EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

EuPRAXIA activity report Massimo Ferrario On behalf of the EuPRAXIA collaboration

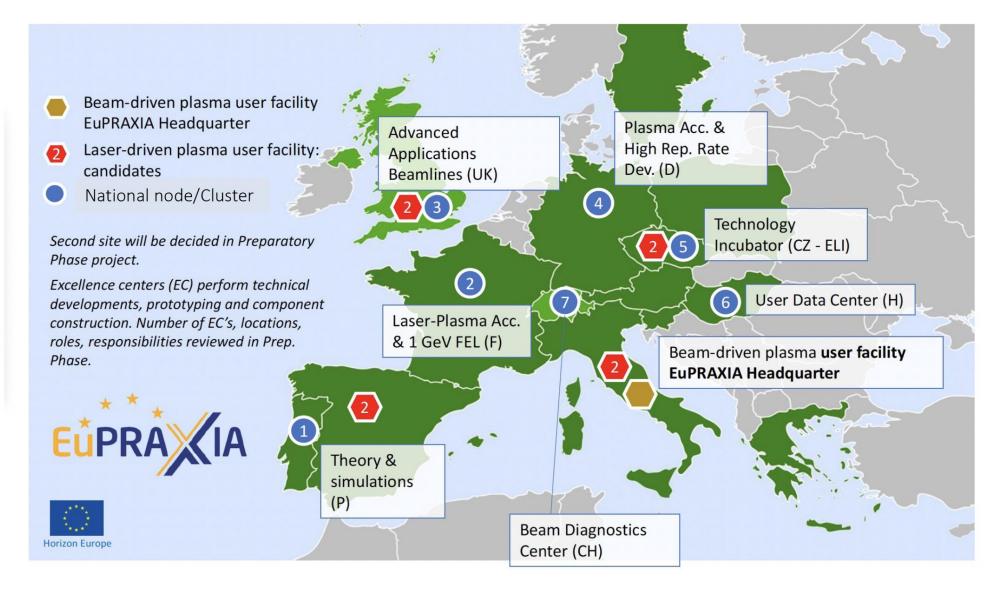
Sci-Com 19/11/2024

Scicom Recommendations about EuPRAXIA

1) The delays of EuPRAXIA@SPARCLAB have to be taken into account for the overall strategy for research activities at LNF, since a sufficient portfolio of other scientific activities has to be maintained until the science program at EuPRAXIA@SPARCLAB starts. This has to be kept in balance with sufficient technical resources for EuPRAXIA@SPARCLAB design and project execution.

2) The SC re-iterates its recommendation from the last three reports that radiation lev-els and shielding dimensions for the drive bunch collimation and/or dump need to be computed. At a beam energy of more than 1 GeV and a mean beam current in the order of 0.1 µA this shielding may need considerable space and has to be known before building specifications are frozen!

3) To avoid further delays the open design question for the TDR need to be solved with high priority by studies, simulations and appropriate experiments in SPARCLAB.


4) Component procurement should start as soon as the TDR is finalized, otherwise inflation will drive the overall cost even higher.

5) The LNF and EuPRAXIA management has to develop a strategy how to cope with the cost overrun. Either additional financial resources have to be found, or a project descoping, or a phased approach has to be decided.

EuPRAXIA Consortium Networking

A large collection of the best European know-hows in accelerators, lasers and plasma technologies

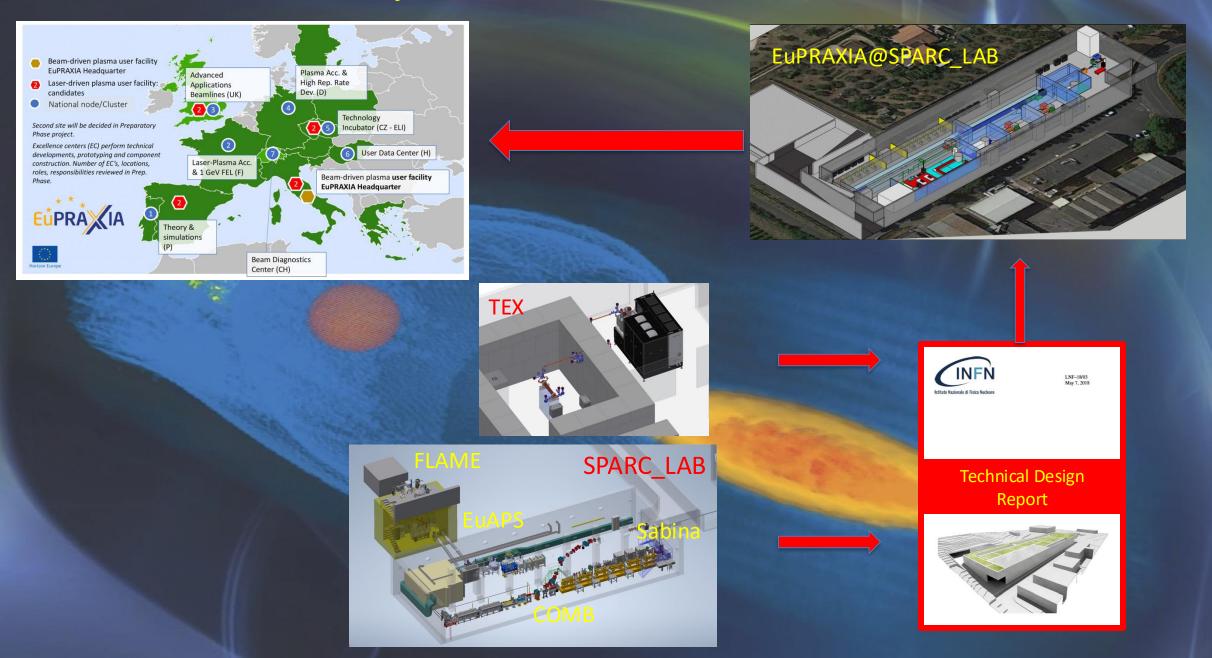
Network organization

- Sites (PWFA/LWFA)
- National nodes
- Technology clusters

4 candidates for LWFA:

- CLPU, Salamanca
- CNR-INO, Pisa
- ELI ERIC, Prague
- EPAC-RAL, UK

EuPRAXIA Flagship Goals


EuPRAXIA is the first European project that develops a dedicated particle accelerator research infrastructure based on novel plasma acceleration concepts driven by innovative laser and linac technologies.

EuPRAXIA Conceptual Design Report', W. Assmann et al., Eur. Phys. J. Special Topics 229, 3675 – 4284 (2020). Flagship Science Goal 1: EuPRAXIA will deliver free-electron laser (FEL) X-rays with $10^9 - 10^{13}$ photons per pulse to user areas, covering wavelengths of 0.2 nm to 36 nm. The EuPRAXIA FEL pulses are naturally short (down to 0.4 fs) and will therefore provide users with tools for investigating processes and structures in ultra-fast photon science at a reduced facility footprint.

- **Flagship Science Goal 2:** EuPRAXIA will deliver betatron X-rays with about 10¹⁰ photons per pulse, up to 100 Hz repetition rate, and an energy of 5–18 keV to users from the medical area. The much-reduced longitudinal length of the X-ray emission area (point-like emission) leads to an important improvement in image resolution compared to other techniques.
- **Flagship Science Goal 3:** EuPRAXIA will deliver positron beams at energies from 0.5 MeV to 10 MeV and a repetition rate of 100 Hz for material science studies. Per pulse, about 10⁶ positrons will be produced in a duration of 20–90 picoseconds on the sample, allowing time-resolved studies. Here, EuPRAXIA will advance the capabilities of existing positron sources in flux and time resolution.
- **Flagship Science Goal 4:** EuPRAXIA will deliver electron and positron beams at energies from a few 100 MeV up to 5 GeV for high-energy-physics-related R&D (detectors, linear collider topics). R&D goals include the demonstration of a linear collider stage, a "tabletop" HEP test beam, and studies on positron transport and acceleration towards a linear collider.
- **Flagship Science Goal 5:** EuPRAXIA will deliver photons from an inverse Compton scattering (ICS) source. The photons of up to 600 MeV and with a narrow-band spectrum will enable precision nuclear physics and highly penetrative radiography for users.
- **Flagship Science Goal 6:** EuPRAXIA will provide access to a multi-stage highrepetition-rate plasma accelerator in the GeV range to users from accelerator science. This R&D platform will allow the testing of novel ideas and concepts, the full optimisation of a plasma collider stage, certain fixed target experiments (also in combination with lasers), and performance studies of conventional versus novel accelerator technology.
- **Flagship Science Goal 7:** EuPRAXIA will provide access to cutting-edge laser technology with short pulse length in combination with high-energy photon pulses and short electron/positron bunches. Novel schemes of pump probe configurations and ultra-precise timing will be researched, feeding back into laser science.

