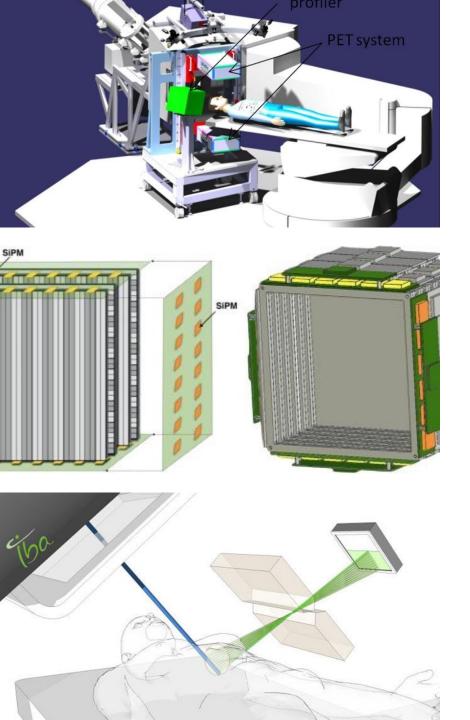
protons

C. Byskov et al., 2021

- Tumour irradiation important way of treatment
- Advantages of hadron therapy compared to X-rays:
 - Conformal dose distribution
 - Biological effectiveness

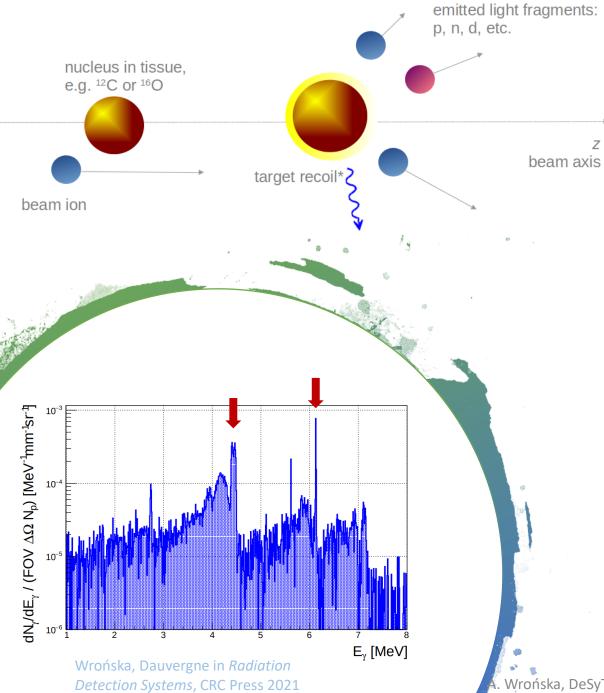


Kraków proton therapy centre: Cyclotron Centre Bronowice


- Modern equipment, iba Proteus C235 cyclotron, 2 gantries + eye
- 2013 first beam
- 2016 first patient
- Experienced team
- Today: ~40 patients / day, including children

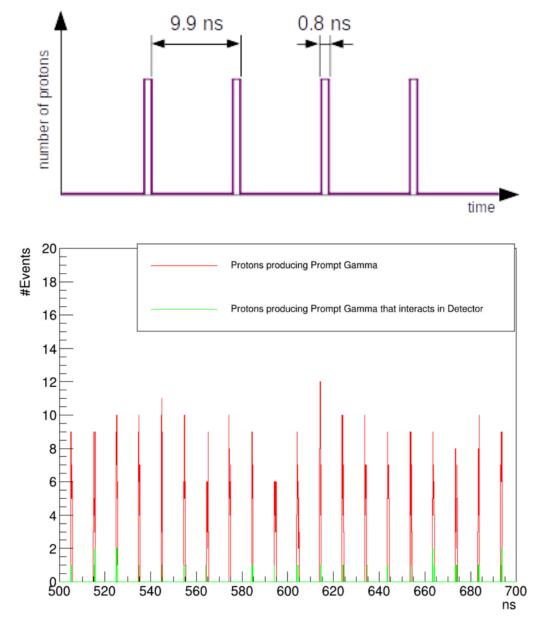
Can we do better in proton therapy?

- Safety margins: from a few mm up to > 1 cm
 - Patient positioning
 - Anatomical changes
 - Infections
 - Uncertainties of treatment planning
- Reduction of margins?
- Online monitoring of therapy
 - Determination of Bragg peak position in real time, spot-by-spot
 - Maybe even spatial dose distribution...?
- Adaptive proton therapy


Knopf, Lomax, PMB 2013

How to monitor PT?

