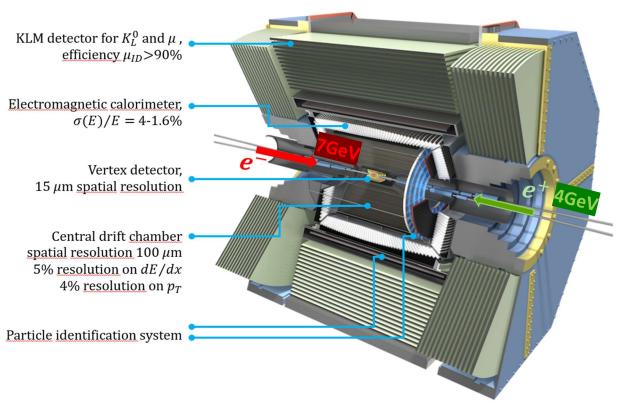


Results from Belle and Belle II for Dark Sector searches

WIFAI, November 11-14th 2025, Bari Laura Salutari – INFN Roma 3, on behalf of the Belle II collaboration laura.salutari@roma3.infn.it

Belle @ KEKB (1998-2010): belongs to first generation of B-factories, collected 1 ab^{-1} of data


Belle II @ SuperKEKB – run 1 (2018 -2022), run 2 (feb 2024 -): second generation, collected 0.6 ab⁻¹

- World record $\mathcal{L}: 5.1 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$
- Target \mathcal{L} : 6 x 10³⁵ cm⁻²s⁻¹
- Target $\int \mathcal{L} = 50 \text{ ab}^{-1}$

Ideal for dark matter search!

Key features:

- Well know collision conditions
- Clean environment with low multiplicity events
- Hermetic detector
- Trigger lines specific for low multiplicity events
- Overall excellent reconstruction of events even with missing energy & low multiplicity

Dark sector and Dark Matter at B-factories

Dark Matter (DM) nature still unknown, and it could be part of a Dark Sector (DS)

- → Light dark matter candidates
- → Dark force with feeble SM interactions a.k.a. portals

Low energy e^+e^- colliders, such as Bfactories, can access the mass range favored by light dark sectors and explore on-shell mediators in the MeV – 10 GeV range vector portal:

$$\frac{\epsilon}{2}B^{\nu\mu}A'_{\nu\mu}$$

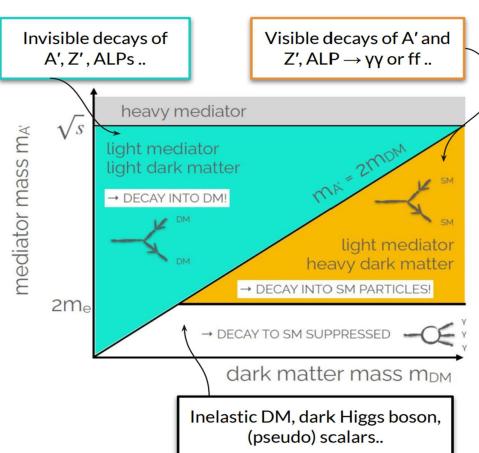
scalar portal:

$$H^{\dagger}H(As + \lambda S^2)$$

pseudoscalar portal:

$$\frac{a}{f_a}(c_G\tilde{G}G + c_W\tilde{W}W + c_B\tilde{B}B)$$

neutrino portal:

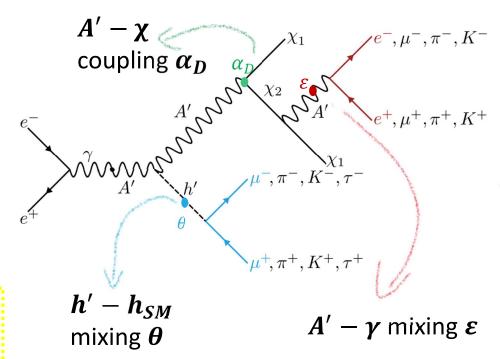

$$Y_N^{ij}\overline{L_i}HN_j$$

Dark sector and Dark Matter at B-factories

Dark Matter (DM) nature still unknown, and it could be part of a Dark Sector (DS)

- → Light dark matter candidates
- → Dark force with feeble SM interactions a.k.a. portals

Low energy e^+e^- colliders, such as B-factories, can access the mass range favored by light dark sectors and explore on-shell mediators in the MeV – 10 GeV range



