

ALICE 3: a next-generation heavy-ion detector for LHC Run 5 and beyond

Antonio Palasciano*
on behalf of the ALICE Collaboration

*Politecnico & INFN, Bari

LHC & ALICE timeline

ALICE HL-LHC

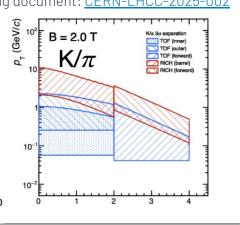
ALICE: designed to study the physics of **strongly interacting matter** at **extreme energy densities**. **SECURL Phys. J. C 84 (2024) 813**

LHC Run 3 2022-2026

LS3 2026-2029 LHC Run 4 2030-2034 LS4 2034-2035 LHC Run 5 2036-2041

Open points after Run 4:

- → Heavy-quarks interactions with the QGP, thermalization, hadronization
- QGP temperature as a function of time
- Chiral symmetry restoration
- Nature of exotic hadrons


LS4 upgrades:

New **ALICE 3** detector, a next-generation heavy-ion detector targeting **unprecedented precision** and **extensive PID**Letter of Intent: **arXiv:2211.02491** Scoping document: CERN-LHCC-2025-002

ALICE 2
Run 3
ALICE 2
Run 4

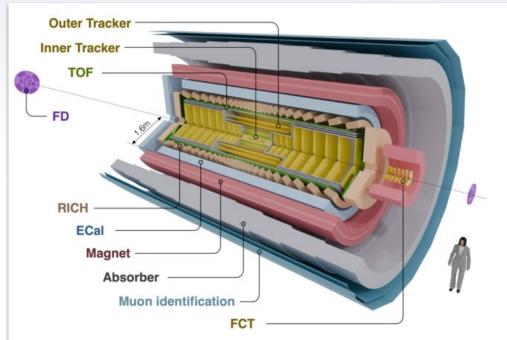
ALICE 2
Run 4

1
1
10
100
1000
Acceptance (Δη)× Pb-Pb interaction rate (kHz)

1

Detector layout


```
▶ B solenoid = 2.0 T
```

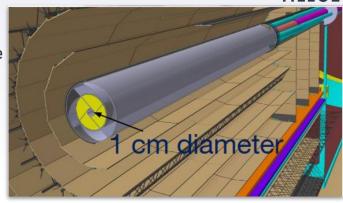

- Vertexer + Tracker, compact (R ≈ 85 cm) ultra-light (layer 0 ~ 0.1 % X/X_o) silicon MAPS-based (≈ 60 m²) with high-performance tracking (Axε, granularity, ...)
- with PID capabilities (iTOF, oTOF, fTOF, bRICH, fRICH ECal, µID)
- over an **acceptance** as **wide** as possible :
 - $|\mathbf{n}|$ < 4 (x5-9 acceptance of ALICE 2 barrel)
 - $p_{\tau} \in [0.05; (>10)] \text{ GeV/}c$
- able to collect large integrated MB luminosities :

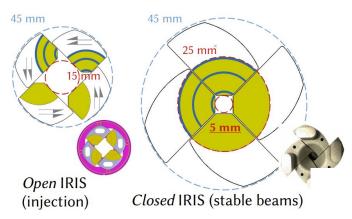
```
expected recorded readout
```

- $\approx 24 \text{ MHz}(pp) (x25-50 \text{ ALICE } 2 \text{ Run } 3)$
- \approx 100 kHz (Pb-Pb projection by LHC, x2 Run 3)

 $\mathcal{O}(0.5 \, \text{fb}^{-1})$ / month pp

 $\mathcal{O}(5.6 \text{ nb}^{-1})$ / month Pb-Pb

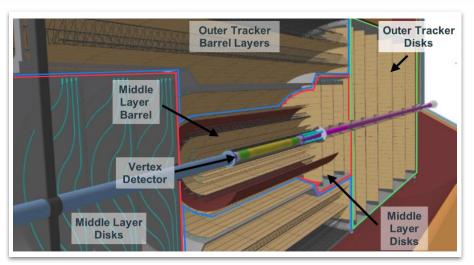

Vertex detector

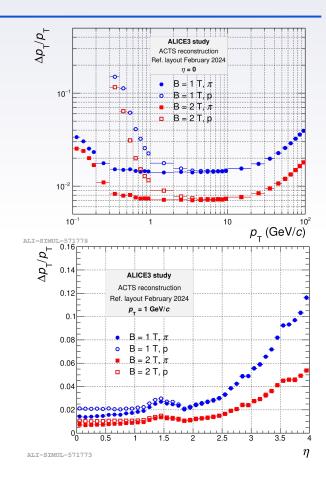


Concept and design:

- Retractable detector:
 - 3 detection layers (barrel + disks) in secondary vacuum within the beampipe
 - \rightarrow up to factor 5 improvement achievable with the 5 mm inner radius
- Wafer-sized, stitched and bent 65 nm CMOS Monolithic Active Pixel Sensor (MAPS) technology, leveraging ITS3 R&D
- Extremely **low material budget** (0.1 % X/X_n per layer)
- \rightarrow unprecedented spatial resolution 2.5 μ m

Middle and Outer Trackers



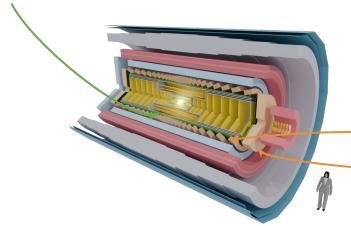

Design:

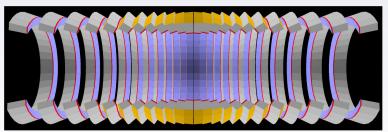
- → 60 m² of CMOS MAPS
- → R_{out} ~ 80 cm, |z| < 350 cm
- → 8 barrel layers + 2x9 disks
- \sim 1% X/X₀ per layer material budget

Performance:

~10 µm spatial resolution (up to 50 µm pitch)

Particle Identification detectors


TOF

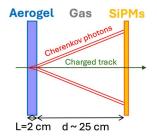

Requirements

- e/ π , π /K, K/p 3 σ separation up to \approx 0.2, 2, 4 GeV/c
- \rightarrow f(L/ σ_{TOF}), calling for $\sigma_{TOF} \approx 20$ ps

Layout:

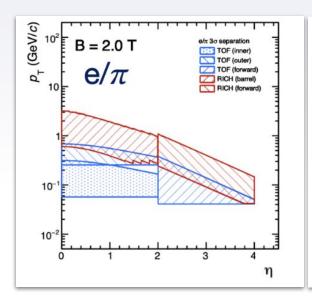
- barrel: Inner TOF (1.5 m²), Outer TOF (37 m²)
- forward + backward: disks (2x 3.1 m²)

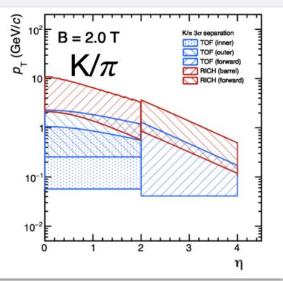
Projective cylindrical bRICH

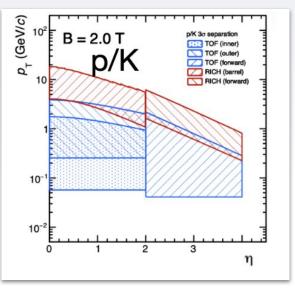

RICH

PID beyond TOF limits:

- 3σ separation e/ π , π /K and K/p up to \approx 2, 10 and 16 GeV/c, respectively
- \rightarrow n = 1.03 (barrel)
- \rightarrow n = 1.015 (forward)
- $\rightarrow \sigma_{\text{RICH}} \approx 1.5 \text{ mrad at saturation}$


Layout:


- bRICH: Aerogel + SiPMs (≈30 m²)
- fRICH: Aerogel + HRPPDs (≈8 m²)



Combined TOF+RICH PID performance

$3\sigma e/\pi$ separation:

TOF
$$p_{T} \lesssim 0.5 \text{ GeV/}c$$

RICH $p_{T} \lesssim 2 \text{ GeV/}c$

$3\sigma K/\pi$ separation:

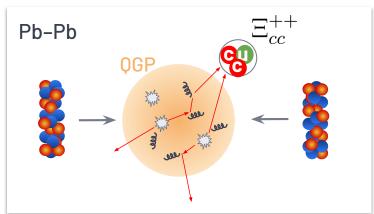
TOF
$$p_{T} \lesssim 2 \text{ GeV/}c$$

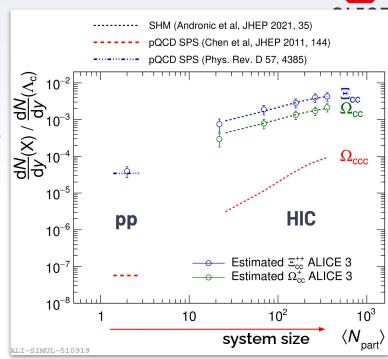
RICH $p_{T} \lesssim 10 \text{ GeV/}c$

3σ p/K separation:

TOF
$$p_{T} \lesssim 4 \text{ GeV}/c$$

RICH $p_{T} \lesssim 16 \text{ GeV}/c$

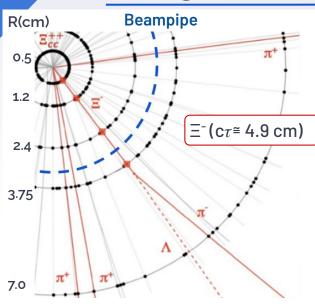

Multi heavy-flavor hadrons production



Heavy quarks (HF) produced only via hard scatterings before QGP formation:

- → experience the full evolution of the medium interacting with its elementary constituents
- \rightarrow partial thermalisation brings heavy quarks close in phase space
 - \rightarrow coalescence (recombination) main hadronisation mechanism at low- $p_{\scriptscriptstyle T}$

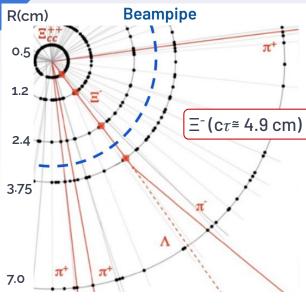
Multi-charm hadron yields in HIC > 100x larger than in pp



Yield ratios $(\Xi_{cc}/D, \Omega_{cc}/\Xi_{c})$ sensitive to:

- → charm-quark density in the medium
- → degree of heavy-quark thermalisation

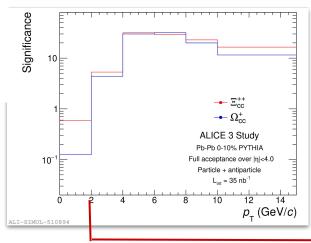
Strangeness tracking

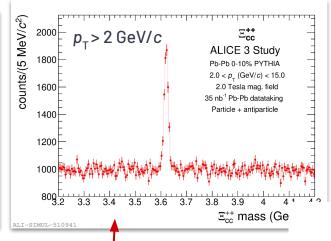

Novel approach for the reconstruction of multi-charm baryons:

$$\Xi_{cc}^{++}\to\Xi_c^+\pi^+\to\Xi^-3\pi^+\to\Lambda\,3\pi^+\pi^-\\ \hspace{0.2cm} \longrightarrow p\,\pi^- \hspace{0.2cm} \qquad \begin{array}{c} \text{6-prong}\\ \\ \hspace{0.2cm} \longrightarrow p\,\pi^- \end{array}$$

 $\rightarrow \Xi^{-}$ (strange particles) tracked before their decay thanks to VD inside the beam pipe

Strangeness tracking

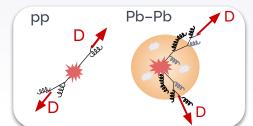


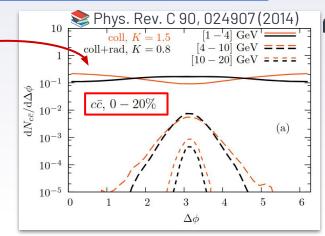

- The ultimate challenge: $\Omega_{\rm ccc}$ • unknown branching ratios,
 - unknown lifetimes

Detector capable, but large integrated luminosity needed Novel approach for the reconstruction of multi-charm baryons:

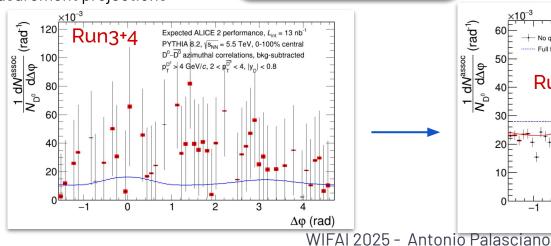
$$\Xi_{cc}^{++}\to\Xi_c^+\pi^+\to\Xi^-3\pi^+\to\Lambda\,3\pi^+\pi^-\\ \hspace{0.2cm} \downarrow p\,\pi^- \end{array} \} \hspace{0.2cm} \begin{array}{c} \text{6-prong}\\ \text{decay} \end{array}$$

 $\rightarrow \Xi^{-}$ (strange particles) tracked before their decay thanks to VD inside the beam pipe

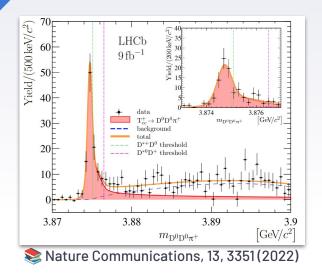



D-D angular correlations

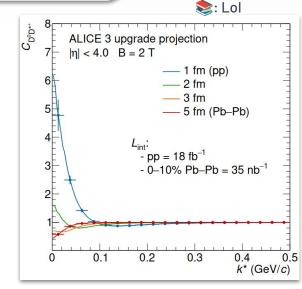
ALTCE.


Sensitive to charm energy loss and degree of thermalization in medium:

→ momentum decorrelation between charm hadrons keep traces of charm interactions with the medium

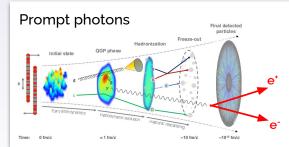

Measurement projections:

Heavy-flavour exotica

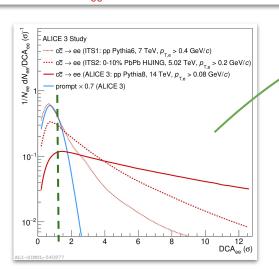

Understanding the molecular vs. tetraquark nature of exotic states (T_{cc}).

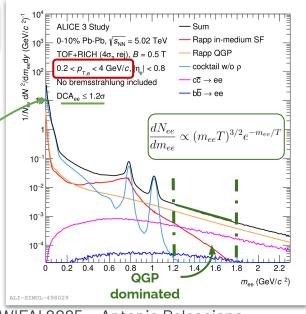
D°D** momentum correlations of charm hadrons provide direct access to the hadron-hadron interaction potentials in the heavy-flavour sector.

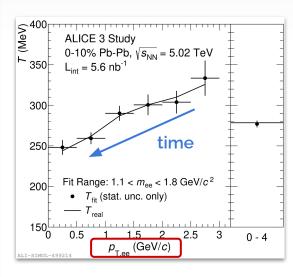
→ determination of the residual strong interaction between charm mesons and exploration of possible charm nuclei


Expected to be fully within the experimental reach of the ALICE 3 detector

Medium temperature evolution


Dileptons are produced at all stages of heavy-ion collisions,


- → escape the QGP with minimal interaction:
- → providing direct access to the properties of the early stages of collision
- → tracing the time evolution of the QGP temperature



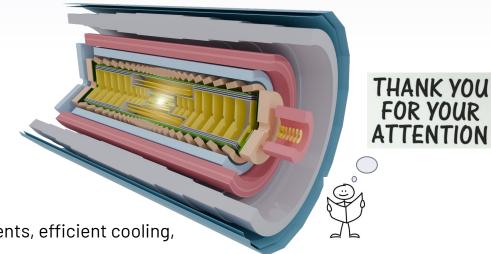
Effective prompt / non-prompt separation

 \rightarrow excellent DCA_{ee} resolution of ALICE 3

Conclusions

The HL-LHC provides unique conditions to study heavy-ion collisions, enabling the exploration of QCD matter under extreme conditions with unprecedented precision.

ALICE 3 will grant access to a rich and diverse physics programme to address open questions in hot and dense


QCD and beyond:

- Production of multi-heavy-flavor baryons
- Heavy-flavor correlations
- Exotica
- Temperature evolution of the QGP fireball
- Signatures of chiral symmetry restoration
- **)** ...

Pioneering R&D for future HEP experiments:

• Radiation tolerance, low-material budget requirements, efficient cooling,

lightweight mechanics, ...