Secondary radiation correlated with dose distribution


- Protons, neutrons useful in C-ion therapy:
 - Dose Profiler (CNAO, Pavia) Traini et al., Physica Medica 65, 2019
 - MONDO (Frascati & Trento) Mirabelli et al., IEEE Trans. Nucl. Sci. 65, 2018
- β+ emitters (PET):
 - INSIDE (CNAO, Pavia) Bisogni et al., J. Med. Imaging 4, 2017
 - J-PET (UJ, Kraków) Baran et al., MSS/MIC 2019
- Prompt-gamma radiation:
 - OncoRay+IBA (Dresden) Richter *et al.*, Radiotherapy and Oncology 1 118, 2016,
 - MGH Boston Hueso-Gonzalez et al., PMB 63, 2018, Xie *et al.* Int. J. of Rad. Oncol. Biol. Phys. 99 210 2017
 - Many others review: Wrońska, Dauvergne in *Radiation Detection Systems*, CRC Press 2021

Prompt gamma (PG) – working conditions

- Large count rates (n×10⁵ s⁻¹)
- Background from other secondaries (neutrons)
- $N_{\gamma}/N_{p}^{\sim}0.15$
- Energy range 1-7 MeV (continuum + discrete transitions)
- Typical spot: t=10 ms, N_p~10^s => limited statistics!
- Detection system of large efficiency, rate capability and fast DAQ needed

Wrońska, DeSyT-2025, Catania, 24-26 Feb 2025

Prompt gamma (PG) – working conditions

- Large count rates (n×10⁵ s⁻¹)
- Background from other secondaries (neutrons)
- $N_{\gamma}/N_{p}^{\sim}0.15$
- Energy range 1-7 MeV (continuum + discrete transitions)
- Typical spot: t=10 ms, N_p~10^s => limited statistics!
- Detection system of large efficiency, rate capability and fast DAQ needed

PG in proton therapy monitoring

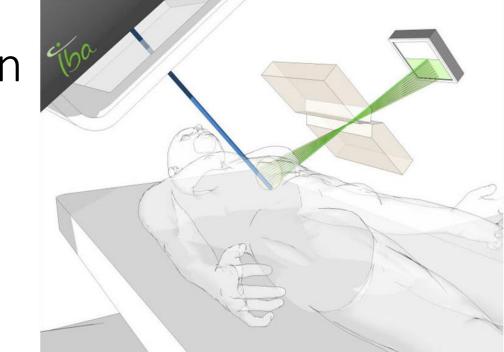
State of the art

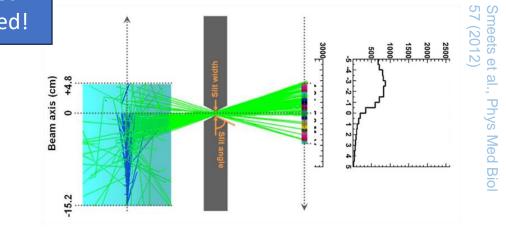
- Beam range monitoring using a slit camera
- 1d information
- Tests in clinical conditions (Dresden, Boston)
- Clinical trials

Dream

 Registeration of PG vertex distribution (Compton cameras)

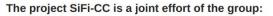
Draeger et al., PMB 63, 2018 Barrientos et al., Phys. Med. 117, 2024 Koide et al., Sci. Rep. 8, 2018


- "Translation" of this distribution to the spatial distribution of deposited dose
 Liu, Huang Physica Medica 69, 2020
- Full 3d information
- Difficult!


Trends

- Use simple, fast detectors
- Stick to simple observables
- Avoid image recon.
- PG spectroscopy Hueso-Gonzalez et al.. PMB 63, 2018
- PG timing Werner et al.. PMB 64, 2018
- PG peak integrals Krimmer et al., Appl. Phys. Lett. 110, 2017
- PG energy integrals Everaere et al., Front, Phys. 2024

Leaders – slit camera from Dresden


- Solution developed at Dresden/Rossendorf in collaboration with IBA
- A scintillation gamma camera with a knifeedge-shaped slit, fixed position
- 1d information
- First clinical test: 2016 Richter et al., Radiotherapy and Oncology 1 118, 2016
- Now: second setup version
- Overall range prediction validaton uncer $1 \text{ mm} (2\sigma)$ Berthold et al, UROBP 111, 2021 Statistically driven. Could be improved with more PG used!
- ...but per spot "only" 2 mm (1 σ) /
- Consequence: reduction of safety margins from 7 to 3 mm in prostate cancer patients Bertschi et al, PIRO 26, 2023
- Ongoing clinical trial