EuPRAXIA LNF Eco-System

EuPRAXIA Preparatory Phase Organisation

Coll. Board M. Ferrario INFN

> Steering Committee

Scientific and Technical Advisory Board

Board of Financial Sponsors

Management P. Campana, INFN M. Ferrario, INFN WP2 - Dissemination and Public Relations C. Welsch, U Liverpool S. Bertellii, INFN WP3 - Organization and Rules A. Specka, CNRS A. Ghigo, INFN WP4 - Financial & Legal Model. **Economic Impact** A. Falone, INFN WP5 - User Strategy and Services F. Stellato, U Tor Vergata E. Principi, ELETTRA **WP6 - Membership Extension** Strategy B. Cros, CNRS A. Mostacci, U Sapienza WP's coordination & on implementation **ESFRI** RI as (organization, legal model. financing, users)

WP1 - Coordination & Project

WP7 - E-Needs and Data Policy R. Fonseca. IST S. Pioli, INFN WP8 - Theory & Simulation J. Vieria, IST H. Vincenti, CEA WP9 - RF, Magnets & Beamline **Components** S. Antipov, DESY F. Nguyen, ENEA WP10 - Plasma Components & **Systems** K. Cassou, CNRS R. Shalloo, DESY WP11 - Applications G. Sarri, U Belfast E. Chiadroni, U Sapienza WP12 - Laser Technology, Liaison to Industry L. Gizzi, CNR P. Crump, FBH

WP13 - Diagnostics A. Cianchi, U Tor Vergata R. Ischebeck, EPFL

WP14 - Transformative Innovation Paths B. Hidding, U Dusseldorf S. Karsch, LMU

WP15 - TDR EuPRAXIA @SPARC-lab

C. Vaccarezza, INFN R. Pompili, INFN

WP16 - TDR EuPRAXIA Site 2

A. Molodozhentsev, ELI-Beamlines R. Pattahil, STFC

WPs on technical implementation and sites

Recent membership entries (CB decision in March):

- PSI (associate), CH
- GSI-FAIR Darmstadt & Uni. Dusseldorf, DE
- AMPLITUDE, FR
- Formal acceptance by EU-PO completed.

No further members foreseen.

Complemented by few institutes present in EuPRAXIA ESFRI consortium which did not sign the EuPRAXIA PP Grant Agreement, from FR, DE, PL, SE, UK, CN, JPN, US

ANCILLARY PROGRAMS

EuPRAXIA Doctoral Network

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement no. 101073480 and the UKRI guarantee funds.

EuAPS

This publication has been made with the co-funding of European Union Next Generation EU.

EMPA*	СН	CEF	RN	INT. ORG.
EPFL*	СН	Н. (Univ. Jerusalem	ISR
PSI*	СН	CN	R	IT
DESY	DE	ELE	TTRA Trieste	IT
FBH Berlin	DE	EN	EA Frascati	IT
FHG-ILT Aachen	DE	INF	N	IT
FZ Julich	DE	U. I	Roma Sapienza	IT
HZ Dresden	DE	U. I	Roma Tor Vergata	IT
LMU Muenchen	DE	IST	Lisbon	Р
HHU Dusseldorf	DE	ALE	BA Cells	SP
GSI-FAIR Darmstadt	DE	CLP	PU Salamanca	SP
ELI Beamline ERIC	CZ	IC L	ondon*	UK
CEA	FR	QU	QU Belfast*	
CNRS	FR	STF	STFC*	
THALES	FR	U. I	U. Liverpool*	
AMPLITUDE	FR	U.	Oxford*	UK
IASA Athens	GR	U. 9	Strathclyde*	UK
WIGNER	HUN	UC	LA*	US
Uni. Szeged	HUN			
Uni. Pecs	HUN			
* associate partners		UJ	T Shanghai (observer)	CN
		HZ	Jena (observer)	DE
		υ.	Cote d'Azur Nice (observe	FR
			UA Athens (observer)	GR
38 members, 8 ob	servers	U.	Milano Bicocca (observer)	IT
L		U.	Palermo (observer)	IT
			BJ Otwock (observer)	PL
		U.	Manchester (observer)	UK

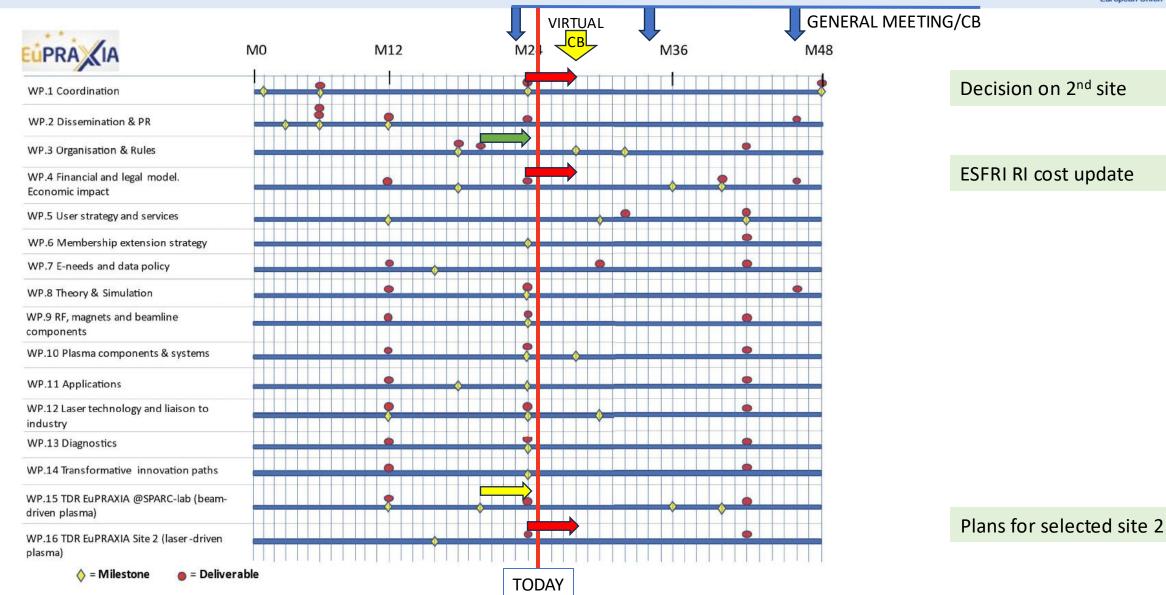
PACRI (recently approved)

Eupraxia Workshop 23-27 September 2024 Elba

EuPRAXIA PP Annual Meeting [P. Campana, M. Ferrario] (23-24-25)

• M15.2 Workshop on "EuPRAXIA@SPARC_LAB machine upgrade and additional beam lines" [C. Vaccarezza, Pompili] (26)

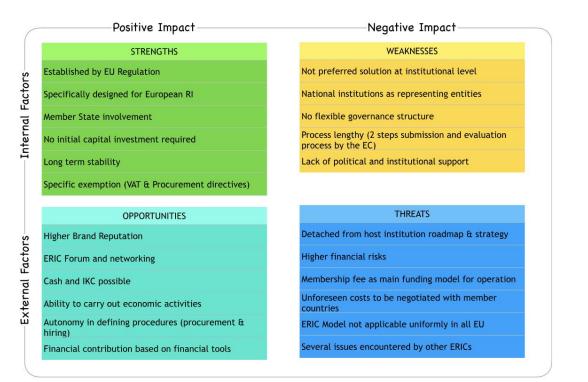
• M6.1 Outreach Workshop [B. Cros, A. Mostacci] (27)