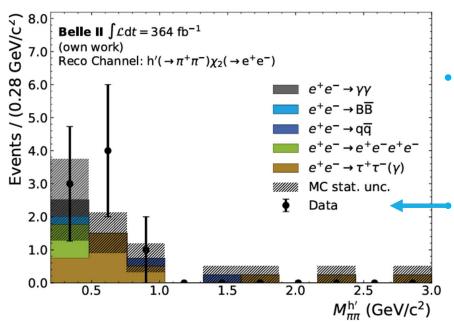
Inelastic dark matter with a dark Higgs

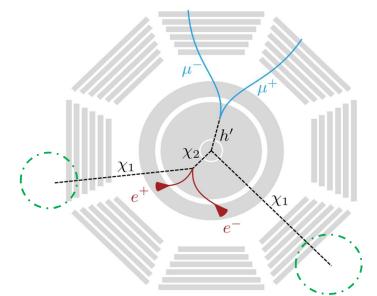
Phys. Rev. Lett. 135, 131801

- Model with inelastic coupling between DM and SM [PRD 64, 043502 (2001)]
- Four dark sector particles
 - Dark photon A'
 - Dark higgs boson h'
 - Two dark matter states χ_1 , χ_2 with mass splitting Δm_{χ} ($\chi_2 > \chi_1$)
 - χ_2 is long lived and can decay into DM, while χ_1 is a stable (relic DM candidate)
 - h' is long lived

Analysis with 365 fb⁻¹ in the channel:
$$e^+e^- \rightarrow h'(\rightarrow x^+x^-) A'(\chi_1\chi_2 \rightarrow (\rightarrow \chi_1 e^+ e^-))$$
 where $x \in (\mu, \pi, K)$

• e^+e^- final state chosen because of better trigger performance (ECL)


Inelastic dark matter with a dark Higgs



Phys. Rev. Lett. 135, 131801

Events reconstruction require:

- Up to 2 displaced vertices
 - $h'(\rightarrow x^+x^-)$ pointing back to IP
 - $\chi_2 \rightarrow \chi_1 e^+ e^-$ non-pointing back to IP displaced vertex
- Missing energy due to χ_1

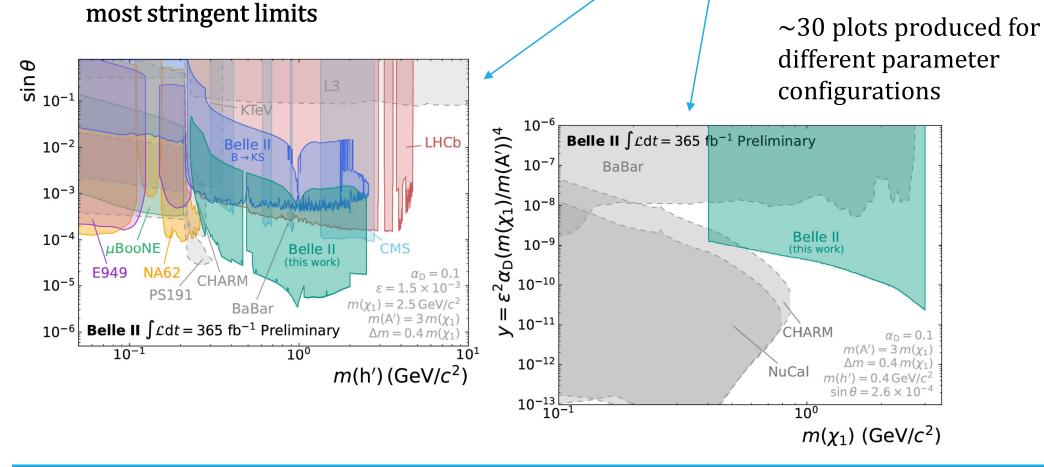
Experimentally challenging for trigger due to presence of displaced vertices!

- Exploiting the characteristic of h' pointing back to IP
 - Almost zero background
 - Veto the K_S^0 mass region

Search for a bump in the h' invariant mass M_{h} ,

- cut and count method
 - 0 events found in μ -channel, 1 in K-channel
- Background estimated from sideband regions

Inelastic dark matter with a dark Higgs



Phys. Rev. Lett. 135, 131801

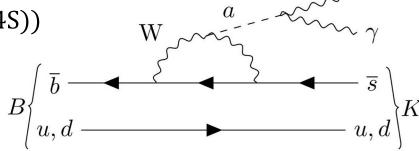
No significant excess found in data

set 95% CL model independent upper limits on the cross section

• set 95% CL model dependent upper limits on θ and $\varepsilon^2 \times \alpha_D$, which are the

Search: $B \to K^{(*)}a(\to \gamma\gamma)$

New! arxiv.2507.01249



Belle analysis with 711 fb⁻¹ (772 · 10⁶ of $\Upsilon(4S)$)

