Diamond detectors for life-time measurements of exotic nuclei

E.M. Gandolfo for the LISA collaboration

DeSyT-2025 February 25th, 2025

Established by the European Commission

LISA Project & Physics goal

 $E_{lab} = E_0 \frac{\sqrt{1 - \beta^2}}{1 - \beta \cos \alpha}$

LI fe time measurement with Solid Active target

In-beam γ -rays spectroscopy experiments for life time measurements

Energy resolution worsening due to:

- Doppler effect (emission angle and velocity)
- Thick targets (increase luminosity for exotic nuclei)

life-time measurement Detect change in energy loss

(and Z) in each layer Layer identification with neural

network based on ML method

 $E_{lab} = E_0 \frac{\sqrt{1 - \beta^2}}{1 - \beta \cos \alpha}$

L fe time measurement with Solid Active target

In-beam y-rays spectroscopy experiments for life time measurements

Energy resolution worsening due to:

- Doppler effect (emission angle and velocity)
- Thick targets (increase luminosity for exotic nuclei)

 $E_{lab} = E_0 \frac{\sqrt{1 - \beta^2}}{1 - \beta \cos \alpha}$

Life time measurement with Solid Active target

In-beam γ -rays spectroscopy experiments for life time measurements

Energy resolution worsening due to:

- Doppler effect (emission angle and velocity)
- Thick targets (increase luminosity for exotic nuclei)

LI fe time measurement with Solid Active target

In-beam γ -rays spectroscopy experiments for life time measurements

Layers of single-crystalline CVD diamond detectors for energy deposition measurement

Timing properties Bossini et al.[https://doi.org/10.3389/fphy.2020.00248]

Radiation hardness

Passeri et al. [https://doi.org/10.1016/j.nima.2021.165574]

Energy resolution 1% @GeV (Z discrimination)

Berdermann et al. [https://doi.org/10.1002/pssa.200405170]

5 Layers each of 25 diamonds

LI fe time measurement with Solid Active target

In-beam γ -rays spectroscopy experiments for life time measurements

Layers of single-crystalline CVD diamond detectors for energy deposition measurement Timing properties Bossini et al.[https://doi.org/10.3389/fphy.2020.00248] **Radiation hardness** Passeri et al. [https://doi.org/10.1016/j.nima.2021.165574] Energy resolution 1% @GeV (Z discrimination) Berdermann et al. [https://doi.org/10.1002/pssa.200405170] LISA coupled with state-of-the-art gamma detectors (i.e. AGATA) for the measurement of life-time for exotic nuclei

5 Layers each of 25 diamonds Gamma-Ray detector

The Diamond Array

Diamond crystals

Visual characterization with high resolution microscope

Coaxial

Monocrystalline, Chemical Vapour Deposition (SC-CVD) Diamonds

Thickness 500 µm - Area 4.5x4.5 mm²

Transmission

Cross-polarized

Diamond crystals

Visual characterization with high resolution microscope

Monocrystalline, Chemical Vapour Deposition (SC-CVD) Diamonds

Thickness 500 µm - Area 4.5x4.5 mm²

Diamond crystals

Thickness measurement with optical sensors

5

Data

Diamond detectors

Metallization and assembling

In-beam test @GSI

First in-beam test with single detector

Multi-layer test beam tracking and reactions identification

GSI facility (Darmstadt, DE)

UNILAC

UNILAC 20 kV - 130 kV

v/c up to 16%

<u>SIS18</u>

Energy of 4 GeV(p), 2 GeV/u (Ne), 1 GeV/u (U) Max ion velocity 270 000 km/s (β = 90%) Max B = 18 T RF frequency = 0.85 - 6 MHz Bending radius = 10 m Intensity/ spill = 10^9 (i.e. for 238 U)

7

High resolution magnetic spectrometer Production, separation and identification of exotic nuclei

TO CAVES

ESR

Single detector

Multi-layer target

Multi-layer target

Prototype development

Detector test and development (current monitor, HV test, metallization comparison)

Electronics test (preamp and DAQ)

Test of the whole experimental setup and data acquisition together with FRS

LISA multi-layer target test

Comparison with detectors

-> Z identification

Correlation with FRS

-> Reaction identification

Layer prototype

Preliminary results

LISA preamp prototype

LISA preamp prototype

Reaction identification - LISA

E. M. Gandolfo | **DeSyT Workshop** – February 25th, 2025

Reaction identification - LISA

E. M. Gandolfo | **DeSyT Workshop** – February 25th, 2025

Reaction identification - LISA

Proof of the working principle for reactions identification!!

