2<sup>ND</sup> International Workshop on **Detection Systems and Techniques** *For Fundamental and Applied Physics -* **DeSyt-2025** 

# LOW-PRESSURE TPC WITH GEM READOUT FOR EXPERIMENTS WITH LOW ENERGY ION BEAMS

A. Bondar, A. Buzulutskov , V. Parkhomchuk, A. Petroghitsky, T. Shakirova, <u>A. Sokolov</u>





February 25, 2025

1.Accelerator mass spectrometry

2.New concept of ion identification. Proof of Concept.

3.Experimental setup

4. Measurements of energy spectra and track ranges

5.Recent results with AMS

# Isotopes used for dating

| Analyzed isotopes | Half life               | Stable isotopes           | Stable isobars                     |
|-------------------|-------------------------|---------------------------|------------------------------------|
| <sup>10</sup> Be  | 1,39 million years      | <sup>9</sup> Be           | <sup>10</sup> B                    |
| <sup>14</sup> C   | <mark>5730 years</mark> | 12,13 <mark>C</mark>      | <sup>14</sup> N <sup>*</sup>       |
| <sup>26</sup> Al  | 717 thousand years      | <sup>27</sup> AI          | <sup>26</sup> Mg*                  |
| <sup>36</sup> Cl  | 301 thousand years      | <sup>35,37</sup> Cl       | <sup>36</sup> Ar*, <sup>36</sup> S |
| <sup>41</sup> Ca  | 102 thousand years      | <sup>40,42,43,44</sup> Ca | <sup>41</sup> K                    |
| 129               | 15,7 million years      | 127                       | <sup>129</sup> Xe <sup>*</sup>     |

\* - isobars that do not form stable negative ions.

In the current AMS BINP setup the time-of-flight technique is used for the carbon isotopes separation. But that technique has a serious problem of separating the isobars - different chemical elements having the same atomic mass. The typical example are radioactive isotopes <sup>10</sup>Be and <sup>10</sup>B.

#### Accelerator mass spectrometry



Accelerator mass spectrometry (AMS) is an ultrasensitive method of counting individual atoms. Usually it is the rare radioactive atoms with a long half-life. The archetypal example is <sup>14</sup>C which has a half-life of 5730 years and an abundance in living organisms of 10<sup>-12</sup> relative to stable <sup>12</sup>C isotope.

AMS facilities operate in more than 100 physical laboratories worldwide, two of them are located in Novosibirsk at Geochronology of the Cenozoic Era Center for Collective Use and Novosibirsk State University.

#### **BINP AMS**



BINP AMS provides reliable separation of a pure beam of radiocarbon ions from the accompanying ion background.

1. Formation of an ion beam from atoms of the test sample

2. Ion selection at low energy

3. Ion acceleration

4. Recharging of atomic ions and destruction of molecular ions in magnesium target

5. Ion selection in a high voltage terminal

6. Ion acceleration

7. Ion selection at high energy

8. Identification and counting of ions

# Traditional concept of ion identification at AMS

#### **Detectors used to count the AMS isotope:**

- silicon detectors;
- time-of-flight systems (BINP AMS);
- ionization chambers.





A cross section through the multi-element ionization chamber. The upper panel shows a plan view of the anode electrode.

### Proof of concept: measuring track ranges

SRIM (The Stopping and Range of Ions in Matter Software) -

is a collection of software packages which calculate many features of the transport of ions in matter.



Track ranges distributions in the low-pressure TPC for 4.025MeV <sup>10</sup>B and <sup>10</sup>Be ions for 200 nm silicon nitride window and 50 torr isobutane, obtained using SRIM simulation.



Ion ranges distributions in the low-pressure TPC for alpha particles with different energies for 200 nm silicon nitride window and 50 torr isobutane, obtained using SRIM simulation.

## New concept of ion identification: low-pressure TPC

#### Schematic layout



# New concept of ion identification: low-pressure TPC

#### Schematic layout



# Effective gain of GEM



Electric field inside the holes.