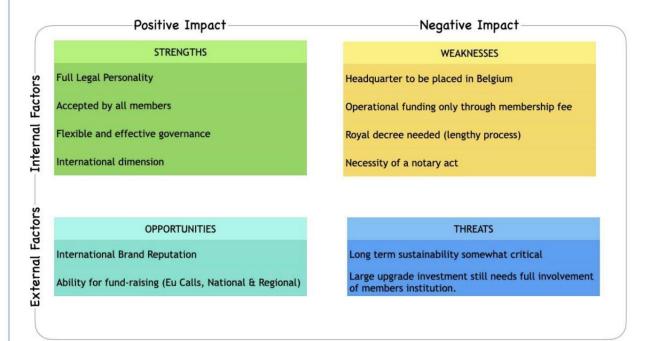

Funded by the European Union

	EUROPEAN	Sunday 22 Arrivals		Monday 23 EuPRAXIA_PP		Tuesday 24 EuPRAXIA_PP		Wednesday 25 EuPRAXIA_PP		Thursday 26 WORKSHOP		Friday 27 WORKSHOP
EUPRA	EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS		09:00	Welcome	09:00	Overview of Plasma based Linear Collider efforts (J. Osterhoff)	09:00	Dielectric wakefield acceleration: application to linear colliders (J. Rosenzweig)	09:00	D EuPRAXIA@SPARC_LAB status short (R. Pompili - C. Vaccarezza)	09:00	Presentation of Eupraxia EuPRAXIA accelerator and facility: a technical perspective (M. Ferrario) EuPRAXIA Collaboration and its organisation (A. Falone)
			09:10	Opening talk: Recoil dominated electron-photon beam collisions (L. Serafini)					09:10	Beam Driven Acceleration Scheme to 5 GeV Energy for EuPRAXIA@SPARC_LAB (A. Giribono)	09:45	(A. Falone) Reason and directions of Membership Extensions (P. Campana)
			10:00	EuPraxia Status	09:50	WP7 E-Needs and Data Policy (R. Fonseca - S. Pioli)	09:50	WP13 Diagnostics (A. Cianchi - R. Ischebeck)	09:40	EuPRAXIA@SPARC_LAB energy boosting to 5 GeV by 0 LWFA and external injection (A.R. Rossi)	Potent	tial links in countries not yet represented in EuPRAXIA
EuPRAXIA-PP				(P. Campana - M. Ferrario)					10:10	(M. Carillo)	10:00 10:30	Pioneering experience on the development of accelerators from scratch: SESAME facility (A. Lausi)
			10:40	Coffee Break	10:40	Coffee Break	10:40	Coffee Break	10:40	D Coffee Break	10:40	Coffee Break
Annual Meeting 2024 23-27 September 2024, Isola d'Elba, Italy			11:00	WP2 Dissemination and Public Relations (C. Welsch - S. Bertelli)	11:00	WP8 Theory & Simulation (J. Vieira - H. Vincenti)	11:00	WP14 Transformative Innovation Paths (B. Hidding - S. Karsch)	11:00	Stable Beam driven wakefield in structured plasmas (A. Pukhov)	11:00	Research initiatives in INDIA and potential opportunities for EuPRAXIA (R. Pattathil)
			11:50		11:50	WP9 RF, Magnets & Beamline Components (S. Antipov - F. Nguyen)	11:50	WP15 TDR EuPRAXIA @SPARC_LAB (beam-driven plasma)	11:30	Towards 400 Hz RF system for D EuPRAXIA@SPARC_LAB (F. Cardelli)	11:30	Research initiatives in AFRICA and potential opportunities for EuPRAXIA (C. Darve)
				(A. Specka - A. Ghigo)				(C. Vaccarezza - R. Pompili)	12:00 12:30	G. Silvi)	12:00 12:30	The Latin American Synchrotron in the Greater Caribbean (G. Violini)
	10		12:40		12:40 16:00		12:40 16:00		12:40	Lunch	12:40	Lunch EuPRAXIA framework for R&D
			16:00	WP4	16:00	WP10	16:00	WP16	16:00	High Repetition rate Plasma sources (L. Crincoli)	16:00	EUPHAXIA Framework for K&D Plasma based positron sources for testing positron acceleration at EUPRAXIA (G. Sarri)
		16:00 Arrival					17:10	Beyond EuPRAXIA_PP: the PACRI Project (G. D'Auria)		Fully synchronized high repetition rate Petawatt laser driver for betatron beamline on EuPRAXIA@SparcLab machine (A. Courjaud)	16:25	Synergies for laser development between EuPRAXIA and other fields including fusion and industry (L. Gizzi) Nuclear physics in plasma at EuPRAXIA
	a slighter		17:10	WP5 User Strategy and Services	17:10	WP11 Applications					16:50	Nuclear physics in plasma at EuPRAXIA (P. Tomassini)
PROGRAMME COMMITTEE Pirlungi Campana (Chair) Riccardo Fonseca Massino Ferrano (Chair) Andrea Gingo Riccardo Pompiu				(F. Stellato - E. Principi)		(G. Sarri - E. Chiadroni)	17:40	Final Discussion	17:00	Ultracold electron sources, kHz plasma injectors and strong THz fields (S. Karsch)	17:15	EuPRAXIA possible contributions to the Linear Collider development (J. Osterhoff)
WISSIMD FERRARD (LTARY) ANDREA GHIGO RICCARDO POMPIU SERGEY ANTIROV LEONIDA GIZZI EMILIANO PRINCIPI RALPH W. ASSMANN BERNHARD HIDDING GIANLUCA SARRI	LOCAL ORGANIZING COMMITTEE ANTONIO FALONE (CHAIR)								17:30	D Coffee Break	17:40	Coffee Break
SUSANNA BERTILLI RASUNI SOFERICO ROS SHULDO KVIN CASOL STUTAK KARCO KASOL SUSANNA BERTILLO ENISCA CHUADONI ALIZXANDE MOLDOZIEKTISE FANCESCO STULATO ALISSANDO CARCI ANDIA MOLTACOL CONCERZA BIGITTE CIOS FEDERICO NOJIVIN JORIG VIERA BIGITTE CIOS FEDERICO NOJIVIN JORIG VIERA PALI, CULUPP RAUER PATIATULI HIRAN VIACKATI	Annoho znobe (chear) Anna Rinz Counta Manakan Maukizio Gaszella Cotta Conti Gassetta Lo Re Alessio Dei Dotto Giologia Masi Martina Dili Giolano Claripa Pillarcone Giorgio Dizzelei Andera Quattinie Valentina Dowiel Streavo Romito			WP6	40	WP12			18:00	VUV Applications at EuPRAXIA@SPARC_LAB 0 (F. Stellato)	18:00	Training and young researcher education The African School of Physics (K. Adikle Assamagan)
Antonio Falone Stefano Piou Carsten Welson www.eupraxia-pp.org	Commission Horizon Europe Research and Innovation Brownession Horizon Europe Research and Innovation	19:00 - Welcon 20:30		Membership Extension Strategy (B. Cros - A. Mostacci)	18:00	Laser Technology and Liaison to Industry (L. Gizzi - P. Crump)	18:00 - 19:30	Collaboration Board	18:30	Theory and simulations for high K/y regimes in 0 undulator and ion channel devices (A. Frazzitta)	18:20	Tools for Students training in EU and funding opportunities (C. Welsch) Discussion/Round table
			18:50 - 19:30	General Discussion	18:50 - 19:30				19:00 - 19:30	Closing Remarks & Discussion (R. Pompili - C. Vaccarezza)		Strategy for linking Eupraxia to other worldwide similar accelerator activities convener: B. Cros (K. Adikle Assamagan - C. Darve - A. Lausi - M. Ferrario - R. Pattathil - G. Violini)
		20:30 Dinne	20:30	Dinner	20:00	Dinner	20:30	Social Dinner	20:30	D Dinner	20:30	Aperitivo Dinner
					21:30 - 22:30	Hollywood Physics (C. Welsch)						

The tasks of the Preparatory Phase

EuPRAXIA





New Legal Entity Options – Comparison ERIC vs AISBL

European Research Infrastructure Consortium - ERIC

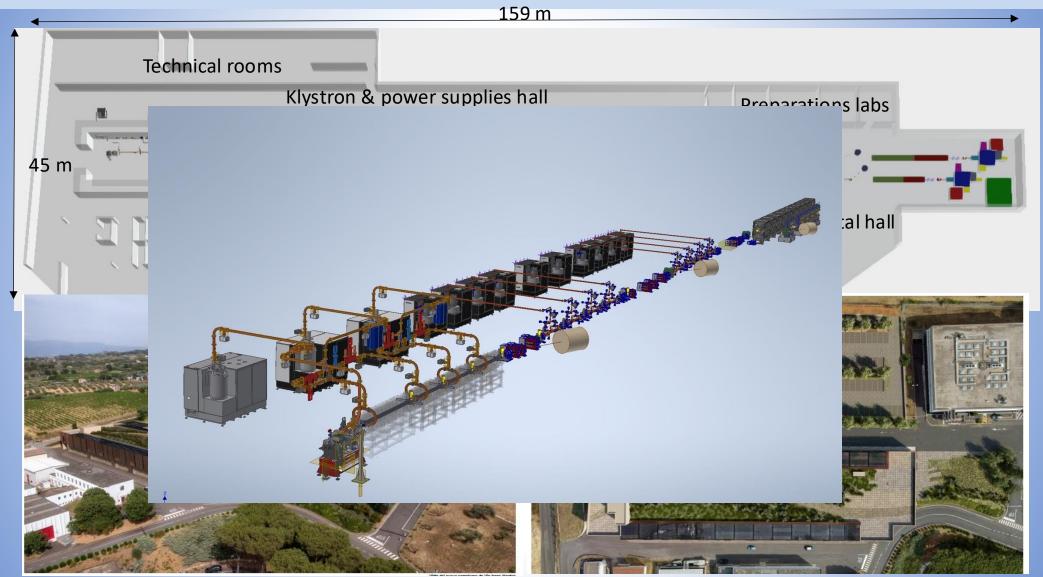
Association International sans but lucrative - AISBL

