Simone Valdré

a new generation telescope array for EoS experiments

LNS – Catania, February 25th 2025

DeSyT-2025

International workshop on detection systems and techniques for fundamental and applied physics

Physics case	<i>Current detectors</i>	HIC @ FRIB	AZIMUTH
●00	000	0000	0000000000
Heavy-ion collisions	3		

E/A [MeV] 100

Finite nuclear matter

Ideal homogeneous system made of protons and neutrons

- Ultrarelativistic regime
 - Vaporization
 - Gaseous state

- Coulomb barrier region
 - Compound Nucleus formation
 - Binary reactions and DIC
 - LIQUID STATE

5

Physics case	$Current \ detectors$	HIC @ FRIB	AZIMUTH
● 0 0			
Heavy-ion	collisions		

Finite nuclear matter

Ideal homogeneous system made of protons and neutrons

- Ultrarelativistic regime
 - Vaporization
 - Gaseous state
- Fermi energy region
 - Multifragmentation
 - Phase transition
- Coulomb barrier region
 - Compound Nucleus formation
 - Binary reactions and DIC
 - LIQUID STATE

J. Pochodzalla et al., arXiv:nucl-ex/9607004

000 0000	0000000000
Equation of state	

Asymmetric nuclear matter Equation of State (EoS)

• Symmetry energy term depending on proton and neutron densities:

$$rac{E}{A}(
ho,I)=rac{E}{A}(
ho)+rac{E_{
m sym}}{A}(
ho)I^2$$

Isospin parameter

$$I = \frac{(\rho_n - \rho_p)}{\rho} \approx \frac{N - Z}{A}$$

 E_{sym} behaviour is well known near ho_0 only

Physics case $0 \bullet 0$

Current detecto

HIC @ FRIB 0000 *AZIMUTH* 0000000000

Equation of state

P. Russotto et al., La Rivista del Nuovo Cimento 46, 1 (2023)

Physics case	$Current \ detectors$	HIC @ FRIB	AZIMUTH
000	000	0000	0000000000
		1 , 1 1 11	

Reaction mechanisms and EoS related observables

Physics case 00●	Current detectors	HIC @ FRIB 0000	<i>AZIMUTH</i> 0000000000
Reaction mech	hanisms and EoS related	ed observables	
b Mean fiel	d N-N collisions	Isospin diffusi	on
	NECK-LIKE STRUCTURE PARTICIPANT	$\begin{array}{c} \text{Isospin eq} \\ \text{Fireball} \\ \text{Isospin eq} \\ (\rho \approx 1) \\ \text{Isospin eq} \\$	µilibration }P and QT ≈ ρ₀)
FUSION-EVAPORATI FUSION-FISSION	ON INCOMPLETE FUSION VAPOR Pre-eq. CN	Eball	
Ε _b /Α<<ε _f	ε _F ~ 34 MeV/u E _b //	+ $A>>\epsilon_{F}$ E_{b}/A	

Physics	

Current detectors

HIC @ FRIB 0000

High energy detectors

Tracker + calorimeter concept

Trackers

Capable to measure very small charge release

Calorimeters

Large dimensions in order to stop particles and ions

picture from A. Jaroslav talk at Zimanyi School 2023 (ePIC detector @ EIC)

FAZIA Forward A and Z Identification Array

FAZIA Forward A and Z Identification Array

FAZIA Forward A and Z Identification Array Transportable

FAZIA Forward A and Z Identification Array

Transportable

Modular

FAZIA Forward A and Z Identification Array Transportable

Modular

Couplable

Physics case	Current detectors	HIC @ FRIB	AZIMUTH
	000		
The FAZIA	telescope		

The telescope stages

- 300 μm reverse-mounted Si detector;
- 500 μm reverse-mounted Si detector;
- I0 cm Csl(Tl) cristal read by a photodiode.

Physics case	Current detectors	HIC @ FRIB	AZIMUTH
	000		
The FAZIA	telescope		

The telescope stages

- 300 µm reverse-mounted Si detector;
- Ø 500 μm reverse-mounted Si detector;
- I0 cm Csl(Tl) cristal read by a photodiode.

|--|

Physics case	Current detectors	HIC @ FRIB	AZIMUTH
	000		
The FAZIA	telescope		

The telescope stages

- 300 µm reverse-mounted Si detector;
- 500 μm reverse-mounted Si detector;
- ◎ 10 cm Csl(Tl) cristal read by a photodiode.