GEM effective gain as a function of the voltage in isobutane at pressures varying from 40 to 70 torr in the low-pressure TPC.

# **TPC Prototype: Principle of operation**



Length – 300 mm

pulse area -> energy

# **TPC Prototype: Principle of operation**



# Test installation



DeSyT-2025

### The measurement of track ranges



#### Results

| Source            | Shaping time | Gain | Pressure | Sigma/Range, % | Separation in sigma between two peaks |
|-------------------|--------------|------|----------|----------------|---------------------------------------|
| <sup>226</sup> Ra | 200 ns       | 320  | 50 Torr  | 7              | 5.5                                   |



Using these results and SRIM code simulations, it is shown that isobaric boron and beryllium ions can be effectively separated at AMS, providing efficient dating at a 10 million years scale. This technique will be applied in the AMS facility in Novosibirsk.

Spectra of ion ranges for <sup>10</sup>B and <sup>10</sup>Be with energy 4.025 MeV in Isobutane at 50 Torr simulated with SRIM.

#### TPC for BINP AMS





#### TPC for BINP AMS





Test of the low-pressure TPC in laboratory, before installation.

#### Installation of TPC on BINP AMS



## Signal from <sup>14</sup>C and <sup>4</sup>He



#### Results on carbon beam



Sample with "dead" carbon sample

Sample with "alive" carbon sample

# Conclusion

- A new concept of the detector for the accelerator-based mass spectrometer was proposed for identifying ions by their stopping range in gas;
- A low-pressure TPC prototype, based on this concept, have been made and successfully tested;
- The TPC have been installed on AMS;
- First results on <sup>14</sup>C beam are promising;
- We are preparing to the tests with <sup>10</sup>Be samples.

# Thank you for your attention!

#### Installation of TPC on MICADAS



# Backup slides

#### Results on carbon beam



# Formation and application <sup>10</sup>Be



#### Time intervals of dating:

<sup>14</sup>C from 50 years to 40-60 thousand years
 <sup>10</sup>Be from 1 thousand years to 10 million years

#### Application in-situ and meteoric <sup>10</sup>Be:

- exposure dating to identified the growths and decays of the Antarctic ice sheet;
- understanding ice shelf collapse history;
- paleomagnetic excursions history reconstructions using ice cores;
- understanding the erosion rates using depth profiles of mid latitudes outcrops;
- identifying the timing of formation of the impact crater and so forth.

## Measurements of energy spectra using semiconductor detector

Alpha particle source- $^{233}\mathrm{U},^{239}\mathrm{Pu}$  ,  $^{238}\mathrm{Pu}$ 



Si Charged Particle Radiation Detectors for Alpha Spectroscopy



Energy spectrum of alpha particles from <sup>233</sup>U (4.8 MeV), <sup>239</sup>Pu (5.2 MeV) and <sup>238</sup>Pu (5.5MeV) sources, measured using semiconductor detector

# The measurement of track ranges



**DeSyT-2025** 

# Silicon nitride membrane windows

4.00

# Silson









Fig. 1. Remaining energy after passage of 1 MeV ions through a 50 nm silicon nitride and a 500 nm mylar window. TRIM calculation [2].

Figure of silicon nitride membrane windows

M. Dobeli et al., Nucl. Instr. and Meth. B, 219-220 (2004) 415-419 doi:10.1016/j.nimb.2004.01.093

## **BINP AMS**



#### **BINP AMS characteristics:**

- magnesium vapor target for molecular destruction localized site of molecular breakdown;
- sorting of ions by energy immediately after the destruction of molecular ions; effective screening of fragments of molecules; the energy of the pieces of the molecule is always less than the energy of the molecule;
- time-of-flight detector for registering the moment of ions arrival.

#### **BINP AMS scheme:**

1 - accelerator tube, 2 - accelerator body, 3 - electrostatic turn on 180°, 4 - magnesium vapor target ,
5 - corrector, 6 - electrostatic lens, 7 - vacuum pump, 8
- ion detector, 9 - high energy dipole magnetic spectrometer, 10 - low energy dipole magnetic spectrometer, 11 - ion source.