Committee formed by high level scientists, belonging to the area of particle physics, accelerators, plasma and laser technologies, with high expertise in governance of large programs / science policy

The goal is to provide advise to EuPRAXIA for the operation of the Consortium, both in the Preparatory Phase and in the (most important) Implementation Phase. They will have access to General Meetings material, and will be allowed to follow the CB, to get insights in the project

First, **introductory meeting on Sep. 12**; presentations on advancement of Preparatory Phase, technical aspects of beam and laser driven technologies, status of 2nd site choice, preparation of governance scheme

A second meeting is foreseen by early next year, with a more specific list of questions to which the Consortium will be asked to answer


→ Scientific strategy, technical choices,
 2nd site, governance, funding, long term sustainability:
 the main items that will be discussed by STAB

Final list of members:							
* Lenny Rivkin - Chair	PSI/LEAPS						
* Mike Dunne	SLAC						
* Ursula Bassler	CNRS						
* Sandro de Silvestri	Politecnico Torino						
* László Veisz	UMU Sweden						
* Fernando Ferroni	INFN						
* Thomas Tschentscher	Eu. XFEL						
* Hagen Zimer	Trumpf Laser CEO						
* Roland Sauerbrey	ex HZDR director, retired						

EuPRAXIA@SPARC_LAB Layout

Scicom Recommendations about EuPRAXIA

1) The delays of EuPRAXIA@SPARCLAB have to be taken into account for the overall strategy for research activities at LNF, since a sufficient portfolio of other scientific activities has to be maintained until the science program at EuPRAXIA@SPARCLAB starts. This has to be kept in balance with sufficient technical resources for EuPRAXIA@SPARCLAB design and project execution.

The recent introduction of the Project Management Office at LAB level is meant to address this recommendation. It will help the Lab management to harmonize the resources and suggest an alignment of resource allocation based on strategic objectives of the LAB.

EuPRAXIA@SPARC_LAB is the major project of the LAB and it currently absorbs a significant amount of resource especially in the Accelerator Division.

It will be essential that the resource allocation in the mid term will follow the natural evolution of the project and its requirements in terms of personnel and material resources.

Scicom Recommendations about EuPRAXIA

4) Component procurement should start as soon as the TDR is finalized, otherwise inflation will drive the overall cost even higher.

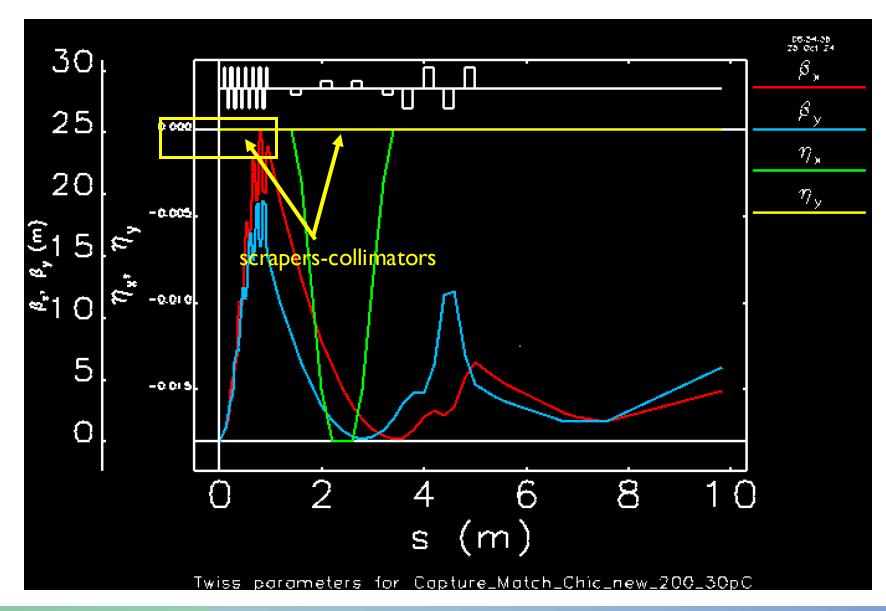

At the moment the inflation scenario seems to be not significant. On the other hand it is true that procurement especially for the critical items (e.g. RF power station) should start as soon as possible ideally even before the TDR completion. This is due to mitigate the risk of delays due to the procurement procedure.

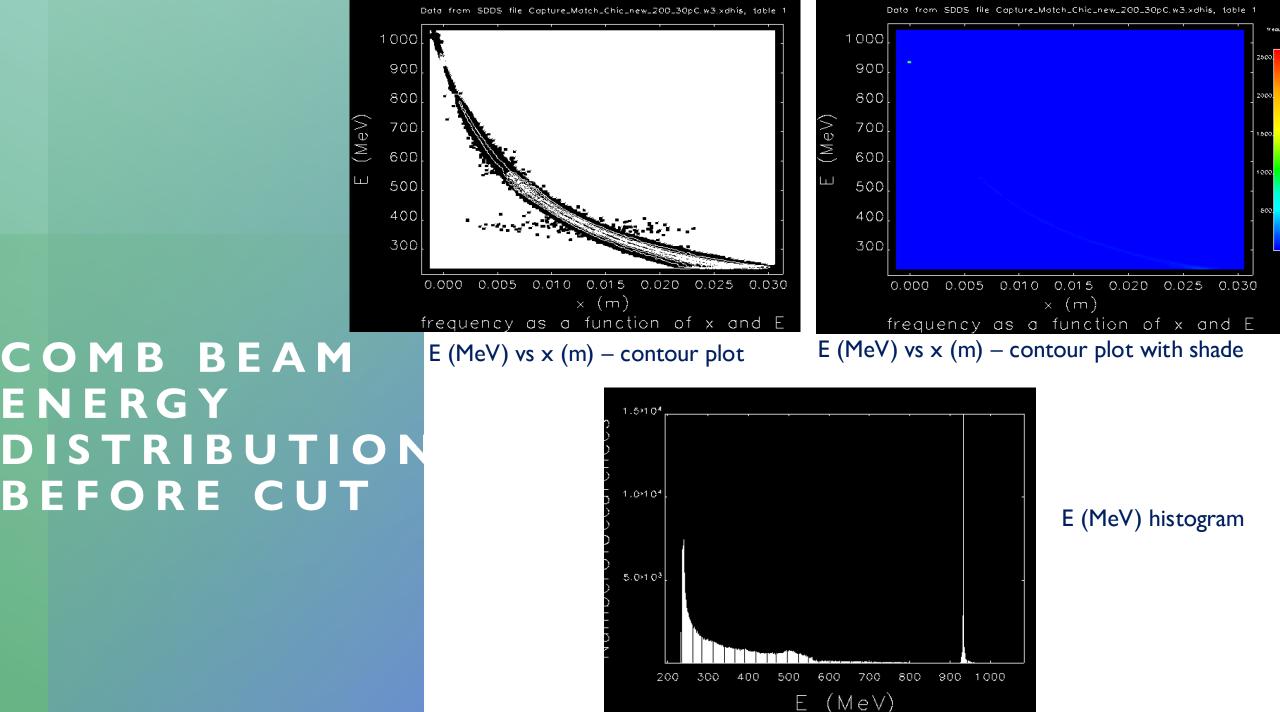
For the RF power station case and the final validation of the CANON tubes, they will be tested during spring 2025 and the corresponding tender procedures can be triggered before the end of the year.

EuPRAXIA@SPARC_LAB baseline updating

TRD readiness: writing

X band linac	Civil infrastructures	Timing and synchronization	Free Electron Lasers	Plasma acc. module	Ele. and phot. diagnostics	Functionality saf. systems	Exp. end-stations	Laser systems	Control system	Photo-injector	Photon beamlines	System engineering	P. cost, time., management	Beam physics	EuPRAXIA in EU context	Scientific case	Machine layout	Magnets and power supp.	Int., impl., comm. strategy	Vacuum systems	Rad. saf. and beam dumps	Executive summary	EuPRAXIA@SPARC_LAB	RF systems	Conventional safety	Future upgrades
85	85	80	65	60	60	45	40	30	30	25	16	15	15	11	10	10	10	7	7	5	5	0	0	0	0	0


Scicom Recommendations about EuPRAXIA


2) The SC re-iterates its recommendation from the last three reports that radiation levels and shielding dimensions for the drive bunch collimation and/or dump need to be computed. At a beam energy of more than 1 GeV and a mean beam current in the order of 0.1 μ A this shielding may need considerable space and has to be known before building specifications are frozen!

The simulation of the beam after the interaction with the plasma was done by evaluating its charge/energy distribution. The bulk of the charge, initially at 500 MeV, loses energy in the plasma and is distributed in the 2-300 MeV range.

A vacuum chamber with a septum that allows the beam to be extracted and dampened laterally is being considered, and the Radiation Protection Service is proceeding with the dimensioning of the dump.

