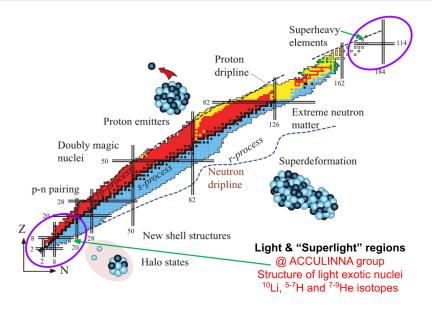
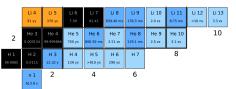

Stilbene-based neutron TOF-spectrometer


Anh Mai

ACCULINNA group, FLNR, JINR

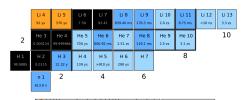
International workshop on Detection Systems and Techniques for fundamental and applied physics
25 February 2025, Catania



Main areas of interest at FLNR at nuclide chart

A. Mai DeSyT-2025

Motivation




Measurement of correlations,

 \Rightarrow detection of **neutrons** in coincidences with charged reaction products is needed.

A. Mai DeSyT-2025

Motivation

Neutron-matter interaction cross-sections

in accordance with different neutron energies

Measurement of correlations, ⇒ detection of **neutrons** in coincidences with charged reaction products is needed.

Stilbene crystals:

- high luminescence efficiency
- fast response time
- crystalline and solid
 → high durability, non-flammable
- greatly sensitive to neutrons
 → well-suited in our range
- ullet excellent $n-\gamma$ discrimination

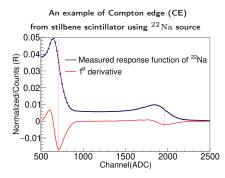
 \Rightarrow Stilbene was implemented @ ACCULINNA-2.

2/10

Stilbene based neutron spectrometer

- unsettled incident neutron energy

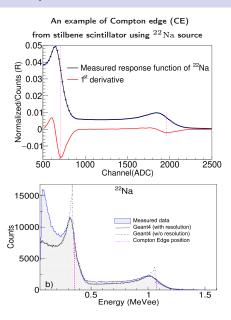
 scintillator response correlation
 → TOF method is applied,
- undesirable γ -background \rightarrow n γ separation performance,
- light output is non-linear and different for diverse particles,
- neutron registration efficiency


3/10

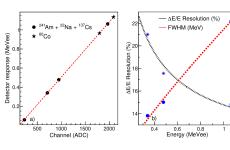
The neutron spectrometer assembly @ ACCULINNA-2

 \Rightarrow The characterization of neutron TOF spectrometer, where amplitude and time resolution, $n-\gamma$ discrimination, light output response and detection efficiency were investigated.

1. Gamma measurements

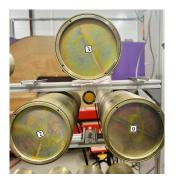

Amplitude calibration

$$E_{CE}=E_{\gamma}(1-rac{1}{1+rac{2E_{\gamma}}{m_{e}c^{2}}})$$


⇒ 1st derivative of measured response combined with GEANT4 simulation for precise CE determination

Amplitude calibration

$$E_{CE} = E_{\gamma} (1 - \frac{1}{1 + \frac{2E_{\gamma}}{m_{\sigma}c^2}})$$


⇒ 1st derivative of measured response combined with GEANT4 simulation for precise CE determination

0.12

Time resolution

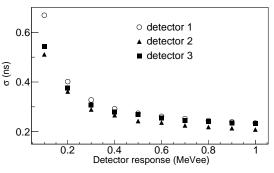
 $\gamma-\gamma$ coincidence measurement

$$\sigma_{1}^{2} = \frac{1}{2}(\sigma_{12}^{2} + \sigma_{13}^{2} - \sigma_{23}^{2})$$

$$\sigma_{\mathbf{2}}^{\mathbf{2}} = \frac{1}{2}(\sigma_{\mathbf{12}}^{\mathbf{2}} - \sigma_{\mathbf{13}}^{\mathbf{2}} + \sigma_{\mathbf{23}}^{\mathbf{2}})$$

$$\sigma_{\mathbf{3}}^{\mathbf{2}} = \frac{1}{2}(-\sigma_{\mathbf{12}}^{\mathbf{2}} + \sigma_{\mathbf{13}}^{\mathbf{2}} + \sigma_{\mathbf{23}}^{\mathbf{2}})$$

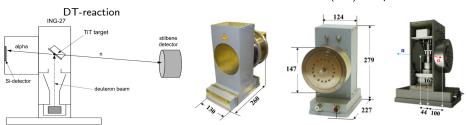
A. Mai


Time resolution

 $\gamma - \gamma$ coincidence measurement

$$\begin{split} \sigma_1^2 &= \frac{1}{2} (\sigma_{12}^2 + \sigma_{13}^2 - \sigma_{23}^2) \\ \sigma_2^2 &= \frac{1}{2} (\sigma_{12}^2 - \sigma_{13}^2 + \sigma_{23}^2) \\ \sigma_3^2 &= \frac{1}{2} (-\sigma_{12}^2 + \sigma_{13}^2 + \sigma_{23}^2) \end{split}$$

Time resolution relies upon the amplitude signal

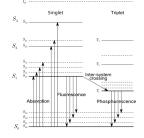

- → different range of data derives from disparate signal sizes,
- low-energy events are associated with the registration of rescattered γ -quanta.

