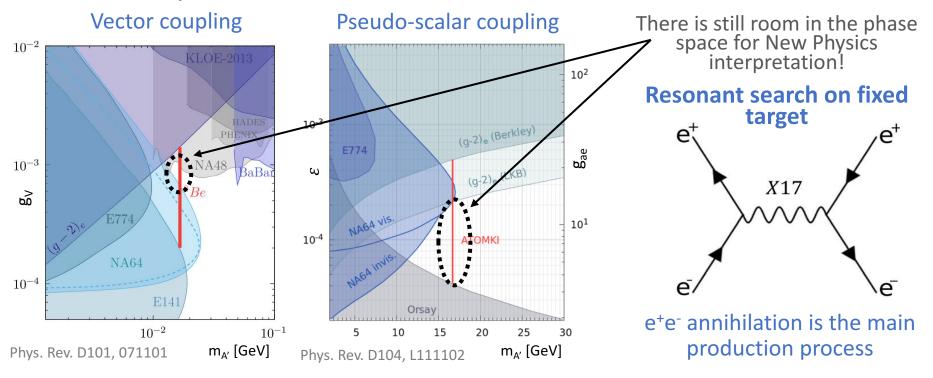
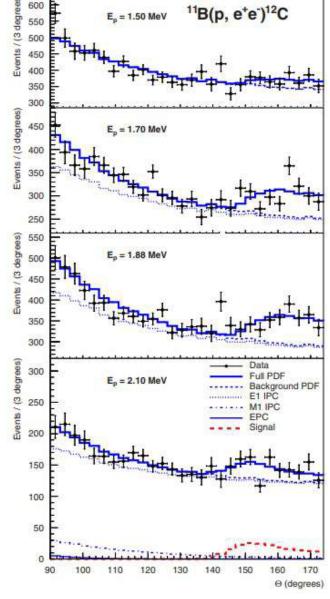


Results from PADME Experiment


Chiara Arcangeletti on behalf of the PADME Collaboration


WIFAI 2025, Bari(IT), 12th November 2025

Search for X17 resonance

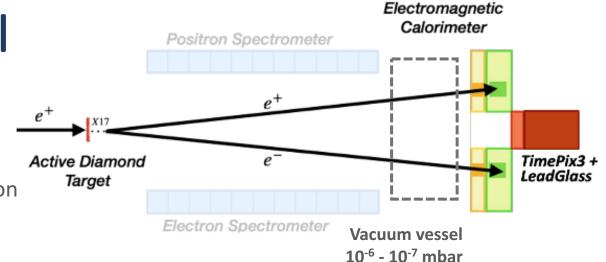
ATOMKI Collaboration observed anomalies in the angular correlation of e⁺e⁻ pairs emitted via internal pair conversion in the ⁸Be, ⁴He and ¹²C nuclear de-excitation

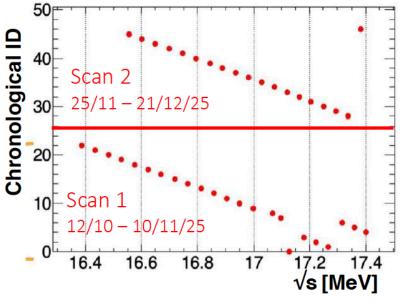
→ results compatible with a new neutral mediator called X17

PADME measurement idea: perform a very fine scan of \sqrt{s} around the hypothetical mass resonance using positron beam with $E_{beam} \sim 283$ MeV on target \rightarrow measure a 2-body final state