HIC @ FRIB 0000

The FAZIA telescope

$The \ telescope \ stages$

- 300 µm reverse-mounted Si detector;
- Ø 500 μm reverse-mounted Si detector;
- 10 cm Csl(Tl) cristal read by a photodiode.

To achieve the best possible energy resolution and A and Z identification Si detectors come from a nTD ingot cut at random angle to avoid channeling effects.

R. Bougault et al., Eur. Phys. J. A 50, 47 (2014)

Physics case 000	Current detectors	<i>HIC @ FRIB</i> ●000	<i>AZIMUTH</i> 0000000000
FAZIA future			

Present status

- FAZIA is a general purpose, modular and flexible apparatus
- almost full solid angular coverage achieved with INDRA+FAZIA coupling
- setup designed for Fermi energies (15-50 AMeV)

Physics case	Current detectors	<i>HIC @ FRIB</i>	<i>AZIMUTH</i> 0000000000
000	000	●000	
FAZIA future			

Present status

- FAZIA is a general purpose, modular and flexible apparatus
- almost full solid angular coverage achieved with INDRA+FAZIA coupling
- setup designed for Fermi energies (15-50 AMeV)

Future at GANIL

There are still many physics cases to be explored 2 experiments scheduled in 2025! 1 experiment approved for 2026!

Physics case	Current detectors	<i>HIC @ FRIB</i>	<i>AZIMUTH</i> 0000000000
000	000	●000	
FAZIA future			

Present status

- FAZIA is a general purpose, modular and flexible apparatus
- almost full solid angular coverage achieved with INDRA+FAZIA coupling
- setup designed for Fermi energies (15-50 AMeV)

Future at GANIL

There are still many physics cases to be explored 2 experiments scheduled in 2025! 1 experiment approved for 2026!

FAZIA technology will be fundamental for the future developments

Physics case	Current detectors	HIC @ FRIB	AZIMUTH
		0000	0000000000
Future of HIC			

IN2P3 and INFN are going into the same direction

IRL-NPA

NUSDAF

Near future of HIC is at FRIB

NUCDAE LOI	000	0000	0000000000
NUSDAF LOI			
-DIB-PI	AC3		
limitted to FRID	Letter	of Intent	
Subine INEN-NUSDAR	E (INEN Nuclean Stan	cture Dynamics and Astronhysics	a at EDIR)

Letter of Intent

INFN-NUSDAF (INFN - Nuclear Structure, Dynamics and Astrophysics at FRIB)

Giuseppe Verde¹, C. Agodi², M. Battaglieri⁹, M. Bondì¹, M. Cavallaro², M. Colonna², D. Gambacurta², A. Gottardo³, L. Lamia^{4,2}, S. Leoni^{5,6}, L. Marcucci⁷ S. Pirrone¹, G. Pizzone^{2,4}, P. Russotto², S. Valdrè⁸, J.J. $Valiente^3 M Viviani^7$

on behalf of the ASFIN, CHIRONE, EPIC, GAMMA, JLAB12, NUCL-EX, NUMEN, MONSTRE and NUCSYS groups of INFN (see Appendix 3 for detailed list of institutes)

Kyle Brown¹⁰, Giordano Cerizza¹⁰, Zbigniew Chajecki¹¹, Alexandra Gade¹⁰, Dean Lee¹⁰, Artemis Spyrou¹⁰, Remco Zeger¹⁰

Local points of contact who agreed to collaborate and support these programs

¹INFN Catania, ²INFN Laboratorio Nazionali del Sud, ³INFN Laboratori Nazionali di Legnaro, ⁴University of Catania, ⁵University of Milan, ⁶INFN Milan, ⁷INFN Pisa, ⁸INFN Florence, ⁹INFN Genova ¹⁰FRIB, Michigan State University, ¹¹Western Michigan University

Physics case	Current de 000		HIC @ FRIB oo●o	<i>AZIMUTH</i> 000000000000000000000000000000000000
NUSD	PAF LoI			
	-PIB-PAC3			
- bmi	tted to FRID	Letter of Intent		
Subin	INFN-NUSDAF (INFN - N	Nuclear Structure, Dynam	nics and Astrophysics at FRIB)	
	Six scientific initiatives			