Current developments

Diamond characterization with X-ray tube Upgrade of the whole system New preamp

Diamond characterization - Xray

 $-400v (\Delta = 0.632 + -0.07)$

-700v (Δ = 0.153 +/- 0.05)

 $-1000v (\Delta = 0.099 + -0.07)$

Xray intensity, I (µA)

Positive voltage - low intesities

Xray intensity, I (μ A)

183

10

10

Current response under Xray irradiation vs $I_{(Xray)}$ and $HV_{(detector)}$

Linearity connected to diamond quality according to Fowler eq.: [Ade et al. 2015] [Abdel-Rahman et al. 2019]

Negative voltage - low intesities Negative voltage - low intesities 0 -1000 Induced current, I (nA) current, I (nA) -20 -2000 -30 -3000 peopp -40 -50 -4000 $-400v (\Delta = 1.049 + -0.02)$ $-700v (\Delta = 0.726 + /-0.03)$ -5000 -60 $-1000v (\Delta = 0.740 + / - 0.03)$ 10 Xray intensity, I (μ A) Positive voltage - low intesities $+400v (\Delta = 1.095 + -0.01)$ $+400v (\Delta = 1.070 + -0.01)$ $+700v (\Delta = 1.098 + -0.01)$ $+700v (\Delta = 1.127 + -0.01)$ 2.0 2.0 $+1000v (\Delta = 1.002 + - 0.03)$ (nd) (nA) (nA) (nA) (nA) $+1000v (\Delta = 1.106 + -0.006)$ Induced current, I (nA) 0.5 Induced o 0.0 0.0 10 8 Xray intensity, I (µA) 171

 $I = I_{dark} + RD^{\Delta}$

LISA preamp development

Charge-sensitive preamplifier for LISA

25 energy channels Output independence: 100 ohm Flexible dynamic range (*high-gain* setting, 6 mV/MeV | *low-gain* setting, 300 mV/GeV)

1GeV deposit on diamond: 10ns rising time; 6us decaytime, noise < 2mV

1x 30-pin input (SAMTEC: FCS8-30,0.8mm pitch) 2x 34-pin output (2x17, 2.54mm pitch)

Upgrade of the system

Future perspectives

Future perspectives

FRS upgrades

Full PID before and after LISA

Z calibration Reaction identification

Goals for next beamtime in May

- First test with full system with 5 layers
- Commission the final LISA
- Reaction channel selectivity
- Develop cross-section measurement capability (charge changing cross-section)

FRS settings

- Secondary beam energy around 200 MeV/u
- N = Z setting for simplicity
- i.e. ⁵²Fe (kown charge radius, N=Z)

Future perspectives

FRS upgrades

Full PID before and after LISA

Z calibration Reaction identification

Goals for next beamtime in May

- First test with full system with 5 layers
- Commission the final LISA
- Reaction channel selectivity
- Develop cross-section measurement capability (charge changing cross-section)

FRS settings

- Secondary beam energy around 200 MeV/u
- N = Z setting for simplicity
- i.e. ⁵²Fe (kown charge radius, N=Z)

Future plans

Coupling with high precision gamma spectrometer for lifetime measurements at facilities like future FAIR and FRIB

THANK YOU FOR YOUR ATTENTION

G. Andretta, M. Bajzek, J. Bardak, B. Bles, G. Bruni-Campanella, Z. Chen, D. Das, F. Drent, E.M. Gandolfo, E. Haettner, P. Hermann, C. Hornung, N. Imai, C. E. Jones, N. Jovancevic, B. Lommel, M. Kis, N. Kitamura, B. Kindler, H. Kleis, N. Kurz, D. Maletic, S. Michimasa, C. Nociforo, W. Poklepa, M. Reece, M. Reese, M. Saifulin, H. Schaffner, P. Schwarz, E. Takada, M. Trager, S.Walch, T. Weber, H.Werner and K. Wimmer

This project has been funded by ERC CoG 101001561-LISA

European Research Council Established by the European Commission

FRS

E. M. Gandolfo | **DeSyT Workshop** – February 25th, 2025

FRS

E. M. Gandolfo | **DeSyT Workshop** – February 25th, 2025

AoQ vs Z with and without 98Nb gate on TravMusic

Machine Learning for Reaction Layer Determination

Identify the layer where the reaction occurs

```
Geant4 simulations of energy spectra as training data-set
```

Multi-class classification problem:

 Artificial Network and Random-forest algorithm to train the model
Current results show better performances with random-forest algorithm

Future plans

More accurate Geant4 simulation

Apply Deep Learning algorithm

Artificial Network

Pareeksha - Multi-layer target + FRS

E. M. Gandolfo | **DeSyT Workshop**⁴ – February 25th, 2025

JIKKEN experiment @HIMAC

JIKKEN experiment @HIMAC

¹³²Xe beam @170 AMeV

2 layers of 2x2 of SC-CVD

Test layer identification and tracking capabilities

JIKKEN experiment @HIMAC

E. M. Gandolfo | **DeSyT Workshop** – February 25th, 2025

JIKKEN experiment @HIMAC

JIKKEN experiment @HIMAC

Energy calibration

DAQ and data analysis

Low and High gain charge sensitive preamp

FEBEX4 digitizer from GSI (14-bit-pipe-lining 100 MHz, block data transfer 2 GBit/s)

MBS acquisition system

Offline analysis of traces

Moving Window Deconvolution (MWD)

$$MWD(i) = \frac{1}{L} \sum_{j=i-L}^{i-1} D_M(j)$$

$$D_M(j) = x(j) - x(j - M) + \frac{1}{\tau} \sum_{k=j-M}^{j-1} x(k)$$

Fast timing output

y[0]:x {entry>160}

Outline

LISA Project & Physics goal

The Diamond Array

In-beam tests

Preliminary results

Current developments

Future perspectives

Layer characterization

I-V curves

<u>SPARROW</u> Cr+Au(50+100 nm) metallization with annealing

From detector Lab @GSI