

Measurements of nuclear fragmentation cross sections with the FOOT experiment

Giacomo Ubaldi

University of Bologna, Italy on behalf of the FOOT collaboration

DeSyT-2025 Catania, Italy

24/02/2025

Particle Therapy

Particle Therapy

Particle therapy vs radiotherapy:

- ✓ Finite range
- ✓ Localized dose profile
- ✓ Spare of healthy tissues

Particle Therapy

Particle therapy vs radiotherapy:

- ✓ Finite range
- ✓ Localized dose profile
- ✓ Spare of healthy tissues
- **A** Nuclear Fragmentation

Nuclear Fragmentation

Target fragments:
Short range
High energy impact in entrance channel

Projectile fragments:
Longer range than beam
Dose beyond the Bragg peak

Nuclear Fragmentation

Giacomo Ubaldi

Nuclear Fragmentation

Giacomo Ubaldi

Space radioprotection

Space radioprotection

Space radioprotection

The FOOT collaboration

https://web.infn.it/foot/

- 93 Authors, 35 Institutions
- 7 countries (Italy, France, Germany, Japan, Cuba, USA, India)
- **3** continents (Europe, Asia, America)

The FOOT experiment

Goal:

Double differential nuclear fragmentation cross section measurements

- Fixed target collisions
- Beam energies between 200 MeV/n and 800 MeV/n for particle therapy and space radioprotection topics

 $d^2\sigma$

 $d\Omega \ dE_{kin}$

- Table top setup to be moved according to beam facility availability
- Direct / inverse kinematics cross section measurements

with resolution better than 5%

electronic setup

emulsion setup

- Designed for heavy fragments $(3 \le Z \le 10)$
- Angular acceptance of ~ 10°
- **Particle Identification** thanks to the several specialized detectors
- Real time acquisition
- Final setup completed in 2023!

Upstream region

monitoring the beam before impinging on target

Start Counter

start of ToF ($\sigma_t \sim 40 \text{ ps}$) 250 µm – 1 mm thick plastic scintillator 5x5 cm² active area 48 SiPMs, 8 channels readout

Beam monitorbeam momentum and direction ($\sigma_{\theta} < 0.5^{\circ}$)Drift chamberAr/CO2 (80%/20%)12 layers with 3 cells each

Tracking region

reconstruction of the track of the fragments and momentum measurement ($\sigma_p I p < 4\%$)

Vertex & Inner Tracker

MIMOSA-28 Si Pixel detector 20 µm pitch, 50 µm depth 4 planes for Vertex 2 planes for Inner Tracker

Microstrip Detector

Si Strip detector 9 x 9 cm2 active area 150 µm readout pitch 3 pairs of X-Y layers

Magnets

Hallbach configuration B field in y axis (max 0.9 and 1.1 T)

Giacomo Ubaldi

Downstream region

particle identification (charge and mass number)

ToF Wall

stop of ToF ($\sigma_t \sim 40 \text{ ps}$) energy loss ($\sigma_{Eloss}/E_{loss} \sim 5\%$) plastic scintillator bars $44x2x0.3 \text{ cm}^3$ dimension 2 layers of 20 bars SiPM readout

> **Calorimeter** kinetic energy (σ_{Ekin} ~ 2 %) BGO scintillator 320 crystals

charge reconstruction

The emulsion setup

- Designed for light fragments (Z≤ 3)
- Spatial resolution up to **10 µm**
- Angular acceptance up to 70°
- Section:
 - 1. Emulsion + target
 - 2. Emulsion film
 - 3. Emulsion + passive layers
- No real time acquisition
- Beam and fragments reconstruction after emulsion development

[1] https://doi.org/10.48550/arXiv.2501.00553

12

Electronic setup: results

Angular differential and elemental fragmentation cross sections of a 400 MeV/nucleon $^{16}{\rm O}$ beam on a graphite target with the FOOT experiment

- Paper of R. Ridolfi et al under review by the Journal!
- Data-taking at GSI (Darmstadt, Germany) in 2021
- ¹⁶O 400 MeV/u on 5 mm C/C₂H₄ target