The group

Magdalena Jorge Katarzyna Roser 🗗 Rusiecka 🗗 👘 Rafecas 🗗

Achim Mark Stahl P2

professor

Vitalii Urbanevych 🗗 Wong P¹

post-doc post-doc

Aleksandra

Wrońska 🖓 1

PI, professor

Gabriel

Ostrzołek 🗗

Monika Magdalena Kercz 🗗 🍙 Kołodziej 🗗

PhD student

Associated researchers:

Master PhD student student

Philippe Mikołaj Clement P1,2 Dubiel 🗗

Master Master student student

Szymon Dominik Machura 🗗 Szubartowski 🗗 Bachelor Bachelor

student

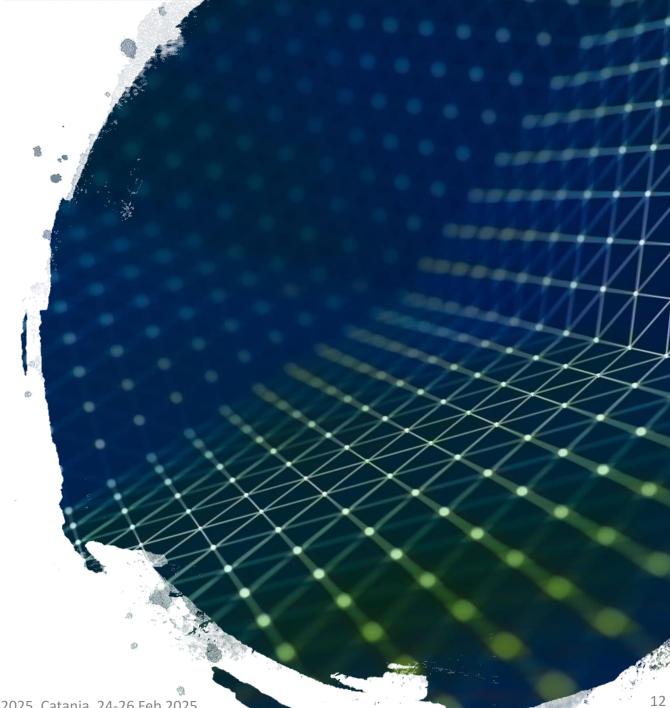
student

N ARODOWE CENTRUM N AUKI

Ronja Hetzel 🗗 6, formerly 2

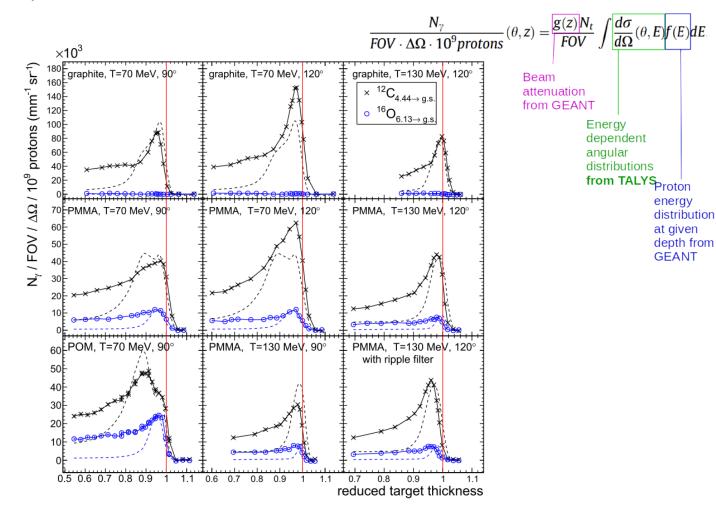
post-doc

Former members, also those working on the gCCB project:


Awal Awal @², Piotr Bednarczyk @³, Anna Bekas¹, Andreas Bolke @⁵, Daniel Böckenhoff², Arshiya Anees Ahmed @¹, Arkadiusz Bubak @⁴, Richard Chomjak @¹, Michelle Dombeu @², George Farah \mathcal{G}^2 Sabine Feyen², Grzegorz Gazdowicz \mathcal{G}^1 , Aleksandra Kaszlikowska \mathcal{G}^1 , Majid Kazemi Kozani \mathcal{G}^1 , Laurent Kelleter \mathcal{G}^2 , Jonas Kasper \mathcal{G}^2 , Nadia Kohlhase \mathcal{G}^5 , Barbara Kołodziej 🛱¹, Adam Konefał 🛱⁴, Wojciech Kozyra 🛱¹, Karim Laihem 🛱², Rafał Lalik 🛱¹, Johannes Leidner 🛱², Andrzej Magiera 🗗, Sara Müller 🛱², Grzegorz Obrzud 🛱¹, Marek Pałka 🛱¹, Mareike Profe², Damian Stachura ឆ¹, Szymon Świstun ឆ¹, Aneta Wiśniewska ឆ¹, Anna Władyszewska ឆ¹, Mirosław Ziebliński ឆ³ Alexander Fenger ឆ² Linn Mielke ឆ²

¹Institute of Physics, Jagiellonian University, Kraków ²III. Physikalisches Institut B, RWTH Aachen University, Aachen ³Institute of Nuclear Physics PAN, Kraków ⁴University of Silesia, Katowice ⁵Institute of Medical Engineering, University of Lübeck ⁶Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt

PG – our activities


γCCB: characterization of PG – experiments Monte-Carlo simulations + validation

SiFi-CC setup for beam range monitoring

A. Wrońska, DeSyT-2025, Catania, 24-26 Feb 2025

γCCB – experimental characterization of PG

- Experiments: CCB, HIT, CCB
- Spectroscopy HPGe detector with ACS
- Phantoms with different elemental composition
- T_p=70, ..., 230 MeV
- Different detection angles
- Focus: lines 4.44 MeV and 6.13 MeV
- Results confronted with TALYS and literature data
- Details of correlation PG-dose

Kelleter, Wrońska et al., Physica Medica 34, 2017 Wrońska et al., Acta Phys. Pol. B 48, 2017 Wrońska, Kasper et al., Physica Medica 88, 2021

γ CCB – validation of simulations

- Comparison of simulated and measured PG emission from a PMMA phantom irradiated with proton beam
- Various G4 versions and physics lists
- Newest not always means best...
- Best match for G4 v10.4.2, QGSP_BIC_HP
- Theoretically better QGSP_BIC_AllHP does not reproduce line shapes
- ...but best match also has issues (unphysical lines in spectrum)

Beam energy	Proton range	Beam current	Facility
(MeV)	(mm)	(nA)	
70.54	35.06	0.5	HIT
130.87	105.46	0.5	HIT
130	104.23	50	CCB
180	184.10	10	CCB
230	280.35	1.5	CCB

Physics list	Geant4 version	Label
QGSP_BIC_HP	10.4.2	\mathbf{A}^*
	10.5.1	\mathbf{B}^*
	10.6.3	\mathbf{C}^*
	10.7.1	D^*
QGSP_BIC_AllHP	10.6.3	C^{ullet}
	10.7.1	D^{\bullet}

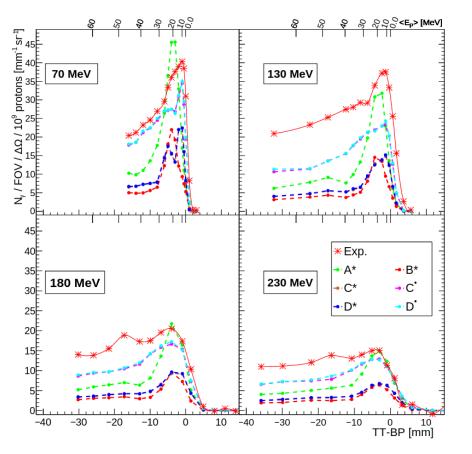
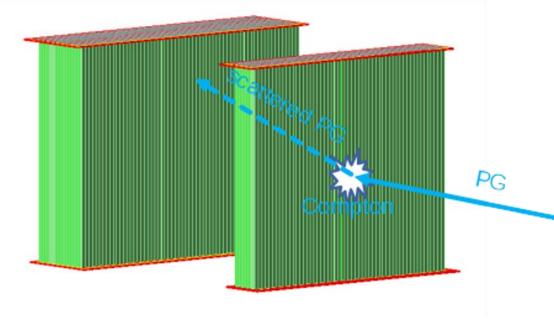
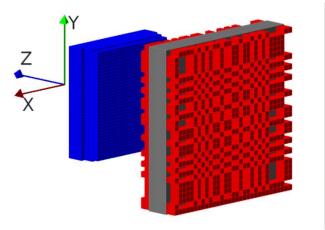
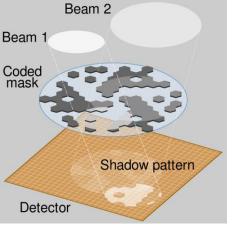
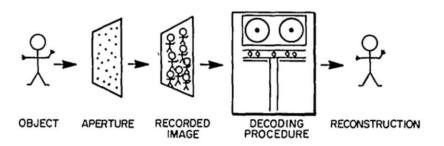