DRIVER WITNESS SEPARATION IN THE CHICANE

Scicom Recommendations about EuPRAXIA

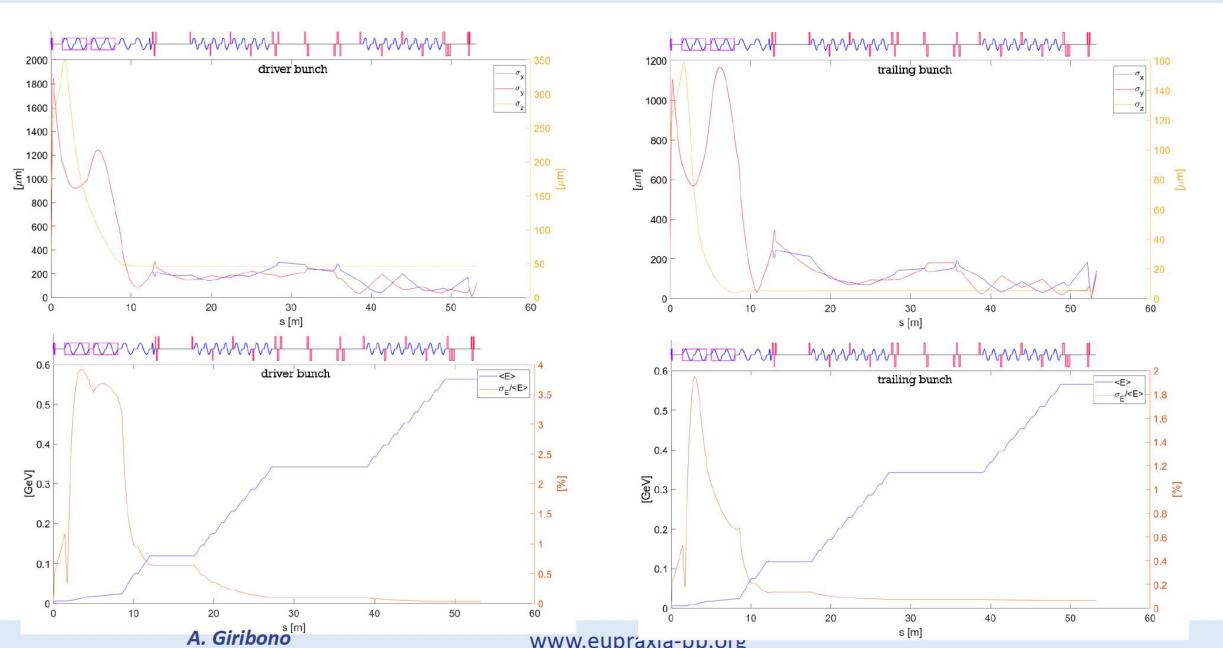
3) To avoid further delays the open design question for the TDR need to be solved with high priority by studies, simulations and appropriate experiments in SPARCLAB.

A comprehensive review with the WP and WA leaders is now ongoing to resolve all the pending issues concerning the definition of the machine especially for beam dynamics, diagnostics and FEL configuration.

SPARC_LAB activities will remain the major benchmarking tool for the future of EuPRAXIA@SPARC_LAB even after the TDR completion. An intensive experimental program is drafted although during 2025 several upgrades must be concluded the the uptime of the machine will not be optimal.

Goal parameters and design criteria

Radiation Parameter	Unit	PWFA	Full X-band	Electron Paramete
Radiation	nm	3-4	4	Electron
Wavelength		J-4	7	Bunch Ch
Photons per Pulse	× 10 ¹²	0.1- 0.25	1	Peak Curi
				RMS Ene
Photon Bandwith	%	0.1	0.5	RMS Bun
Undulator Area Length	m	:	30	RMS norr Emittance
ρ(1D/3D)	× 10 ⁻³	2	2	Slice Ener
				Slice norr Emittance
Photon Brilliance per shot	$\binom{s \ mm^2 mrad^2}{bw(0.1\%)}$	$1-2 \times 10^{28}$	1×10^{27}	Energy jit
		10		Driver-W Temporal


Electron Beam Parameter	Unit	PWFA	Full X-band
Electron Energy	GeV	1-1.2	1
Bunch Charge	рС	30-50	200-500
Peak Current	kA	1-2	1-2
RMS Energy Spread	%	0.1	0.1
RMS Bunch Length	μ m	6-3	24-20
RMS norm. Emittance	μm	1	1
Slice Energy Spread	%	≤0.05	≤0.05
Slice norm Emittance	mm-mrad	0.5	0.5
Energy jitter	%	≤0.05	≤0.05
Driver-Witness Temporal jitter	fs	< 5	-

Beam Paramters

European Union

Machine Setup for VB based WoP1

Cathode Laser System			
	Witness	Driver	
Charge [Q]	30	200	pC
Time delay [Δt]	- 4.8	0	ps
Laser Spot size [σ_r]	175	300	μm
Laser Pulse length $[\sigma_t]$	0.30	0.40	ps

RF Gun						
RF Peak Voltage [V]	120	MV				
RF Phase [φ]	-30	Deg				
S-band Accelerating Sections						
RF Voltage (on average) [V]	21,21,35,35	MV				
RF Phase [φ]	-92,-84,-10,-10	deg				
X-band Accelerating Sections						
RF Voltage (on average) [V]	25	MV				
RF Phase [φ]	-10	deg				

Magnets								
S-band Photoinjector - Pea	S-band Photoinjector - Peak Field							
Туре	B _{max} (T)	Length (m)	Energy (MeV)					
Gun Solenoid	0.3	2 coils (SABINA like)	-					
Acc. Structures solenoids	0.035, 0.075	4triplets,3 triplets (SABINA like),0,0	-					
X-band Linac								
Туре	g _{max} (T/m)	Length (m)	Energy (MeV)					
Туре А	10	0.010	100 - 350					
Туре В	13	0.015	330 - 550					
Туре С	20	0.020	550					
PMQ in	300	0.005,0.0 09,0.005	550					

Beam parameters from jitter studies (w/o X-band cavity) at the capillary entrance

RF Gun (rms)						
RF Voltage [ΔV]	± 0.02	%				
RF Phase [Δφ]	± 0.02	deg				
S-band Accelerating Sections (rms)						
RF Voltage [ΔV]	± 0.02	%				
RF Phase [Δφ]	± 0.02	deg				
X-band Accelerating Sections (rms)						
RF Voltage [ΔV]	± 0.02	%				
RF Phase [Δφ]	± 0.10	deg				
Cathode Laser System						
Charge [ΔQ] (max)	± 1	%				
Laser time of arrival $[\Delta t]$ (rms)	± 20	fs				
Laser Spot size [$\Delta \sigma$]	± 1	%				

		Wit	ness	Dri	ver	
		Without errors	With errors	Without errors	With errors	
	Charge	30.00	30.00 ± 0.33	200.00	200.00 ± 2.00	рС
	Energy	537.18	537.19 ± 0.31	539.29	539.29 ± 0.30	MeV
	Energy spread	0.712	0.711 ± 0.003	0.92	0.92 ± 0.001	‰
/	Bunch length	19.88	19.97 ± 0.32	205.87	205.55 ± 0.87	fs
/	l _{peak}	1873	1643 ± 99	-	-	kA
	Δt	0.53	0.53 ± 0.04	-	-	fs
	ε _{nx,y}	0.562	0.562 ± 0.007	4.18	4.22 ± 0.15	mm mrad
	σ _{x,y}	1.5	1.52 ± 0.18	5.85	5.89 ± 1.07	μm
	β _{x,y}	4.3	4.5 ± 1.1	8.8	9.1 ± 3.3	mm
	α _{x.v}	1.2	1.2 ± 0.25	1.65	1.65 ± 0.30	

• Errors are intended as rms quantities

• Driver & Witness numerically separated on the longitudinal axes

- 1 New PMQ tests
- 2 High-gradient/high-quality PWFA beams & Injector working point
- 3 Filament experiment (A. Zigler)
- 4 Resonant multi-driver PWFA (L. Verra)
- 5 Commissioning of the SABINA beamline
- 6 Driver-Witness separation with APLs 2 weeks (M. Carillo)
- 7 PWFA vs EOS (RF timing)-Plasma (density)-Laser (charge) jitter study (R. Pompili)
- 8 UV-Blue-IR photo-emission comparison for charge-jitter study (M. Galletti)
- 9 Plasma ramps parametric study (S. Romeo)
- 10 Commissioning of the EXIN beamline
- 11 FEL seeding with betatron radiation (A. Ghigo)
- 12 Ion motion recovery time
- 13 PWFA-FEL for attosecond pulses (M. Opromolla)