¹⁶O beam

• Partial setup: no magnet, only one module of calorimeter

BM

SC

• Elemental (charge differential) fragmentation cross section

TG

Angular differential cross section in charge

Giacomo Ubaldi

Electronic setup: results

Unfolding procedure (from MC) for angle mixing

elemental cross section

$$\sigma_R = \int_0^\Omega \int_0^\infty \frac{d^2\sigma}{dE_K d\Omega} dE_K d\Omega = \frac{Y(Z)}{N_{\rm prim} \cdot N_{\rm TG} \cdot \varepsilon(Z)}$$

with polar angle $\theta \le 5.7^{\circ}$

Element	$\sigma \pm \Delta_{stat} \pm \Delta_{sys} [\mathrm{mb}]$	Δ_{stat}/σ	Δ_{sys}/σ
He	$687 \pm 13 \pm 30$	1.9%	4.3%
Li	$59 \pm 3 \pm 2$	5.4%	3.2%
\mathbf{Be}	$36 \pm 3 \pm 1$	7.6%	3.2%
В	$63 \pm 4 \pm 3$	5.7%	4%
С	$135 \pm 6 \pm 5$	4.5%	3.7%
Ν	$117\pm6\pm4$	5.4%	3%

- systematic uncertainty lower than statistic one
- total relative error from 5% to 10%

Electronic setup: results

angular differential cross section

 $\frac{d\sigma}{d\Omega}(Z)$

- number of bins chosen considering ٠ the available statistics
- total relative error affected by statistic, from 3% to 20% (except for Li)

Emulsion setup: preliminary results

Charge identification of fragments produced in ¹⁶O beam interactions at 200 MeV/n and 400 MeV/n on C and C₂H₄ targets frontiers

[1]

- Paper of G. Galati et al published!
- Data-taking at GSI (Darmstadt, Germany) in 2019 and 2020
- ¹⁶O 200, 400 MeV/u on 5 mm C/C₂H₄ target
- SC + BM for primary beam monitoring before emulsions

Specific goal:

- Elemental (charge differential) fragmentation cross section
- Angular differential cross section in charge

Giacomo Ubaldi

Emulsion setup: preliminary results

charge identification

total relative error affected by systematic, around 5%

Emulsion setup: preliminary results

do/dθ [a.u.]

do/dθ [a.u.]

0.14

Giacomo Ubaldi

19

Conclusions

- Nuclear fragmentation cross section measurements with the FOOT experiment
- Fundamental interest in several fields, among which **particle therapy** and **space radioprotection**
- Both setups are promising for charge reconstruction and cross section measurements

- Cross section results from both setups!
- Ongoing data taking campaigns (CNAO2025, GSI2026, CNAO2026..) and analysis (HIT 2022, CNAO 2023, CNAO 2024...)
- Electronic setup completed from 2023: ongoing analysis toward **isotopic cross sections**

Thanks for the attention!

back-up slides

The FOOT physics program

Physics aim	Beam	Target	Energy (MeV/u)	Inverse or direct	
Target Frag. PT	¹² C	C, C ₂ H ₄	200	inv	
Target Frag. PT	¹⁶ O	C, C ₂ H ₄	200	inv	
Beam Frag. PT	¹² C	C, C ₂ H ₄ , PMMA	350	dir	
Beam Frag. PT	¹⁶ O	C, C ₂ H ₄ , PMMA	400	dir	
Beam Frag. PT	⁴He	C, C ₂ H ₄ , PMMA	250	dir	
Rad. Prot.space	⁴He	С, С ₂ Н ₄ , РММА	700	dir	
Rad. Prot.space	¹² C	C, C ₂ H ₄ , PMMA	700	dir	
Rad. Prot.space	¹⁶ O	С, С ₂ Н ₄ , РММА	700	dir	

Several facilities avaliable:

CNAO (Pavia, Italy)

GSI (Darmstadt, Germany)

HIT (Heidelberg, Germany)