PADME Experiment in Run III

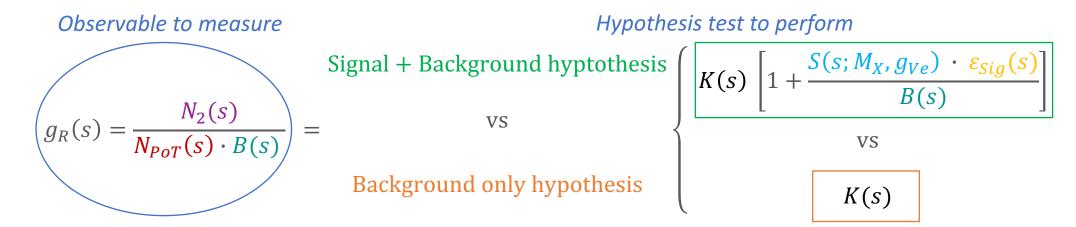
Experimental setup


- Active target polycrystalline diamond
- ECal: 616 BGO crystals, each 21x21x230 mm³
- ETagger (scintillator detector) in front of ECal for e/γ discrimination
- TimePix3 high granularity silicon-based detector for beam spot
- LeadGlass luminometer (NA62 Large Angle Veto spare block)


Elements not used: charged particle veto and magnetic field (residual 12.5 G)

Run III Dataset ~ 6x10¹¹ PoT (~10¹⁰ PoT per Vs point)

- 47 on-resonance points in 2 scans: E_{beam} @(263, 299) MeV (√s steps of ~20 keV)
- 6 out-of-resonance points: X17 production forbidden
 - 5 points with $\sim 10^{10}$ PoT each and E_{beam} @(205, 211) MeV
 - 1 point with $\sim 2x10^{10}$ PoT and $E_{beam} = 402$ MeV



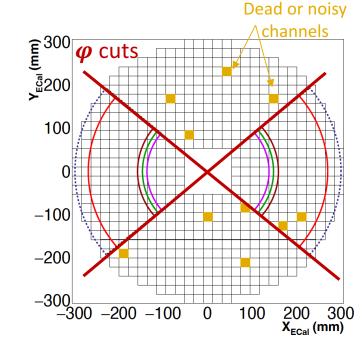
Analysis Strategy

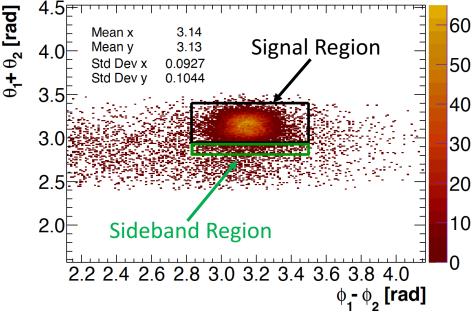
Goal is to measure a two-body final state to establish if the rate is compatible with SM expectation or with the presence of an hypothetical X17 signal

- The primary analysis observable is $g_R(s) \to the$ ratio between the number of observed events with a two-body final state, $N_2(s)$, and the expected number of background events, $N_{PoT}(s) \cdot B(s)$
 - with X17 signal: $g_R(s) = \left[1 + \frac{S(s; M_X, g_{Ve}) \cdot \varepsilon_{Sig}(s)}{B(s)}\right]$
 - without X17 signal: $g_R(s) = 1$

Several theoretical and experimental effects may induce deviations from unity \rightarrow accounted with a scale factor K(s).

Crucial to determine the systematic errors on the measured quantities: N_2 clusters, N_{PoT} , Bkg yields


Event selection


Estimation of N_2

Selection algorithm as independent as possible on beam and detector conditions

- Require 2 clusters within ECal geometric acceptance
 - R_{max} defined by ECal dimensions and R_{min} by the CoM energy
 - Limited energy range for each cluster, depending on CoM energy
 - Illumination affected by the presence of the magnet \rightarrow Cut regions in φ
 - about 30% loss in acceptance
- Mutual cluster conditions
 - Time and spatial distance: $\Delta T < 5$ ns & $\Delta R > 60$ mm
 - $\phi 1 \phi 2$ vs $\theta 1 + \theta 2$ cut in the center of mass frame isolates the signal
 - \rightarrow Signal Region is 3 σ around the mean value
 - → Sideband Region to determine background normalization
 - \sim 4% originating from Bremsstrahlung radiation in the target subtracted to obtain the final N_2 estimation