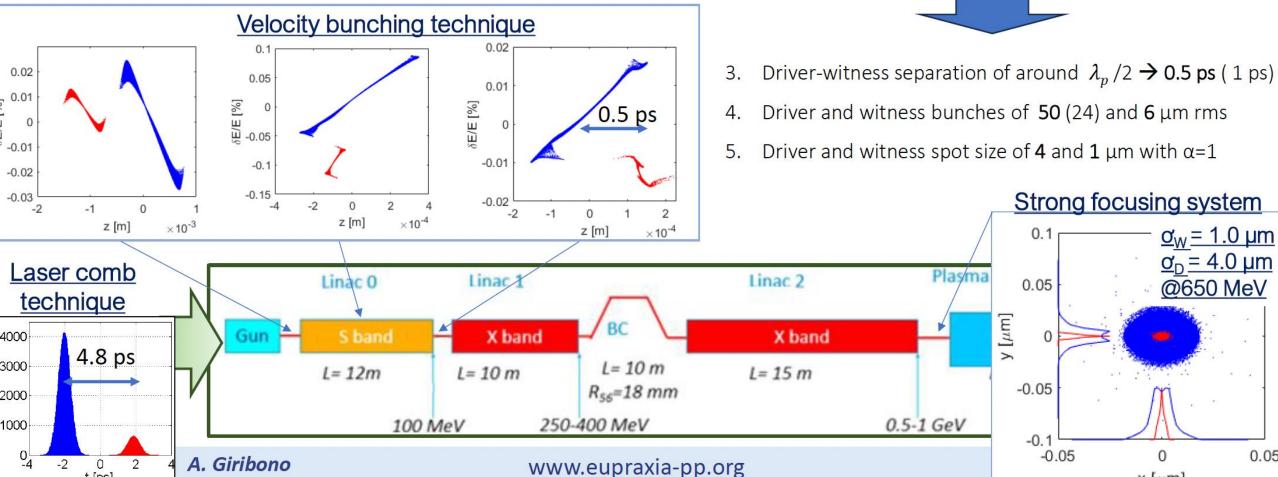
Comb beam generation at EuPRAXIA@SPARC_LAB EUPRAXIA

-100 ζ (μm) -200

v [um]

The **reference working point** is defined by the FEL performances and the plasma module

- Witness brightness \rightarrow I_{peak} = 2 kA, ε_{nx} < 1 μ mrad, δ E/E < 0.1 % ٠
- Witness energy jitter < 1%


t [ns]

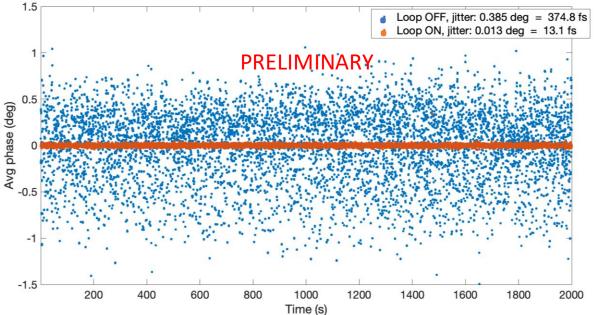
- Accelerating gradient of the order of GV/m
- Weakly non-linear regime (bubble with resonant behaviour)

200 (500) pC driver + 30 (50) pC witness 1.

plasma density of the order of 10^{16} cm⁻³ (λ_p = 334 μ m) 2.

Preliminary results obtained at SPARC_LAB

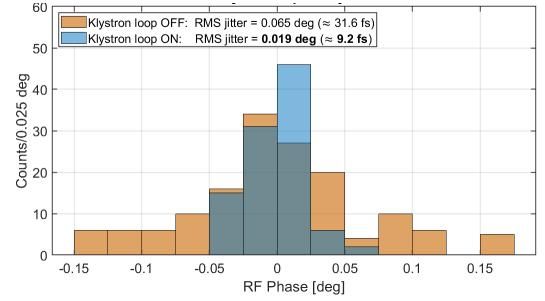
In May 2023 we tested a preliminary version of the intra-pulse feedback on the C-band klystron with very good results **Preliminary** data have been parasitically collected during machine restart in October 2024 for the S-band power plants


TO DO:

- The performance achieved on both S and C band power plants are very promising but must be still optimized and consolidated:
 - Reach the same stability of K1 also on K2
 - Further optimize the intra-pulse feedback system (Xianghe Fang Ph.D. student from Eupraxia DN just started his activity with the RF group on this topic)
- PC-laser locking electronics performance can be improved
- Test of the intra-pulse feedback system on the X-band power plant at TEX

S-BAND

RF-Gun phase jitter compression

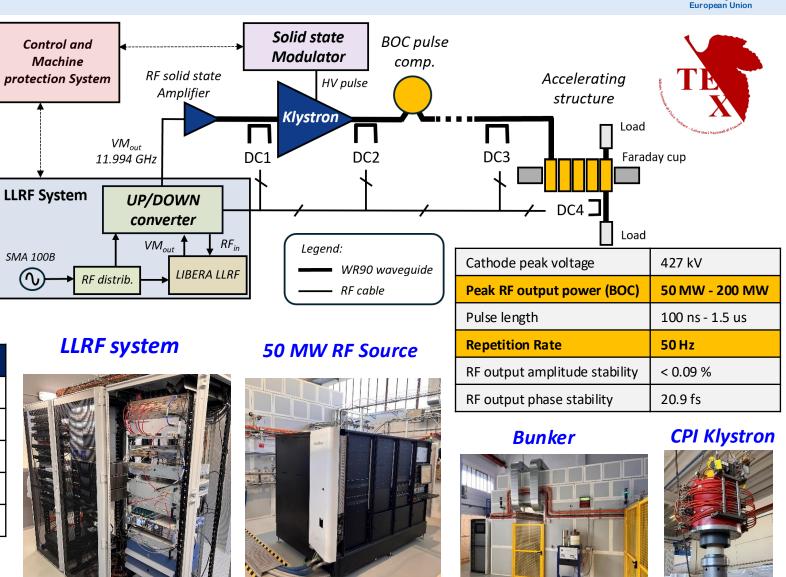

from 0.385 deg down to 0.013 deg (13.1 fs)

C-BAND

K3 phase jitter compression

from 0.065 deg down to 0.019 deg (9.2 fs)

L. Piersanti et al. Photonics 2024, 11(5), 413

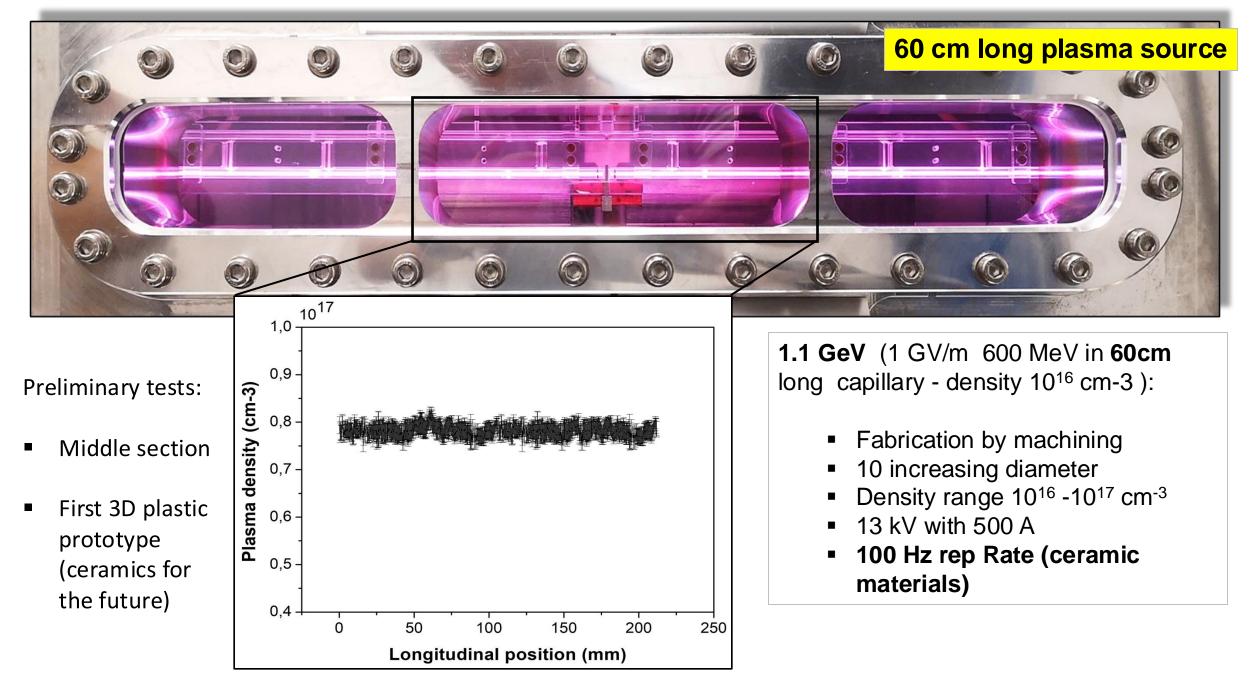

TEX (Test stand for X-band) facility

- The TEst-stand for X-band (TEX) is conceived for R&D and test on high gradient X-band accelerating structures, RF components, LLRF systems, Beam Diagnostics, Vacuum system and Control System
- » It has been co-funded by Lazio region in the framework of the LATINO project (Laboratory in Advanced Technologies for INnOvation). The setup has been done in collaboration with CERN and it will be also used to test CLIC structures
- » The installation and commissioning of the whole system have been completed by the end of 2022.
- » Then started the testing activity:

Period	Device tested at high power
Jan Feb. 2023	3D printed Spiral RF loads and wg
May - Oct. 2023	X-band T24 CLIC structure (CERN)
Nov Dec. 2023	X-band Mode converter and circular wg
Jan Feb. 2024	X-band RF waterload (PSI)
March 2024	20 cells first EuPRAXIA RF prototype

F. Cardelli et al., in Proc. IPAC'22, Bangkok, Thailand. (2022) paper TUPOPT061 L. Piersanti et al. Photonics 2024, 11(5), 413.