 $\begin{array}{l} SYMEOS \ \mbox{EoS} \ \mbox{and} \ E_{\rm sym} \ \mbox{with HIC} \\ GASPEC \ \gamma \ \mbox{spectroscopy} \ \mbox{and} \ \mbox{Collective} \ \mbox{excitations} \\ RIBDCE \ \mbox{RIB-induced} \ \mbox{Double} \ \mbox{Charge} \ \mbox{Exchange} \\ NUSYC \ \mbox{NUcleoSYnthesis} \ \mbox{and} \ \mbox{Clustering} \\ THEOF \ \mbox{THEOretical} \ \mbox{physics} \ \mbox{@ FRIB} \\ SYSTERSE \ \mbox{SYnergic} \ \mbox{Stategy} \ \mbox{for future} \ \mbox{ElectRonics} \ \mbox{and} \ \mbox{Streaming} \\ redout \ \mbox{solutions} \end{array}$

Physics case		Current detectors	$\begin{array}{c} HIC @ FRIB \\ \circ \circ \bullet \circ \end{array}$	<i>AZIMUTH</i> 0000000000
NUSD	OAF LoI			
Submit	tted to FRIB-PA	3 Letter of	Intent	
	INFN-NUSDAF (Six scientific ini	INFN - Nuclear Structui tiatives	re, Dynamics and Astrophysi	cs at FRIB)
	SYMEOS Eos	5 and $\mathit{E}_{ m sym}$ with HIC		
	$GASPEC \gamma$ s	pectroscopy and Collec	tive excitations	
	<i>RIBDCE</i> RIE	-induced Double Charg	ge Exchange	
	NUSYC NU	cleoSYnthesis and Clus	tering	
	THEOF TH	EOretical physics @ FR	RIB	
	avamppap cv			

SYSTERSE SYnergic Stategy for future ElectRonics and Streaming rEadout solutions

Physics case 000	Current detectors	$\begin{array}{c} HIC @ FRIB \\ \circ \circ \circ \bullet \end{array}$	<i>AZIMUTH</i> 000000000000
Developing a new d	letector		

- SYMEOS phase 2 will need new kind of detectors, optimized for FRIB energies
- Supra-saturation experiments will produce a broad variety of ejectiles:
 - Very energetic light particles from the fireball
 - Moderately excited fragments from spectator fragments
 - Very slow particles and fragment from spectators in peripheral collisions

Proposed solution in the LoI

- setups constituted by coupling INFN detector systems to equipment already operating at FRIB
- FAZIA upgrade without re-designing a new apparatus from scratch!
- complex setup which may introduce a bias

Physics case	Current detectors	HIC @ FRIB	<i>AZIMUTH</i>
000	000	000●	000000000000
Developing a new d	etector		

- SYMEOS phase 2 will need new kind of detectors, optimized for FRIB energies
- Supra-saturation experiments will produce a broad variety of ejectiles:
 - Very energetic light particles from the fireball
 - Moderately excited fragments from spectator fragments
 - Very slow particles and fragment from spectators in peripheral collisions

AZIMUTH solution

- A single apparatus with capabilities typical of correlators, $\Delta E - E$ telescopes, and particle trackers
- **Modular** and **portable** setup, capable to measure fragments emitted in collisions at *E*/*A* from 15 to 500 MeV/u
- Less bias (also thanks to streaming readout acquisition)

European Research Council

Established by the European Commission

AZIMUTH solution

- A single apparatus with capabilities typical of correlators,
 - $\Delta E-E$ telescopes, and particle trackers
- **Modular** and **portable** setup, capable to measure fragments emitted in collisions at *E*/*A* from 15 to 500 MeV/u
- Less bias (also thanks to streaming readout acquisition)
- Project submitted to ERC-CoG 2025!

Physics case	Current detectors	HIC @ FRIB	AZIMUTH
			•••••••
AZIMUTU oolo	tion		

A and Z Identification

the detector shall discriminate **in charge and mass** ions in a broad range of energies to guarantee the best isotopic discrimination ever achieved for a telescope-based detector

Modular

several telescope configurations shall be available, all of them with the **same connection standard** to front-end electronics and with the **same data acquisition protocol**

Universal

the apparatus shall be **multipurpose**, apt to measure multiple observables at the time, **couplable with other detectors**, and it shall also be used with a large variety of beams

Tracking Hodoscope

the telescopes shall implement **particle tracking** features through the layers in order to maximize the efficiency of light and energetic particle identification

Physics case

Current detecto

HIC @ FRIB 0000 *AZIMUTH* 0●0000000000

The AZIMUTH block

Physics case	Current detectors	HIC @ FRIB	AZIMUTH
			0000000000
The AZIMUT	"H detector module		