Figure 7: Comparison of gamma emission depth profiles for the 4.44 MeV line obtained from the simulations and the experiments for the beam energies $70 \,\mathrm{MeV}$, $130 \,\mathrm{MeV}$, $180 \,\mathrm{MeV}$ and $230 \,\mathrm{MeV}$.

Wrońska, Kasper et al., Physica Medica 88, 2021


L. Mielke, M.Sc.. thesis, RWTH Aachen, 2024


SiFi-CC: Compton camera for PGI


- SiPM and scintillating Fibers based Compton Camera
- Arrays of LYSO fibres => large efficiency
- 1mm x 1mm x 100 mm (small prototype)
 2mm x 2mm x 100 mm (full-scale)
- Dual readout via SiPMs:
 - 1:1 coupling (small)
 - 4:1 coupling (full-scale)
- Granularity => pile-up !
- DAQ with selective coincidence trigger
 => large data throughput

By-product: coded-mask setup (CM)

By Cmglee - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?c urid=47569900

E. E. Fenimore and T. M. Cannon, Coded aperture imaging with uniformly redundant arrays, Appl. Opt. 17, 337-347 (1978)

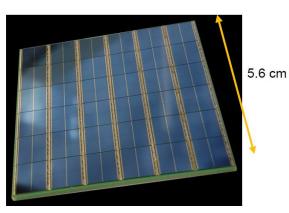
- Technique used in astronomy, also for γ sources (far field)
- So far not tested experimentally for PT Sun et al., Rad. Phys. Chem. 174 (2020)
- 2d image
- Larger statistics than in a singleaperture camera
- Will this work for the near field?

SiFi-CC - prototyping

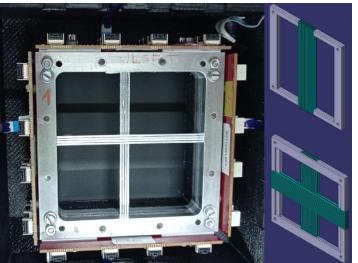
- Investigation of fibre properties

 Energy resolution?
 Position resolution (along the fibre)?

 Rusiecka et al., ISMART2018 (Springer) Rusiecka et al., JINST 16, 2021
- Construction of a small module prototype
 - \circ 4 layers
 - \circ 64 fibres


O re-arrangable Rusiecka, PhD thesis in preparation, Jag. Uni. 2022

- Data analysis software J. Kasper, PhD thesis, RWTH Aachen 2022
- Image reconstruction software
 - Kohlhase et al., IEEE Trans. Rad. Plas. Med. Sci. 4, 2020
- FEE+DAQ classical/digital SiPMs

