Options of the RICH detectors based on silica aerogels for high momenta range

Alexander Barnyakov on behalf of "Aerogel team" BINP&BIC (Novosibirsk)

- Requirements to RICH for π/K -separation above P=20 GeV/c
- RICH based on aerogel with n=1.008
 - Focusing Aerogel RICH
 - Aerogel RICH with Fresnel Lens
 - RICH based on aerogel fibers
- Summary

International Workshop on **De**tector **Sy**stem and **T**echniques for fundamental and applied physics, 24-26 February **2025**, LNS-INFN, Catania

Motivations for π/K -separation above 20 GeV/c

- Future e⁺e⁻ H-factories such like FCCee (CERN) and CEPC (China) have extensive physics programe at Z-pole ($\sqrt{s} = 91.2 \ GeV$).
- Expected 4×10^{12} Z-bozons $(\int Ldt \approx 100ab^{-1})$ will provide extensive statistic of $b\bar{b}$, $c\bar{c}$ and $\tau^+\tau^-$ for precise flavor physics investigations. [arXiv:2412.19743v2 [hep-ex] 31 Dec 2024]
- $\pi/K-$ separation is needed not only to supress combinatorial background and to separate similar topology of final states like:

$$B_{(s)}^{0} \to \pi^{+}\pi^{-}, B_{(s)}^{0} \to K^{+}K^{-}, B_{(s)}^{0} \to K^{\pm}\pi^{\mp}$$
 and so on.

- Baseline option of the CEPC detector is able to provide π/K separation at the level of 2σ up to 20 GeV/c by combining dE/dx and ToF techniques. [Y.Zhu et al., NIM A 1047 (2023) 167835]
- π/K -separation at the level $\geq 3\sigma$ in wider momentum range is highly desirable for such experiments.

RICH detectors capability for π/K -separation

 π / K separation

• At least 5 hits have to be detected to reconstruct Cherenkov ring.

• Thickness of Cherenkov radiator should be:

- ≥ 1 cm for n=1.05 (aerogel)
- ≥ 4 cm for n=1.008 (aerogel)
- $\ge 15 \text{ cm for } n=1.002 \text{ (C}_5 \text{F}_{12}\text{)}$

• Some focusing system is needed to provide impact from thickness at the level of few mrads for base 200÷300 mm!!!

Aerogel with n=1.008 (Novosibirsk)

DeSyT-2025, LNS-INFN, Catania, 24-26/02/2025

BINP beam test facility

Example disposition of equipment in experimental hall (15/03/2018)

RICH based on aerogel n=1.008: some beam test results

FARICH with n_{max} =1.008 option

FARICH technique milestones

Recent beam test results

DeSyT-2025, LNS-INFN, Catania, 24-26/02/2025

10

FARICH option for π/K -separation above 20 GeV/c

FARICH for π/K -separation at 30 GeV/c: G4sim results

Aerogel RICH with Fresnel Lens n=1.008

Proximity focusing with Fresnel Lenses

- This option was Inspired by success of mRICH R&D for EIC project [D. Sharma et al., NIM A1061 (2024) 169080]
- First steps of simulation at BINP were verified with GSU group simulation results

Fresnel lens transparency

 About half of Cherenkov photons from aerogel is absorbed by material of Edmund lens

• There are another option of application of Acrylic lenses from Fresnel Technology Inc. of special production of UV-transparent lens for ULTRA experiment (*NIM A570 (2007) 22-35*)

mRICH GEANT4 sim. with SiPM like PSS 11-3030-S (NDL)

16

mRICH sim. results for Fresnel lens 6" and 10" Hits map $(\beta=1)$

RICH based on aerogel fibers

Fiber Aerogel RICH: idea & motivation

- It was inspired by discussion at SINANO (Sughou) with prof. Xeutong Zhang and Co. in August 2023.
- The possibility of aerogel fiber production is decribed in article:

Adv. Sci. 2023, 10, 2205762

Cherenkov light ocurs in total internal reflection conditions if particle goes stright along bar or fiber axis!

Chernkov photon emmision point is determined by transverse size of fiber.

Chernkov photon number is determined by length, refractive index and transparency of fiber.

DeSyT-2025, LNS-INFN, Catania, 24-26/02/2025

For π/K -separation above 20 GeV/c we need $n \le 1.008$ consequently N_{pe} decreases significantly. We consider approach how to compensate N_{pe} by means of aerogel fibers without segnificant angle resolution degradation.