F. Cardelli et al., in Proc. IPAC'24, Nashville, TN (2024) paper TUPR02



29

Funded by the

Preliminary characterization of the EuPRAXIA@SPARC_LAB plasma source

Scicom Recommendations about EuPRAXIA

5) The LNF and EuPRAXIA management has to develop a strategy how to cope with the cost overrun. Either additional financial resources have to be found, or a project descoping, or a phased approach has to be decided.

A comprehensive cost review has been done during the year. Significant savings have been found due to a better definition of the machine. At the moment the cost scenario is the following:

An additional funding line of 10M€ is at advanced stage of negotiation with Regional Government.

A 10% over budget is still there, however:

- Minimum scope is now fully funded.
- The cost estimation includes contingencies and savings are expected from the building tender.
- A phasing approach will be adopted.
- The funding attractiveness is remarkably high.

Functional Area	Estimated Cost ($\textcircled{\bullet}$)					
Injector	10.999.880					
Low Energy Line	9.596.380					
Bunch Compressor	1.180.400					
High Energy Line	9.761.760					
Plasma Module	2.096.000					
AQUA FEL	15.520.000					
AQUA Beam Lines	7.095.900					
ARIA FEL	6.004.000					
ARIA Beam Lines	6.374.900					
General Elements	3.940.740					
Building	47.945.500					
Hi-Tech utilities	6.000.000					
TOTAL	126.515.460					

Committee formed by representatives from Funding Agencies of countries present in EuPRAXIA to advise/support/endorse/control the operation of the Consortium, both in the Preparatory Phase and in the (most important) Implementation Phase

BoFS is expected to ratify 2nd site choice, legal framework, governance, funding scheme (in-kind & cash), together with general EuPRAXIA layout and operation (sites + national nodes + technical clusters). Quite inhomogeneous National Funding Schemes: National Institutes (IT, FR, UK), Ministerial levels, CERN IGO, ELI-ERIC, etc... Difficult recollection of concerned people. 1st meeting expected within year's end

				1							
Country	Name	other info									
CERN	Steinar Stapnes	CERN									
Czech Rep	Radka Wildova	Director Gene	Director General for Higher Education, Science and Research section								
	Marek Vysinka	Research Infra	esearch Infrastructures Department								
France	Antoine Rousse	CNRS-LOA	CNRS-LOA								
	Catalin Miron	CEA-Research	CEA-Research Infrastructures								
Germany	to be comunicated										
Greece	Emmanuel Varvarigos	Vice-Rector of	Vice-Rector of NTUA							Γ	
Italy	Sandra Malvezzi	INFN Executiv	e Board								
	to be comunicated	Italian Resear	ch and Un	iversity M	linistry						Γ
Portugal	Marta Fajardo	IPT									
Spain	Rebeca Frías Antolín	Grandes Insta	laciones C	ientíficas	- Minister	io de Cier	icia, Innov	/ación y U	niversidad	des	Γ
UK	John Collier	CLF Director and Executive Director of Laserlab Europe									
Hungary	Peter Racsko	NRDIO officier									
								-			_

Plasma Accelerators for Compact Research Infrastructures (PACRI)

• HORIZON-INFRA-2024-TECH-01-01: R&D for the next generation of scientific instrumentation, tools, methods, solutions for RI upgrade

• Budget ~10 MEuro

E^[•]**PRA** IA

25 Members + 1 Associated partner

19 Universities and Scientific Labs.

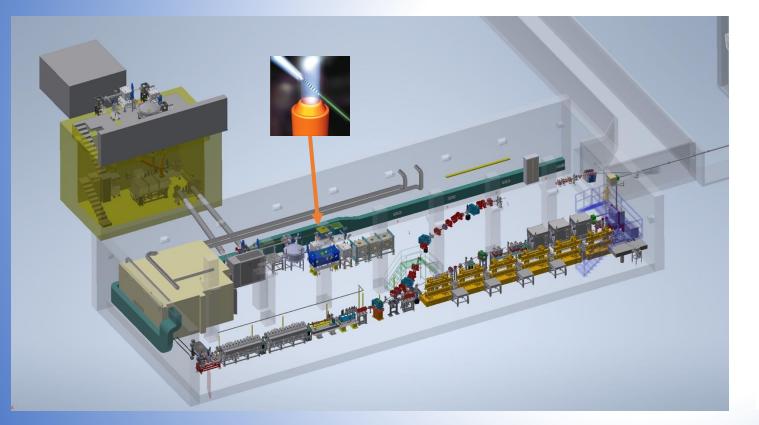
7 Industries

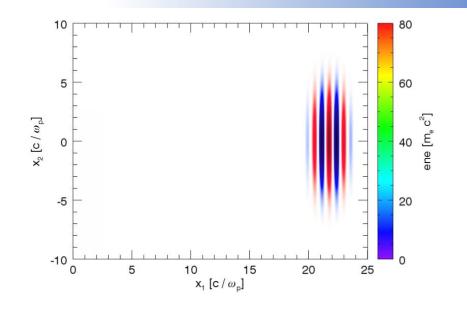
1Elettra - Sincrotrone Trieste SQA(Coordinator)ST2European Organization for Nuclear ResearchCERN3Istituto Nazionale Fisica NucleareINFN4University of LiverpoolULIV5Thales-MISTh-MIS6Scandinova Systems ABSCND7VDL ETG Technology & Development BVVDL8COMEBCOMEB9United Kingdom Research and InnovationUKRI10Consigio Nazionale delle RicercheCNR11Extreme Light Infrastructure ERICELI-ERIC12Centre National de la Recherche Scientifique CNRSCNRS13Thales LAS France SASTh-LAS14AmplitudeAmplitude15Centro de LÁSERESPulsadosCLPU
3Istituto Nazionale Fisica NucleareINFN4University of LiverpoolULIV5Thales-MISTh-MIS6Scandinova Systems ABSCND7VDL ETG Technology & Development BVVDL8COMEBCOMEB9United Kingdom Research and InnovationUKRI10Consiglio Nazionale delle RicercheCNR11Extreme Light Infrastructure ERICELI-ERIC12Centre National de la Recherche Scientifique CNRSCNRS13Thales LAS France SASTh-LAS14AmplitudeAmplitude
4 University of Liverpool ULIV 5 Thales-MIS Th-MIS 6 Scandinova Systems AB SCND 7 VDLETG Technology & Development BV VDL 8 COMEB COMEB 9 United Kingdom Research and Innovation UKRI 10 Consiglio Nazionale delle Ricerche CNR 11 Extreme Light Infrastructure ERIC ELI-ERIC 12 Centre National de la Recherche Scientifique CNRS CNRS 13 Thales LAS France SAS Th-LAS 14 Amplitude Amplitude
5 Thales-MIS Th-MIS 6 Scandinova Systems AB SCND 7 VDL EIG Technology & Development BV VDL 8 COMEB COMEB 9 United Kingdom Research and Innovation UKRI 10 Consiglio Nazionale delle Ricerche CNR 11 Extreme Light Infrastructure ERIC ELI-ERIC 12 Centre National de la Recherche Scientifique CNRS CNRS 13 Thales LAS France SAS Th-LAS 14 Amplitude Amplitude
6 Scandinova Systems AB SCND 7 VDL ETG Technology & Development BV VDL 8 COMEB COMEB 9 United Kingdom Research and Innovation UKRI 10 Consiglio Nazionale delle Ricerche CNR 11 Extreme Light Infrastructure ERIC ELI-ERIC 12 Centre National de la Recherche Scientifique CNRS CNRS 13 Thales LAS France SAS Th-LAS 14 Amplitude Amplitude
7VDL EIG Technology & Development BVVDL8COMEBCOMEB9United Kingdom Research and InnovationUKRI10Consiglio Nazionale delle RicercheCNR11Extreme Light Infrastructure ERICELIERIC12Centre National de la Recherche Scientifique CNRSCNRS13Thales LAS France SASTh-LAS14AmplitudeAmplitude
8COMEBCOMEB9United Kingdom Research and InnovationUKRI10Consigio Nazionale delle RicercheCNR11Extreme Light Infrastructure ERICELIERIC12Centre National de la Recherche Scientifique CNRSCNRS13Thales LAS France SASTh-LAS14AmplitudeAmplitude
9United Kingdom Research and InnovationUKRI10Consigio Nazionale delle RicercheCNR11Extreme Light Infrastructure ERICELI-ERIC12Centre National de la Recherche Scientifique CNRSCNRS13Thales LAS France SASTh-LAS14AmplitudeAmplitude
10Consiglio Nazionale delle RicercheCNR11Extreme Light Infrastructure ERICELI-ERIC12Centre National de la Recherche Scientifique CNRSCNRS13Thales LAS France SASTh-LAS14AmplitudeAmplitude
11Extreme Light Infrastructure ERICELIERIC12Centre National de la Recherche Scientifique CNRSCNRS13Thales LAS France SASTh-LAS14AmplitudeAmplitude
12Centre National de la Recherche Scientifique CNRSCNRS13Thales LAS France SASTh-LAS14AmplitudeAmplitude
13 Thates LAS France SAS Th-LAS 14 Amplitude Amplitude
14 Amplitude Amplitude
15 Centro de LÁSERES Pulsados CLPU
16 Ferdinand-Braun-Institut gGmbH, Leibniz-Institut für FBH Hoechstfrequenztechnik FBH
17 Associação do instituto superior Teorico para a Investigação e IST Desenvolvimento
18 Università degli Studi di Roma La Sapienza USAP
19 Heinrich-Heine-Universitaet Duesseldorf UDUS
20 Deutsches Elektronen-Synchrotron DESY DESY
21 The Chancelor, Masters and Scholars of the Univ. of Oxford UOX
22 Ludwig-Maximilians-Universitaet Muenchen LMU
23 GSI Helmholtz Centre for Heavy Ion Research GSI
24 Università degli Studi di Roma Tor Vergata UTOR
25 SourceLAB SourceLAB
26 Paul Scherrer Institut (Associated partner) PSI