A. Mai DeSyT-2025

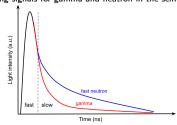
2. Neutron measurement

ING-27 DT neutron generator

The experimental schematic of ING-27 dimensions (mm) in experiment


- a deuteron-beam @ 100 keV bombards a thin titanium-tritium TiT target by means of $d+t \to \alpha + n$ fusion reaction to produce 14-MeV neutrons,
- the neutron generator has an intensity up to 10^8 n/s in 4π ,
- α -particles were registered by a 64-pixel (8 \times 8 strip) DSSD @ 100 mm from the target,
- stilbene was placed at a distance of 15 cm for neutron detection.

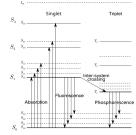
A. Mai DeSyT-2025


Neutron-gamma discrimination

The scintillation process by means of π -electronic

energy levels of an organic molecule

Timing signals for gamma and neutron in the scintillator



A. Mai

Neutron-gamma discrimination

The scintillation process by means of π -electronic

energy levels of an organic molecule

Timing signals for gamma and neutron in the scintillator

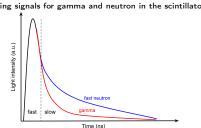
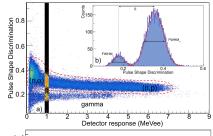
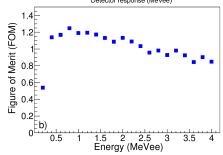
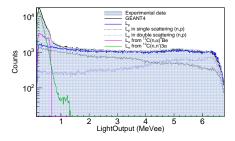




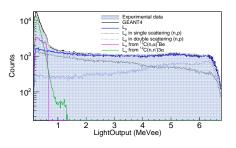
Illustration of neutron-gamma separation by

Pulse Shape Analysis from the 14-MeV neutron generator.

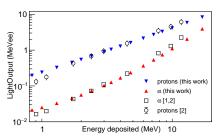


A. Mai

DeSyT-2025

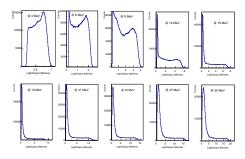

Light output response in organic scintillator

Neutron interaction with stilbene scintillator leads to a large number of different processes



Light output response in organic scintillator

Neutron interaction with stilbene scintillator leads to a large number of different processes

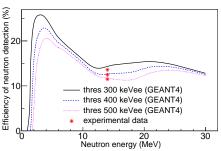

Light output response of stilbene scintillator to protons and alpha particles

- \rightarrow Chiefly, protons and α -particles produce the main light in the stilbene detector,
- \to The response of proton + $\alpha\text{-particles}$ was simulated and reconstructed with measured data, and compared with other works,
- ightarrow Knowing the proton-response is the key to determine the incoming neutron energy.
- [1] V. Verbinski et al., Nucl. Instrum. Methods 65 (1), 8-25 (1968).
- [2] R.L. Craun and D.L. Smith, Nucl. Instrum. Methods 80, 239-244 (1970).

Neutron registration efficiency

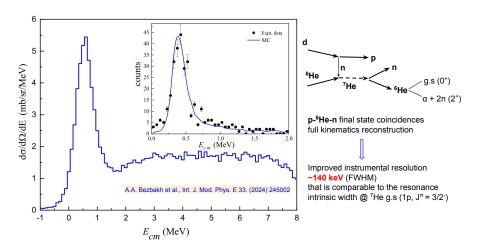
The calculated response in the stilbene detector to various incident neutron energies




A. Mai

Neutron registration efficiency

The calculated response in the stilbene detector to various incident neutron energies


The measured and calculated neutron efficiency in the energy range of 3-30 MeV

ightarrow Measured data at 14 MeV was in a good agreement with GEANT4 simulation, thus neutron registration can be estimated in other energy ranges from 3-30 MeV.

Applications @ ACCULINNA-2

→ Latest results of ⁷He population have demonstrated the contribution of neutron detection that significantly improved the overall experimental resolution in full kinematical measurements of charged reaction products in coincidence with neutrons.

Conclusions

- The performance of stilbene based modular neutron spectrometer
 ACCULINNA-2 was characterized in this work: amplitude and time resolution, neutron/gamma separation performance and detection efficiency in the detector,
- With such characteristics, our stilbene scintillators are fast enough for neutron energy measurements by using ToF technique and become advantageous for our study of resonance states of various neutron-rich nuclei like $^{5-7}\mathrm{H},^{7,9}\mathrm{He}$ and $^{10}\mathrm{Li},\ldots$

Much appreciated for your attention.!