

http://flerovlab.jinr.ru/accullina-ii/

Study of neutron-rich systems ⁶H, ⁷H and 4n in ⁸He+d interactions at ACCULINNA-2

FLNR JINR Muzalevskii Ivan for ACCULINNA-2 collaboration

History

⁶H:

Y. Gurov, et al., EPJ A 32 (3) (2007) ⁹Be(π⁻,pd)⁶H

⁷H:

E. Yu. Nikolskii et al., PRC 81, 064606 (2010) p(8He,3He)7H

Tetraneutron:

K. Kisamori et al. Phys. Rev. Lett. 116, 052501 (2016)
⁴He(⁸He,⁸Be)
M. Duer et al. Nature 606 (2022) 678 p(⁸He,p⁴He)

Prerequisites for successful experiment

Reliable channel identification

suppression of background

high energy resolution (~1 MeV)

population by direct transfer (from ⁸He core)

Detector setup

Reactions of interest

²H(⁸He,³He)⁷H, ⁷H→ ³H + n+n+n+n ²H(⁸He,⁶Li*)⁴n,

- ⁶Li^{*}→ ³H + ³He, ⁴n → n+n+n+n
 - "Slow" ³He & "Fast" ³H

²H(⁸He,⁶Li)⁴n, ⁴n → n+n+n+n • "Slow" ⁶Li(g.s.) & neutron

²H(⁸He,⁴He)⁶H, ⁶H→?⁵H?→ ³H + n+n+n

• "Slow" ⁴He & "Fast" ³H

Particle reconstruction

- Energy calibration:
 - SSDs ²²⁶Ra alpha source. FWHM(Δ E)~40 keV (<1%)
 - CsI ³H signals, experimental data. FWHM(Δ E)~200 keV (~1%)
 - Neutron wall gamma parcitle ToF. FWHM(ΔE)~500 keV (~3%)
 - BeamDiagnostics (ToF plastics). FWHM(ΔE)~500 keV (<1%)

20-um SSD thickness inhomogeneity.

 Δ Thickness up to 8 µm (30%)! Should be taken into account!

SSD identificatioin

I. Muzalevski et al., Bull.Rus.Acad.Sci.: Phys., 84, 500 (2020)

Particle identification

I. A. Muzalevskii et al., Bull. Russ. Acad. Sci. Phys., 84:500-504, 2020

Particle identification

²H(⁸He,³He³H) results

New information on hydrogen isotopes

ExpertRoot is a framework for **simulation** of detector`s response, event reconstruction and real data analysis

of the experiments at the EXPERT and ACCULINNA-2

ExpertRoot is a FAIRRoot based framework:

- FAIRroot interface
- Special functionality for the **EXPERT/ACCULINNA-2** setups
- uses Root framework for data storage and analysis and

Geant4 as simulation engine

ExpertRoot FairRoot

EXPERTRootTasks

Simulation

Geometry construction

Simulation

- Geometry construction
- GEANT4 for the particle transport through the detector volumes

Digi

- Geometry construction
- GEANT4 for the particle transport through the detector volumes
- Energy losses transformation into the detectors' signals
- The format of the obtained data is the same for the experiment and simulation

Reconstruction

- Geometry construction
- GEANT4 for the particle transport through the detector volumes
- Energy losses transformation into the detectors' signals
- Tracks reconstruction, considering the clusterization

New detector setup

Expected statistics to be increased by >4 factor.

MM resolution in old setup/new setup:

- ⁷H 1.2 MeV → 0.9 MeV
- 4n 1.8 MeV → 1.4 MeV

http://flerovlab.jinr.ru/accullina-ii/ er.jinr.ru

- Bezbakh et al., Evidence for the first excited state of ⁷H, Phys. Rev. Lett. 124 (2020) 022502.
- 2. Muzalevskii et al., Resonant states in ⁷**H**: Experimental studies of the ²H(⁸He,³He) reaction, Phys. Rev. C **103** (2021) 044313.
- Nikolskii et al., ⁶H states studied in the ²H(⁸He,⁴He) reaction and evidence of an extremely correlated character of the ⁵H ground state, Phys. Rev. C 105 (2022) 064605.
- Nikolskii et al., Study of proton and deuteron pickup reactions ²H(d,³He)⁹Li and ²H(d,⁴He)⁸Li with 44 AMeV ¹⁰Be radioactive beam at ACCULINNA-2 fragment separator, Physics of Atomic Nuclei, Vol. 87 №1 (2024) 1-8.
- 5. Muzalevskii et al., Population of tetraneutron continuum in reaction of on deuterium, Phys. Rev. C **111** (2025) 014612.

Thanks for attention

Beam simulation

Theta beam, angle

Particle identification

⁶H results

NO states below 3.5 MeV $(d\sigma/d\Omega < 5 \mu b/sr)$

Peak at 4-8 MeV (~190 µb/sr):

- •4.5 MeV ground state
- 6.8 MeV excited state

²H(⁸He,⁵He)⁵H correlation with ²H(⁸He,⁴He)⁶H

⁶H spectrum

⁵He spectrum

⁵H correlation with ²H(⁸He,⁴He)⁶H; ⁶H → ⁵H+n

⁶H spectrum

⁵H spectrum

New information on hydrogen isotopes

New detector setup simulations of ²H(⁸He,³He³H)⁴n

Red – old setup Black – new setup