- $\bullet~100\times100\,\text{mm}$ SSSSD detector (100–500 μm thickness, 20 strips)
- $100 \times 100 \text{ mm}$ SSSSD detector (500–1000 µm thickness, 20 strips)
- 4x 50 \times 50 mm Csl(Tl) crystals read by PD (500 mm thickness)

Alternative sensors and material investigation

- pixel detector first layer(s)
- heavier scintillating crystals (CdWO₄, GdTaO₄)
- NArCoS-like neutron sensitive plastic scintillators (EJ-276(G))^a
- crystal reading via SiPM

^aE. V. Pagano et al., Front Phys 10, (2023)

Physics case	Current detectors	HIC @ FRIB	<i>AZIMUTH</i>
000		0000	000€0000000
The AZIMUTH f	front-end module	(FEM)	

One single FEM per block

- a modern FPGA can handle all 132 ADC outputs
 - $\bullet\,$ up to 3 detector modules made of 2x 20 Si-strip channels + 4 CsI channels
- ASICs will be considered, but discrete analog chains are preferred
- Less operations to be performed with respect to FAZIA
 - Streaming readout logic (asynchronous data flow to DAQ)
 - No online data processing
 - Nowadays paradigm: disk space is cheap, electronics is expensive!

Relaxing event-centered acquisition paradigm

- A simple clock distribution board outside scattering chamber
- Data from blocks directly to DAQ servers via Ethernet
- Offline (but real-time) data merging and reconstruction

Physics case	Current detectors	<i>HIC @ FRIB</i> 0000	AZIMUTH

Streaming readout

Traditional triggered DAQ VS Streaming Readout

Physics	

Current detectors

HIC @ FRIB 0000

Streaming readout

Streaming Readout Workshop SRO-XII

02–04 dic 2024 University of Tokyo Asia/Tokyo fuso orario

Increased interest to SRO! CERN, EIC, **JLAB**, **FRIB**, and SPADI alliance (Japan) involved

MSU-JLab Streaming Data Acquisition System Meeting

12 febbraio 2025 JLAB US/Eastern fuso orario

15/19

Physics case	Current detectors	HIC @ FRIB	AZIMUTH
			00000000000
AZIMUTH ch	allenges		

Main obstacles are related to fast particles energy loss profile

Energy straggling

energy loss of ions inside materials happens through a series of scatterings. The more interactions we have, the large variance in energy loss (straggling) we get^a

^aS. Kumar and P. K. Diwan, J Radiat Res Appl Sci 8, 538 (2015)

Incomplete energy deposition (IED)

as ions react inside large volume crystals, or they scatter, punching-through the crystal surfaces, identification isn't feasible anymore b

^bC. Frosin et al., Nucl. Instrum. Meth. A **951**, 163018 (2020)

Physics case	Current detectors	HIC @ FRIB	$\begin{array}{c} AZIMUTH \\ \texttt{00000000000000} \end{array}$
000	000	0000	
Tracking features			

Energy loss + position tracking

- "multiple ΔE " measurement to track particle energy loss among layers
- position tracking thanks to SSSSD (or pixel detectors)

A lot of information per event to be analyzed by a neural network:

- training with simulation of reactions and elastic scattering inside sensors
- reconstruction of trajectories
- reconstruction of original particle E, Z, A

Physics case 000	Current detectors	HIC @ FRIB 0000	$\begin{array}{c} AZIMUTH \\ \circ $
Tracking features			

Energy loss + position tracking

- "multiple ΔE " measurement to track particle energy loss among layers
- position tracking thanks to SSSSD (or pixel detectors)

A lot of information per event to be analyzed by a neural network:

- training with simulation of reactions and elastic scattering inside sensors
- reconstruction of trajectories
- reconstruction of original particle E, Z, A

FAZIA

- 1x position (telescope)
- up to 3x partial energy release (Si-Si-Csl)

AZIMUTH

- up to 3x positions (3 stacked modules)
- up to 9x partial energy release (Si-Si-Csl-Si-Si-Csl-Si-Si-Csl)

Physics case 000	Current detectors	HIC @ FRIB 0000	$\begin{array}{c} AZIMUTH \\ \circ $
Tracking features			

Summary and conclusions				
000	000	0000	00000000000	
Physics case	Current detectors	HIC @ FRIB	AZIMUTH	

AZIMUTH

- Telescope approach + tracking features
- Position sensitive good for correlations
- Designed for elliptic flow measurements and invariant mass spectroscopy
- Good for FRIB, but also for FAIR (full setup) or low energy Spiral2, SPES, and **LNS-FRAISE** beams (1- or 2-module blocks)

Next steps

- Waiting for ERC-CoG project evaluation
- Improve the design after first FRIB experiments
- Strengthen sinergies among HIC collaborations
 - Great opportunities from NUSDAF Lol, E881_23 and AsyEOS-II experiments!