Search targeting Axion-Like Particles (ALPs) in the MeV-GeV mass range and their coupling with W boson g_{aw}

- Four kaon modes included: K_S^0 , K^+ , ${K^*}^+$, ${K^*}^0$
- $\mathcal{B}(a \to \gamma \gamma) \sim 100\%$ when $m_a \ll m_{W^\pm}$
- m_a investigated between **0.16 4.50** (4.20) GeV for $K(K^*)$ modes

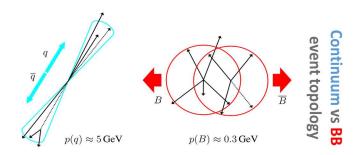
Previous limits from BaBar, which used only $B^+ \rightarrow K^+ a$ and smaller dataset [PRL.128.131802]

Signal B candidates reconstructed by combining two photons and one candidate K

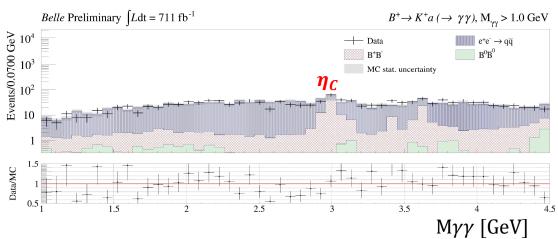
- Constrain mass and energy exploiting no missing energy in final state:
- $M_{bc} = \sqrt{E_{beam}^2 p_B^2} > 5.27 \text{GeV}$
- $\Delta E = E_B E_{beam}$ between -0.2 and 0.1 GeV

Search: $B \to K^{(*)}a(\to \gamma\gamma)$

New! arxiv.2507.01249



Background contributions:

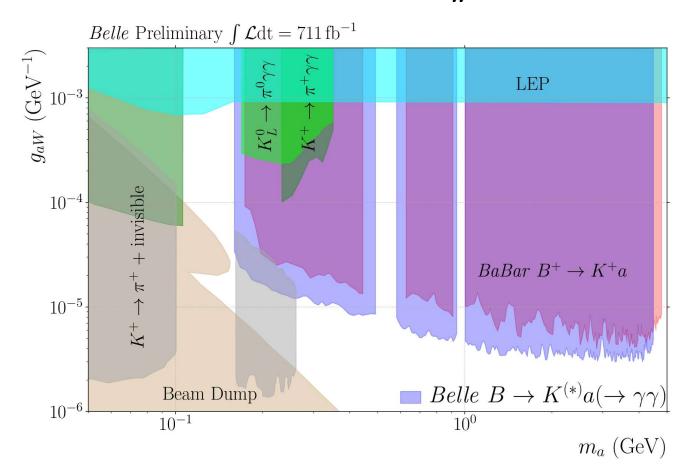

- Mainly from $e^+e^- \rightarrow q\bar{q}$ (continuum)
- Rejected with a Boosted Decision Tree (BDT) based on kinematics and topology variables
- Use of BDTs also to check whether the γ associated to the ALP do not originate from a π^0

Signal extraction:

- Fit the di-photon invariant mass and extract signal yield
- Signal peak parameters fixed from MC
- Peaking background (π, η, η') mass regions are excluded from signal extraction
 - Use them to validate signal extraction method

New! arxiv.2507.01249

Simultaneous fit on all four channels show no significant excess


World leading 90% CL upper limits on coupling g_{a_W}

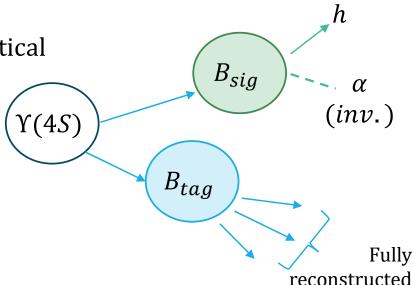
improved at least by factor 2 from BaBar

ALP lifetime (100mm – 500mm) has an impact especially in the low mass and low coupling region

 Drop in the signal efficiency taken into account

Submitted to JHEP

Preliminary study


BELLE

Many particles in BSM theories are FIP candidates.