Physics data taking done up to now

Beam	Target	Energy MeV/u	Statistics (millions)	Integral Differential elemental	Integral Differential isotopic	direct	inverse	Emulsions	campaig n
0	С С2Н4	200 400	0.06	angle	NO	YES	NO	Yes Yes	GSI 2019 GSI 2020
0	C C2H4 C C2H4	200 200 400 400	14.2 12.2 5.5 6.5	angle	NO	YES	NO	Yes	GSI 2021
Не	С	100 140 200 220	18.5 19.6 13.5 14.4	angle	NO	YES	NO	Νο	HEID 2022
С	С	200	4.1	angle	NO	YES	NO		CNAO 2022
С	С С2Н4	200 200	3.2 2.0	Angle Energy	YES	YES	YES	Yes	CNAO 2023
С	С	200	Mostly tests VTX, IT, Calo, NIT	Angle	YES	YES	NO	NIT tests	CNAO 2024

Next Physics data taking

Beam	Target	Energy MeV/u	Integral Differential elemental	Integral Differential isotopic	Emulsions	Campaign
С	С, С2Н4	100-200	Angle Energy	YES	YES (NIT?)	CNAO 2025
0	С	500-700 (?)	Angle Energy	YES	YES	GSI 2026
С	С, С2Н4	200-300	Angle Energy	YES	-	CNAO 2026
Ρ	с	100-220	Angle Energy	YES	NIT	CNAO 2026
С	С, С2Н4 РММА	320-400	Angle Energy	YES	YES	CNAO 2027
Не	С, С2Н4 РММА	200- 400(?)	Angle Energy	YES	YES	CNAO 2027

Setup overview

$$p = mc\beta\gamma$$
$$E_{\rm kin} = mc^2(\gamma - 1)$$
$$E_{\rm kin} = \sqrt{p^2c^2 + m^2c^4} - mc^2$$

- $\sigma(p)/p$ at level of 4-5%;
- $\sigma(T_{\text{tof}})$ at level of 100 ps;
- $\sigma(E_{\rm kin})/E_{\rm kin}$ at level of 1-2%;
- $\sigma(\Delta E)/\Delta E$ at level of 5%;

Fragments identification

• From Bethe – Bloch formula I can get z:

Isotope identification

• Mass reconstruction using all FOOT subdetectors:

$$A_3 = \frac{p^2 c^2 - E_k^2}{2Uc^2 E_k}$$

- In our data no tracker and calorimeter \rightarrow mass measurement only in MC data!
- Augmented Lagrangian

$$L\left(\vec{x},\lambda,\mu\right) \equiv f\left(\vec{x}\right) - \sum_{i} \lambda_{a} c_{a}\left(\vec{x}\right) + \frac{1}{2\mu} \sum_{i} c_{a}^{2}\left(\vec{x}\right)$$
$$f\left(\vec{x}\right) = \left(\frac{TOF - T}{\sigma_{TOF}}\right)^{2} + \left(\frac{p - P}{\sigma_{p}}\right)^{2} + \left(\frac{E_{k} - K}{\sigma_{E_{k}}}\right)^{2}$$

Aχ 2 = 11.66 ± 0.38 risoluz. 3.2 % χ 2 < 5

Inverse kinematic approach

,

$$ct' = \gamma(ct - \beta z)$$

$$x' = x$$

$$y' = y$$

$$z' = \gamma(z - \beta ct)$$

$$E'/c = \gamma(E/c - \beta p_z)$$

$$p'_x = p_x$$

$$p'_y = p_y$$

$$p'_z = \gamma(p_z - \beta E/c)$$

Which target?

Problem: hydrogen target

gas is not allowed in all experimental roomsgas is too sparse (low interaction probability)

Polyethylene target $(C_2H_4)_n$ and Carbon target

$$\frac{d\sigma}{d\Omega}(H) = \frac{1}{4} \cdot \left(\frac{d\sigma}{d\Omega}(C_2H_4) - 2 \cdot \frac{d\sigma}{d\Omega}(C)\right)$$

Angular distribution of fragments

Angular and kinetic energy distributions of different fragments 200 MeV/nucleon $^{16}{\rm O}$ beam on a $\rm C_2H_4$ target

FIGURE 1 [MC calculation [33, 34] of the angular (Left) and kinetic energy (**Right**) distributions of different fragments produced by a 200 MeV/nucleon ¹⁶O beam impinging on a C₂H₄ target.