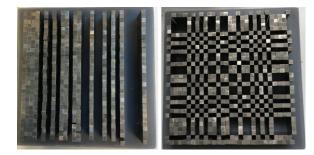

Schug, Schulz et al., PMB 61, 2016

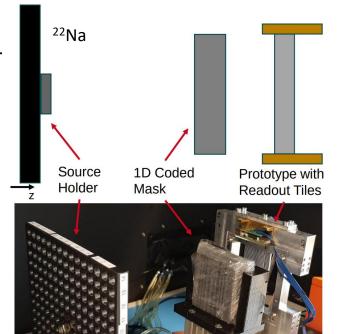


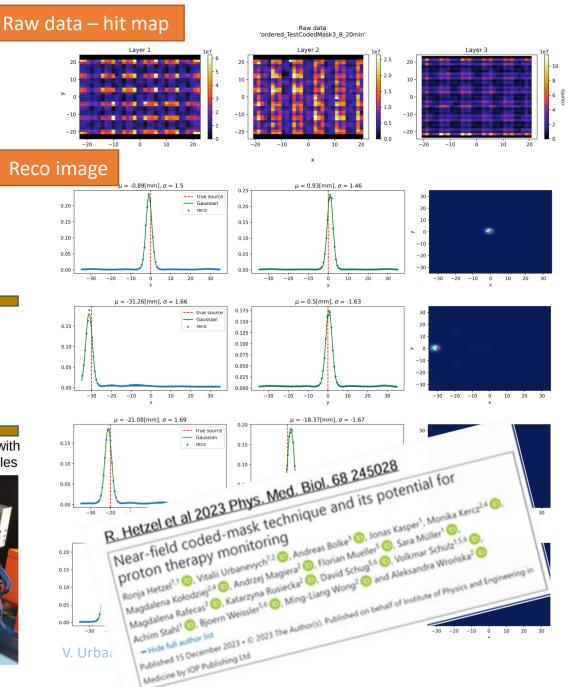
Scintillating fibres

PMI Power Tile Phillips, digital SiPMs

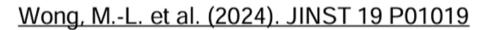
1 mm x 1mm

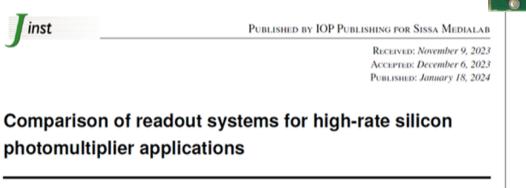

Classical SiPMs custom array

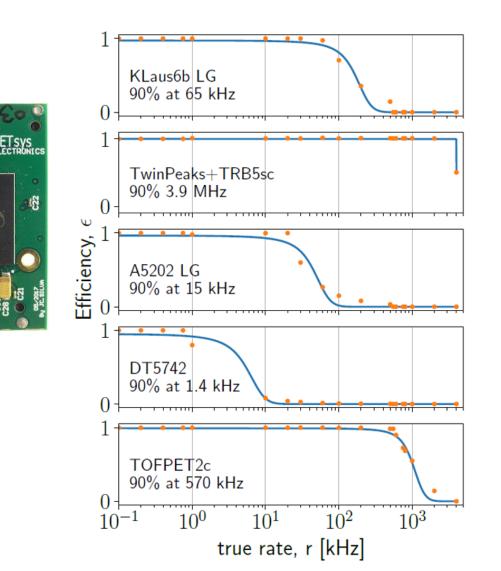



SiFi-CC – setup lab tests

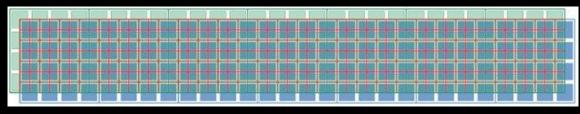
- Calibration
- Collective effects (optical cross-talk)
- Test CM setup
 - **1d** with our prototype + PowerTiles
 - 2d with PET stack + PowerTiles
 - This works!
 - Next step: continuous source



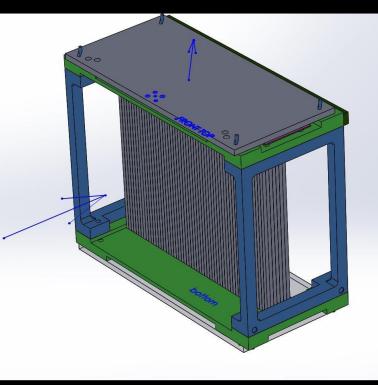



FEE+DAQ – comparative studies

- 5 FEE+DAQ systems: TOFPET2c, A5202, KLauS6b, TwinPeaks+TRB5sc, DT5742
- Compared features:
 - \circ energy & time resolution
 - $\circ \ \ \text{dead time}$
 - \circ efficiency
 - \circ dynamic range



M. L. Wong[©],^{*a*,*} M. Kołodziej[©],^{*a,b*,*} K. Briggl[©],^{*c*} R. Hetzel[©],^{*d*} G. Korcyl[©],^{*e*} R. Lalik[©],^{*a*} A. Malige[©],^{*f*} A. Magiera[©],^{*a*} G. Ostrzołek[©],^{*a*} K. Rusiecka[©],^{*a*} A. Stahl[©],^{*d*} V. Urbanevych[©],^{*a*} M. Wiebusch[©]^g and A. Wrońska[©]^{*a*}