- ALPs (as in prev. slides) are greatly motivated
- Scalars S as dark mediators
- Dark baryons
- → this search is broadly interpretable across theoretical scenarios

Channels chosen:

- $B_{sig} \to h \ \alpha$, with $h \in (\pi^{\pm}, K^{\pm}, p^{\pm}, D_s^{\pm}, \overline{D^0})$
- Range for m_{α} : from 1 MeV up to max 5 GeV depending on the channel (due to kinematics)
- Use Belle full dataset 711 fb⁻¹ (772 · 10⁶ of $\Upsilon(4S)$)

Strategy

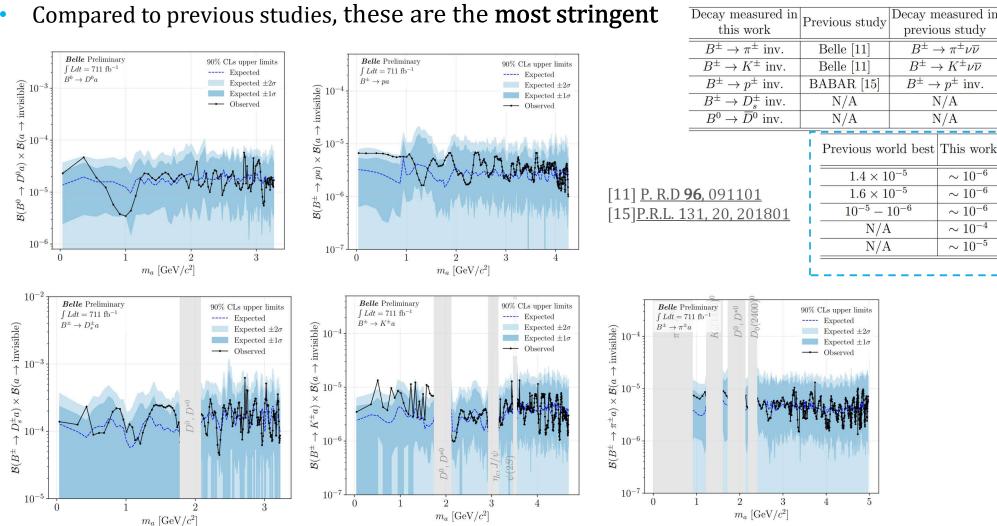
- Reconstruct the full event with B_{sig} and B_{tag} in order to quantify the missing energy
- Exploit 2-body decay kinematics: the hadron momentum $\overrightarrow{p_h}$ in the B_{sig} c.m.s. uniquely determines the mass of the invisible particle
- Search for a narrow bump in the hadron momentum through a scan

Preliminary study

Event reconstruction and main selections common to all channels:

- Reconstruct B_{tag} with Full Event Interpretation (FEI): uses all final states particle to reconstruct the decay chain. Select particles offering best candidate
 - Require $\Delta E_{tag} = 0$
- signal B_{sig} partially reconstructed using only the hadron track, not used in FEI
 - Specific PID requirements for each channel
- Reconstruct Rest Of Event with all particles in the final state which are **not** associated to B_{tag} or B_{sig}
 - Require no additional tracks
 - Require energy deposits in ECL<1.5GeV

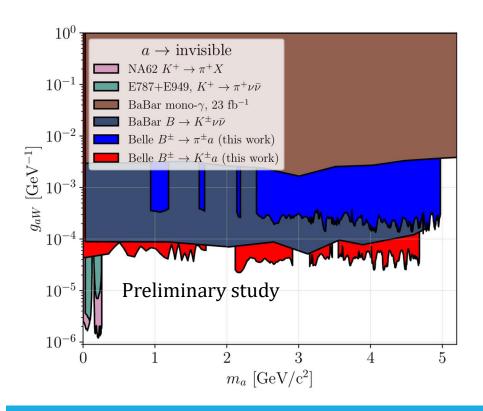
Background:

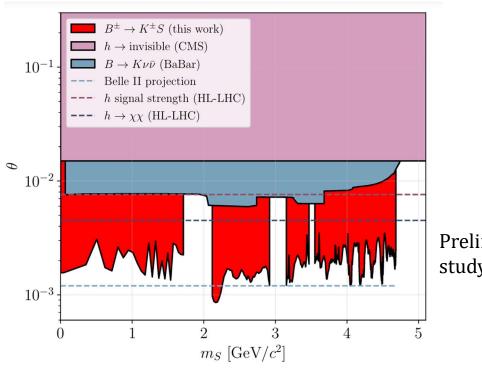

- Generic $B\overline{B}$ and continuum $q\overline{q}$ both rejected with a **BDT**
- Peaking background are treated differently
 - Narrow resonances are vetoed, e.g. K mass region, D^* mass region vetoed
 - Rare decays are modeled with same signal PDF

Decay measured in

Preliminary study

- Perform a fit on $\overrightarrow{p_h}$ in sliding window. The signal PDF parametrized as function of $\overrightarrow{p_h}$
- No excess is found, we evaluate the 90%CL upper limits on the branching ratio
- Compared to previous studies, these are the most stringent


Preliminary study



Results reformulated for two different interpretations of the feebly interacting particle. Only the channels with most stringent limits are shown