GEANT-4 results for aerogel fiber based RICH

Summary

Comparison of three approaches for π/K -separation above 20 GeV/c (1)

- From 1 to 5 GeV/c $\pi/_{K}$ -separation in the aerogel counters with n=1.008 could be performed in "Threshold" mode, above 5 GeV/c in "RICH" mode.
- Fine focusing of the Cherenkov light should be realized in the ssytem
- Spatial resolution of photn detector should be better than 0.3 mm

All three cnsidered options show us very attractive results.

Comparison of three approaches for π/K —separation above 20 GeV/c (2)

Three approaches to provide excelent π/K -separation at momentum range above 20 GeV/c are considered now. There are several common isuues like a position-sensetive photon detection and readout electronics and some specific issues in the future R&D.

R&D	mRICH	FARICH	Fiber RICH
AEROGEL	Simplest	Medium	Complex
Possens. PD	For all three options $\sigma_{\chi} \leq 0.3mm$, PDE(400nm) as high as possible, intrinsic noises as low as possible and good tolerance to magnetic field are required		
	$S_{PD} \leq S_{aer}$	$S_{PD} > S_{aer}$	$S_{PD} > S_{aer}$
R/O electronics	For all options FEE and DAQ could be the same, but number of channels for mRICH option is less than for other		
Additional optical elements	Acrylic FL	NO	NO
Tilted track	Orientation to IP	It works	Need to be stydied

Summary

- It is not easy task to make RICH detector based on aerogel for $\pi/K@30$ GeV/c in colliding beam experiment, but it seems it is possible!!!
 - Three approaches were evaluated with help of GEANT4 simulation and exciting promising results were demonstrated:
 - FARICH approach: 8-layer focusing aerogel with n_{max}=1.008 —>
 - mRICH approach: thick (~6cm) aerogel with n=1.008 and FL(10") ->
 - fibre RICH: aerogel fibres with n=1.008, L=6÷8 cm; ø200÷400μm ->
 - There are several approaches how to do photon detectors with spatial resolution better than several hundreds microns:
 - MCP PMTs which could be readout with help of delay lines or charge distribution lines
 - Position Sensitive SiPMs, where hit positions are reconstructed by calculation of charge shared among 4 readout pads
- The most expensive and important task is R&D for photon sensors and compatible R/O electronics.
- Some interesting R&D on aerogel fabrication (especially connected with aerogel fibres production and assemblage) are foreseen as well.

3 STDEV $\pi/K@27$ GeV/c

3 STDEV π/K@30 GeV/c

3 STDEV $\pi/K@25$ GeV/c

BACK UP SLIDES

FARICH motivation

•
$$\sigma_C^{tr} = \frac{1}{\sqrt{N_{pe}}} \cdot \sqrt{\left(\frac{\Delta_{pix} \cdot \cos \theta_C}{L \cdot \sqrt{12}}\right)^2 + \left(\frac{\sigma_n}{n \cdot \tan \theta_C}\right)^2 + \left(\frac{t \cdot \sin \theta_C}{L \cdot \sqrt{12}}\right)^2} \sim \sqrt{t}$$

• $N_{pe}(\beta = 1) \sim 500 \cdot \frac{n^2 - 1}{n^2} \cdot t \cdot QE$

To get $\langle N_{pe} \rangle \gg 5$ from aerogel with n=1.05 & thickness 1 cm is too hard practice task!!!

Concept of mRICH prototype with aerogel n=1.008

DeSyT-2025, LNS-INFN, Catania, 24-26/02/2025

Status of MCP PMT development in Russia

Square MCP PMT from "Ekran FEP":

- Construction and design is developed
- All details and components are produced in Russia
- All technological processes are developed and realized

The first prototype fully asembled and vacume sealed prototype

* Размер для справок. Возможны незначительные изменения

Photocathode options for "Ekran FEP" MCP PMTs

Multi-alkali PCs options and Cherenkov spectrum

Productions of Ch. Sp. with QE of Multi-alkali PCs

"UV multi" QE based on data from papers:

Orlov, D. A., et al., High quantum efficiency S-20 photocathodes in photon counting detectors. Journal of Instrumentation, 2016 11(04), C04015–C04015
Milnes, J., et al., UV photocathodes for space detectors. Proceedings Volume 12181, Space Telescopes and Instrumentation 2022: Ultraviolet to Gamma Ray, 121813B (2022).

FARICH prototype based on MCP-PMT (Ekran FEP) (expected performances: Geant4 simulation results)

FARICH system concept for SPD-NICA

FARICH system concept for the SCTF project