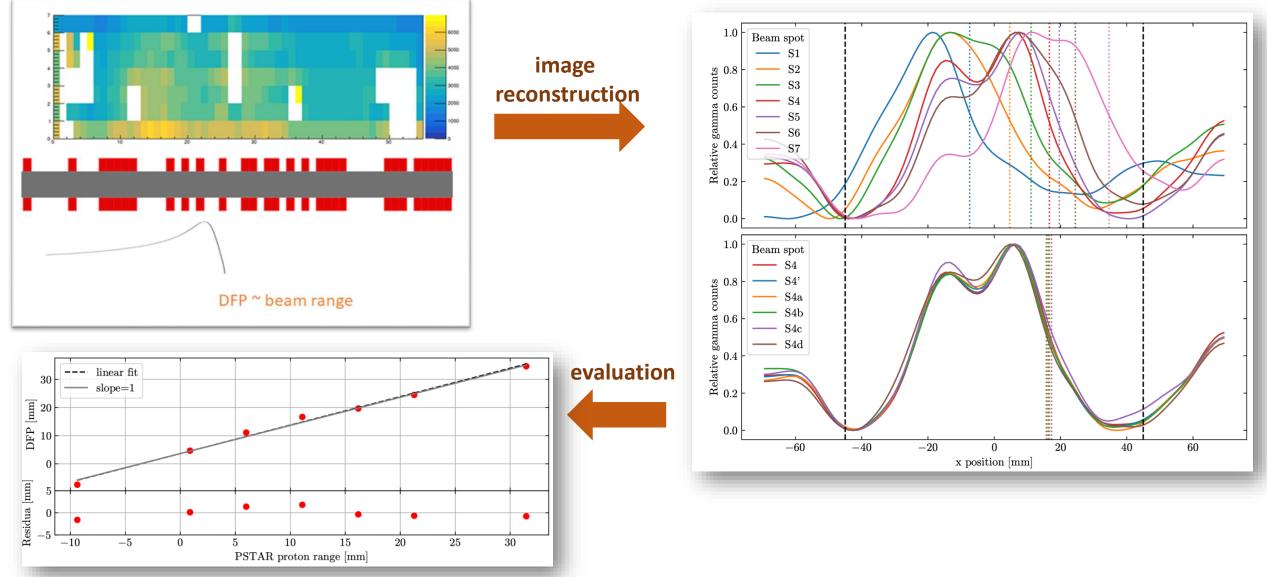

2

Top and bottom SiPM boards shifted diagonally by half pitch

- First module scatterer
- 7 layers of LYSO fibers, 55 fibers in each layer + Al wrapping
- Fiber pitch 2 mm
- Broadcom SiPM arrays (4 x 4 pixels, 16 x 16 mm²) mounted on custom PCBs
- DAQ: TOFPET2 by PETsys
- Tested with the proton beam at HIT in coded mask mode (1D and 2D)

siFi-cc First tests with a proton beam at HIT

Irradiation plan: Hit map - input for MLEM algorithm 13.2 cm 9.00 cm 1 cm LO CM measurement 6 2 4 1 5 3 7 Z 1 cm Phantom FOV Cracow coordinate system Phantom PMMA 50 x 50 x 90 mm³ etecto DFP ~ beam range beam

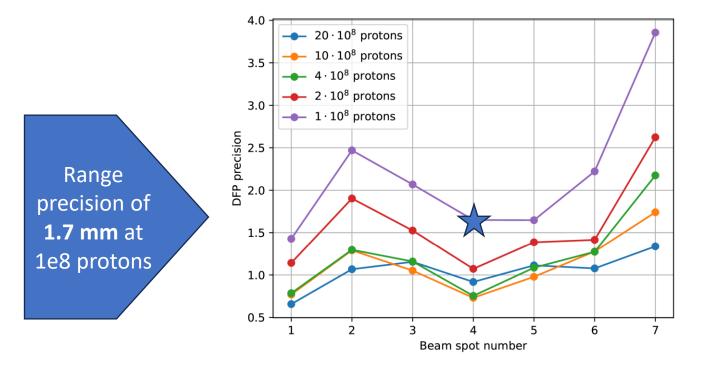

6000 5000

4000

3000

2000 1000

siFi-cc First tests with a proton beam at HIT



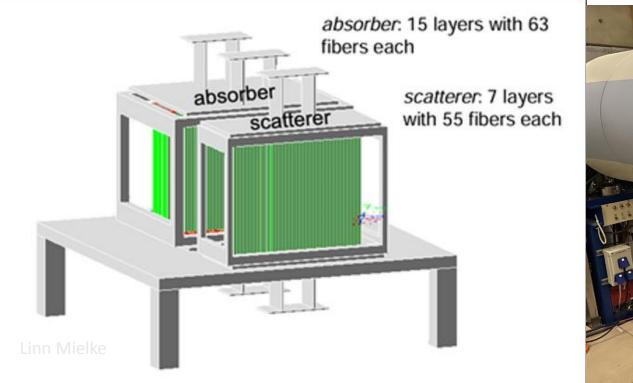
SiFi-cc First tests with a proton beam at HIT