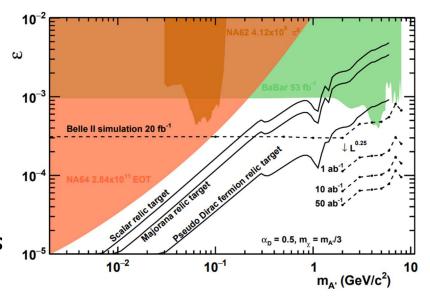
Limits on the ALP-W coupling g_{aW} for an invisible ALP arising in FCNC from B decays

Limits on the θ_{mix} between a dark sector scalar S and SM particles, produced in rare B decays

Preliminary study

Summary

Belle and Belle II have a **unique sensitivity to dark matter particles** in the MeV-GeV mass region

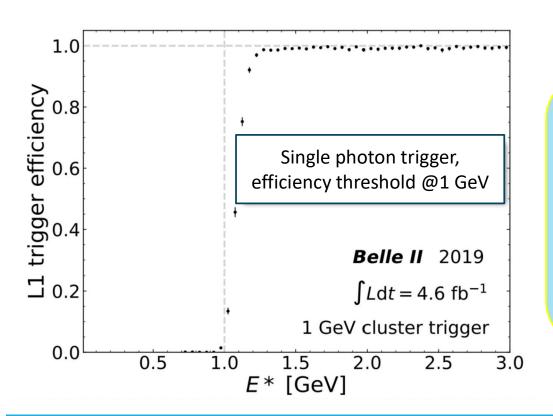

- Provide world leading limits in many searches
- Full list of publications targeting dark sector in backup

Here briefly presented the latest analyses:

- Inelastic dark matter and dark higgs, published in PRL (Belle II)
- Search for ALPs in B meson decays, submitted to JHEP (Belle)
- Search for feebly interacting particles as missing energy (Belle)

Outlook

- We expect to be even more competitive, see details in our <u>Snowmass report</u>:
 - Increase dataset size, for which we have already reliable limit projections
 - Second run ongoing!
- Analyses ongoin (non exhaustive):
 - Dark photon in visible final state
 - Dark photon in invisibile final state
 - IDM without Higgs boson
 - Simultaneous search for dark Higgs and dark photon
 - Both for visibile and invisible dark Higgs


- Challenges:
 - Keep under control the higher background due to higher luminosity
 - Keep single-object triggers (track, photon, muon) at best condition
 - Implement displaced vertex trigger and tracking

Stay tuned!

Backup

Belle II trigger system

- Trigger must suppress high-cross-section
 QED processes O(1-300 nb), without
 «killing» the signal cross section < O(fb)
- Need precise knowledge of acceptance & efficiencies of detector

Trigger based on:

- calorimeter clusters (ECL) for electrons and neutral particles
- Central Drift Chamber (CDC) for charged particles tracks
- KLM for μ , K particles

Example of **low multiplicity lines** available at Belle II:

- Single-photon trigger (ECL)
- Single-track trigger (CDC)
- Single-muon trigger (KLM)

Makes Belle II dataset world-unique

Belle and Belle II dark sector searches

Belle

•	$e^+e^- \to h'(\to A'A')A'(\to x^+x^-)$ with $x = e, \mu, \pi$	[PRL 114.211801] (2015)
•	$e^+e^- \to Z'(\to \mu^+\mu^-)\mu^+\mu^-$	[PRD 106.012003] (2022)
	Dark leptophilic scalar ϕ_L in $e^+e^- \to \tau^+\tau^-\phi_L(\to \ell^+\ell^-)$	
•	Heavy neutral lepton N in $\tau^- \to \pi^- N (\to \mu^+ \mu^- \nu_\tau)$	[PRD 109.L111102] (2024)
•	$ au ightarrow \ell lpha$	[arXiv 2503.22195] (2025)

Belle II

•	$e^+e^- \to \gamma a(\to \gamma \gamma)$	[PRL 125.161806] (2020)
	$e^{+}e^{-} \rightarrow \mu^{+}\mu^{-}Z'$ and $e^{+}e^{-} \rightarrow e^{\mp}\mu^{\pm}Z'$	
	$ au ightarrow \ell \alpha$	
	$e^+e^- \to A'(\to \mu^+\mu^-)h'$	
	$e^{+}e^{-} \rightarrow \mu^{+}\mu^{-}Z'$	
	Non SM resonance in $\mu^+\mu^-\tau^+\tau^-$ final state	
	Long lived spin 0 mediator in $b \rightarrow s$ transitions	
	Non SM resonance in 4 muon final state	