Thanks for your attention

Backup slides

 $^{12}C @ 180 \, MeV$

 $77\,\mathrm{MeV}+103\,\mathrm{MeV}$

 $^{12}C @ 180 \, MeV$

 $77 \, \text{MeV} + 103 \, \text{MeV}$

 $^{14}N @ 180 MeV$

 $152\,\text{MeV}+28\,\text{MeV}$

 $^{12}C @ 180 \, MeV$

 $77\,\text{MeV} + 103\,\text{MeV}$

 $^{14}N @ 180 \, MeV$

 $152\,\text{MeV}+28\,\text{MeV}$

 $^{16}O @ 180 MeV$

 $180 \, \text{MeV} + 0 \, \text{MeV}$

Pulse Shape Analysis

Ohmic side Junction side *Backup* ○ ○●○○○○○○○

Pulse Shape Analysis

Pulse Shape Analysis

Identification methods

$\Delta E - E$ correlation

- exploits the Bethe-Bloch energy loss relation
- identification threshold due to first layer thickness

Pulse Shape Analysis^a

- charge collection depending on the impinging nuclei
- $\bullet\,$ identification threshold corresponding to $\sim 50\,\mu m$ penetration

^a N. Le Neindre et al, Nucl. Instr. and Meth. A 701 (145), 2013

Identification methods

$\Delta E - E$ correlation

- exploits the Bethe-Bloch energy loss relation
- identification threshold due to first layer thickness

Pulse Shape Analysis^a

- charge collection depending on the impinging nuclei
- \bullet identification threshold corresponding to $\sim 50\,\mu m$ penetration

E - ToF correlation

- under implementation
- lowest identification threshold

^a N. Le Neindre et al, Nucl. Instr. and Meth. A 701 (145), 2013

$\Delta E - E$ correlation

A. Badalà et al, Riv. Nuovo Cim. 45 (189), 2022

Backup ○ 000000000

Pulse shape in Silicon sensors

A. Badalà et al, Riv. Nuovo Cim. 45 (189), 2022

Backup ○ 000000000

Pulse shape in CsI(Tl) scintillators

A. Badalà et al, Riv. Nuovo Cim. 45 (189), 2022

Future challenges

Collaboration is planning to measure at higher energies (FRIB @ MSU) to explore the supra-saturation regime of the nuclear matter. We are considering many alternatives:

Future challenges

Collaboration is planning to measure at higher energies (FRIB @ MSU) to explore the supra-saturation regime of the nuclear matter. We are considering many alternatives:

• Thicker sensors with the same FAZIA electronics

Future challenges

Collaboration is planning to measure at higher energies (FRIB @ MSU) to explore the supra-saturation regime of the nuclear matter. We are considering many alternatives:

- Thicker sensors with the same FAZIA electronics
- New block design with the same FAZIA acquisition protocols

Future challenges

Collaboration is planning to measure at higher energies (FRIB @ MSU) to explore the supra-saturation regime of the nuclear matter. We are considering many alternatives:

- Thicker sensors with the same FAZIA electronics
- New block design with the same FAZIA acquisition protocols
- Full re-design of the apparatus based on the FAZIA expertise

Future challenges

Collaboration is planning to measure at higher energies (FRIB @ MSU) to explore the supra-saturation regime of the nuclear matter. We are considering many alternatives:

- Thicker sensors with the same FAZIA electronics
- New block design with the same FAZIA acquisition protocols
- Full re-design of the apparatus based on the FAZIA expertise

FAZIA technology will be fundamental for the future developments

SYMEOS - phase 1

Short-term plans (coupling of existing detectors: FRIB + INFN)

≈350 Si-CsI(Tl) telescopes + FROG → reaction plane, b, ...

12 blocks * 16 units each

- → 192 Si-Si-CsI(Tl) telescopes
- → Isotopic identification and low thresholds up to Z=25
- → Isospin diffusion/transparency, isotopic distributions from participants and spectators

LANA and MoNA

Neutron detectors (flows, femtoscopy, invariant mass spectroscopy)

AE ------

L. ciana carls

HiRA + FARCOS + OSCAR DSSSD: Femtoscopy and Invariant Mass Spectroscopy

Backup ○ 00000000

Straggling compensation