WP No.	Work Package Title	Lead Partic. Short Name
1	Coordination and project management	ELETTRA
2	Scientific and industrial exploitation	ULIV
3	Plasma accelerator theory and simulations	IST
4	High repetition rate plasma structures	INFN
5	Plasma acceleration diagnostics and instrumentation	CNRS
6	High efficiency RF generator	Thales-MIS
7	High repetition rate modulator	Scandinova
8	X-band RF Pulse Compressor (BOC)	INFN
9	RF tests and validation	CERN
10	High repetition rate high power Ti:Sa amplifier module	UKRI
11	Efficient kHz laser driver modules for plasma acceleration	CNR
12	High-rep rate pump sources for laser drivers	ELI-ERIC
13	Prototype of high average power optical compressor	Thales-LAS
14	Laser Driver System Architecture, transport and engineering	CNRS

The objective of the **PACRI** project is to develop innovative breakthrough technologies, increasing their Technology Readiness Level (TRL) for electron accelerators while taking energy consumption, resource efficiency, costs, and environmental impact into due account. This includes the following draft non-exclusive goals:

- **developing high rep-rate plasma modules,** as required for the EuPRAXIA project, extending its scientific domain from high average brightness radiation sources up to high energy physics;
- developing key laser components required to upscale high-power high repetition rate Laser technology as required by the EuPRAXIA and ELI Research Infrastructure.
- **improving the performance of normal conducting technology for X-band linac drivers,** extending them to the kHz regime, with focus on efficiency and energy consumption;
- supporting development towards compact linear colliders and nuclear physics facilities;
- **developing compact advanced undulator modules,** in order to reduce the overall size of the future FEL facilities.
- supporting the availability of compact X-ray facilities (FELs, ICSs, Betatron) to serve a larger number of users in many scientific fields, industry and society;

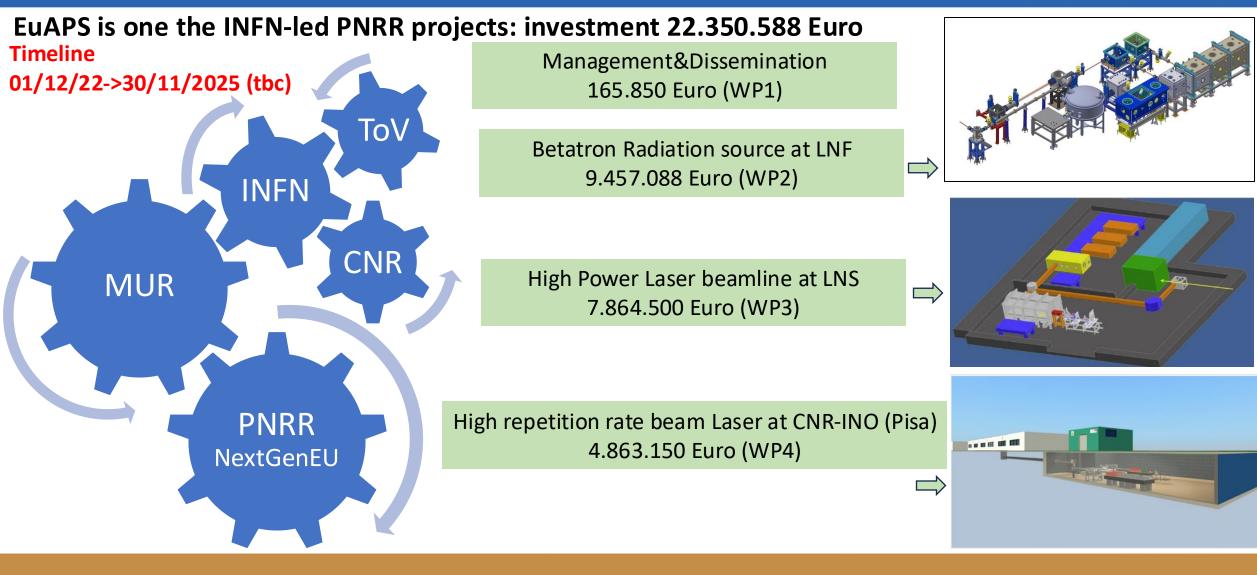

Finanziato dall'Unione europea NextGenerationEU



Betatron Radiation Source at SPARC_LAB

Electron beam Energy [MeV]	50-800
Plasma Density [cm ⁻³]	10 ¹⁷ - 10 ¹⁹
Photon Critical Energy [keV]	1 - 10
Nuber of Photons/pulse	$10^{6} - 10^{9}$

Courtesy J. Vieira, R. Fonseca/GoLP/IST Lisbon



Finanziato dall'Unione europea NextGenerationEU

Finanziato dall'Unione europea NextGenerationEU

EuAPS – Financial status

Direct costs: Personnel costs – all limited duration contracts are ongoing

Scientific instrumentation + civil infrastructures (see tables)

*Indirect costs = <u>7% on direct costs</u> 225.000 already allocated for Intellera consulting.

Sections		equested grant €	Committed+Paid €		Spending factor		Personnel Contracts (2y)	
INFN-LNF	5.6	58.400,00	5.	414.190,98	95,5%		3	
LNS	7.38	87.812,47	6.610.792,65		89,5%		2	
INFN-MI	2	67.000	237.438,39		88,9%		2	
Total	13.3	23.212,47	12	12.262.422,02		92%	7	
Section	S	s Requeste grant €				Spendin factor		
UniTov	/	585.158,36 569.293,		569.293,0	97,2%		1	
Section	S	Requested grant €		Committed+Paid €		Spendin factor	Personnel Contracts (2y)	

5.428.827,67

93,5%

4

Financial status

5.804.986,00

CNR

Fundamental research and applications with the EuPRAXIA facility at LNF 4-6 Dec 2024 Enter your search term Q LNF

Europe/Rome timezone

w	
table	Fundamental research and applications
Conference	with the EuPRAXIA facility at
Contributions	
stration	
sipant List	
2	
ommodation	
met Access	
acy Policy	
ety Rules	

EuPRAXIA@SPARC_LAB is a cutting-edge research project that will be realized in the INFN Frascati National Laboratories in Italy, focusing on advanced accelerator technologies. It is part of the broader EuPRAXIA initiative, aimed at developing the world's first plasma-based accelerator with user applications.

Given the advance in the project development, we are focusing our effort on the potentiality of the new facility in a wide scientific perspective, including FEL applications, but extending to other fields in which our photon and particle sources can contribute. To this end, LNF is organizing a Workshop on "Fundamental research and applications with the EuPRAXIA facility at LNF", to be held at Laboratori Nazionali di Frascati of INFN on December 4-6, 2024.

Thank for your attention