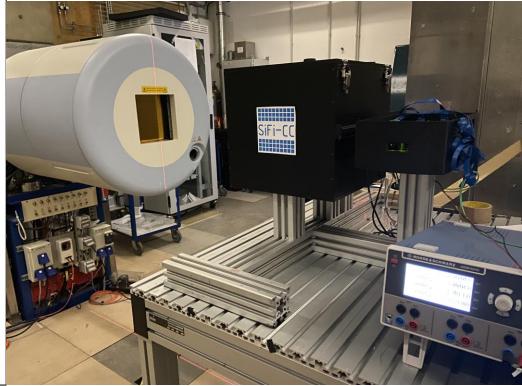
arxiv > physics > arXiv:2501.00666	Submitted to PMB	Search Help
Physics > Medical Physics		
[Submitted on 31 Dec 2024] First experimental test of a coded-ma monitoring	sk gamma camera for proton therapy	y
Magdalana Kaladziai, Stanban Branc, Mikalai Dubial, Caa	rgo N. Earah, Alexander Eenger, Bonia Hetzel, Jonas Kas	spor Monika

kolodziej, Stephan Brons, Mikołaj Dubiel, George N. Faran, Alexander Fenger, Ronja Helzel, Jonas Kercz, Barbara Kołodziej, Linn Mielke, Gabriel Ostrzołek, Magdalena Rafecas, Jorge Roser, Katarzyna Rusiecka, Achim Stahl, Vitalii Urbanevych, Ming-Liang Wong, Aleksandra Wrońska

- CM camera operable at clinical conditions
- Rate cabability fully sufficient ۲
- First test delivers per-spot range ٠ determination precision comparable to world leaders
- Result reproduced by Monte Carlo simulations => setup well understood
- MC simulations without acceptance ۲ gaps => range precision 4 times better!
- Work in progress on second iteration of the module

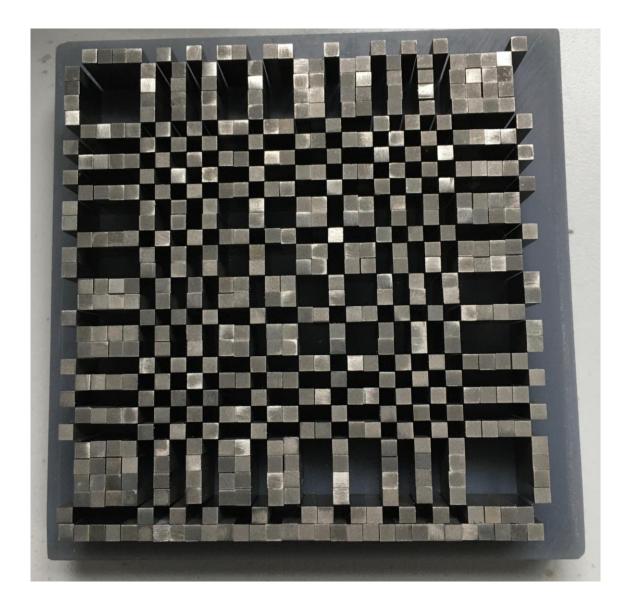
SiFi-cc What's next with SiFi-CC?


New PCBs in place \rightarrow fix for holes in the acceptance of the 1st module


Module reassembly \rightarrow improved position resolution along Y

Tests with the proton beam in the coded mask mode

Construct the absorber, full CC detector **ready**


Tests with the proton beam in the CC mode

Summary

- PG-based methods of proton therapy monitoring still alive
- Various methods still under consideration
- A simplest solution a single-slit camera is reaching clinical maturity
- Coded-mask camera with hardware flaws gives comparable results
- Prospect to improve the CM-camera range determination precision ~4 times
- Way to imaging in 2D or 3D still long, but possible