Measuring the Impact of Nuclear Interaction in Particle Therapy and in Radio Protection in Space: the FOOT Experiment. Battistoni G, Toppi M, Patera V and The FOOT Collaboration (2021). Front. Phys. 8:568242. doi: 10.3389/fphy.2020.568242

Projectile and target fragments

Cross section measurements in literature

$$p + C$$

- Very few points
- Function of proton energy
- No information on fragment kinematics!

FLUKA MC models for FOOT

Electromagnetic interactions models in FLUKA

Handron-nucleus interactions:

- PreEquilibrium Approach to NUclear Thermalization (PEANUT) model for particles with P<3-5 GeV/c based on Generalized Intra-Nuclear Cascade (GINC) model
- Pre-equilibrium emission of light nuclei (A<5)
- Evaporation, Fission, Fragmentation and γ de-excitation

Nucleus-nucleus interactions

- Boltzmann-Master Equation model (E<100 MeV/u): Thermalization of composite nuclei by means of two-body interactions and secondary particles emissions
- Relative Quantum Molecular Dynamics (0.1 5 GeV/u): Collision simulated minimizing the Hamiltonian equation of motion considering the Gaussian wave functions of all the nucleons in the nucleus overlapping region

Hadrontherapy vs conventional radiotherapy

Space particle fluxes and dose

Slaba TC, Bahadori AA, Reddell BD, Singleterry RC, Clowdsley MS, Blattnig SR. Optimal shielding thickness for galactic cosmic ray environments. *Life Sci Space Res.* (2017) 12: 1–15. doi:10.1016/j.lssr.2016.12.003.

Hadrontherapy:Facilities in the world, 1

proton

Carbon (and proton)

Facility (end of 2019):

- Operative: 116
 - beam
 - 🗅 ~ 85% proton
 - ~ 5% protons and Carbon
 - 10% Carbon
 - Under construction: 31
 - Location
 - USA: 57,
 - West Europe: 23
 - East Europe and North Asia: 8
 - East Asia: 27
 - South Asia: 1

Radiotherapy & Hadrontherapy:Facilities in the world, 2

Radiotherapy IMRT 7 fields

Courtesy of R. Spighi

Hadrontherapy vs radiotherapy, 1

Pro and contra

- Hadrontherapy: the released dose is better focused;
- Hadrontherapy: less dose before and after tumor region
- Costs:
 - accelerator for Hadrontherapy ~250 millions euros
 - Treatment ~ 5-10 than radiotherapy
 - Machine for radioterapy: tens thousands euros.

HADRONTHERAPY

CONVENTIONAL RADIOTHERAPY

Hadrontherapy vs radiotherapy, 2

Courtesy of R. Spighi

Local control rate \rightarrow to keep the tumor under control

	Indication	End point	Results photons	Results carbon HIMAC-NIRS	Results carbon GSI
bones	Chordoma	local control rate	30 – 50 %	65 % Similar t	70 % o protons
cartilage	Chondrosarcoma	local control rate	33 %	88 %	89 %
Nose pharynx	Nasopharynx carcinoma	5 year survival	40 -50 %	63 %	
Nervous system	Glioblastoma	av. survival time	12 months	16 months	Table by G. Kraft
eye	Choroid melanoma	local control rate	95 %	96 % (*)	Results of carbon
nose cavity	Paranasal sinuses tumours	local control rate	21 %	63 %	ions
pancreas	Pancreatic carcinoma	av. survival time	6.5 months	7.8 months	
hepato	Liver tumours	5 year survival	23 %	100 %	
salivary gland	Salivary gland tumours	local control rate	24-28 %	61 %	77 %
soft tissue	Soft-tissue carcinoma	5 year survival	31 – 75 %	52 -83 %	