Source of uncertainty	Error on N ₂ [%]
Statistics	0.6 - 0.7
Background subtraction	0.3
Total (uncorrelated)	0.65

SM Background

Estimation of B

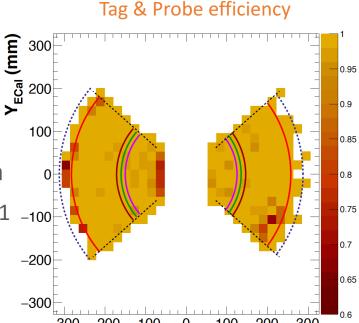
The main background sources are the Bhabha scattering and $\gamma\gamma$ annihilation.

The expected background yield per PoT is determined with MC → validate with data

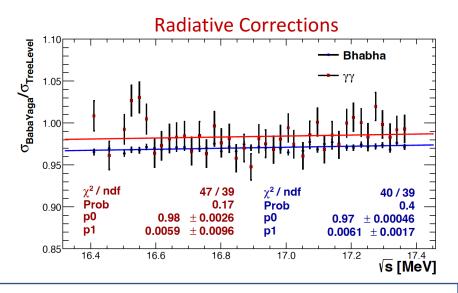
Reconstruction efficiency estimated with Tag&Probe method → data/MC compatible with 1 -100

Effects that spoils the B estimation:

- Beam spot direction & shape → acceptance variation of 0.08% 0.1%/ mm of vertical shift
- Stability of cuts due to acceptance edge effects and leakage → estimated by varying R_{max}


Source of uncertainty	Error on B [%]
MC statistics	0.4
Tag & Probe eff.	0.35
Beam spot variations	0.05
Cut stability	0.04
Total (uncorrelated)	0.54
Absolute B yield (correlated, affect K(s))	1.8

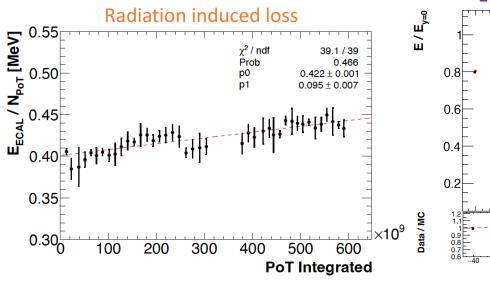
B yield normalized to below-resonance energy points

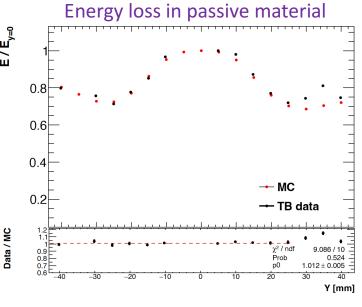

→ improve systematic uncertainty

Radiative corrections $e+e-(\gamma)$ and $\gamma\gamma(\gamma)$

evaluated using BabaYaga → 3% decrease in the total cross section @ 16.92 MeV and a √s slope of -0.6(6) % MeV⁻¹

X_{ECal} (mm)




Positron on target

Estimation of N_{PoT}

The number of PoT per bunch is determined using the LeadGlass calorimeter charge.

$$N_{PoT} = \frac{Q_{LG}}{Q_{1e^+,402\,[MeV]}} \times \frac{402}{E_{beam}[MeV]}$$

Corrections for precise estimation of N_{PoT}

- Radiation induced loss
 - Run III dose ~ 2.5 krad → transparency changes for O(krad)
 - Estimated from 2 flux proxy observables: Q_{target} , E_{ECal} \rightarrow show a linear energy dependence on the integrated flux \rightarrow LG yield decreases by $0.097 \pm 0.007 \rightarrow N_{PoT}$ flux corrected for this effect
 - Error associated both to the constant term and to the slope of the correction
- Energy loss in passive material
 - Beam movements → passive material crossing (TimePix cooling system)
 - Test beam to check goodness of MC simulation \rightarrow evaluate the overall energy loss for the specific beam conditions \rightarrow for each energy point N_{PoT} flux corrected

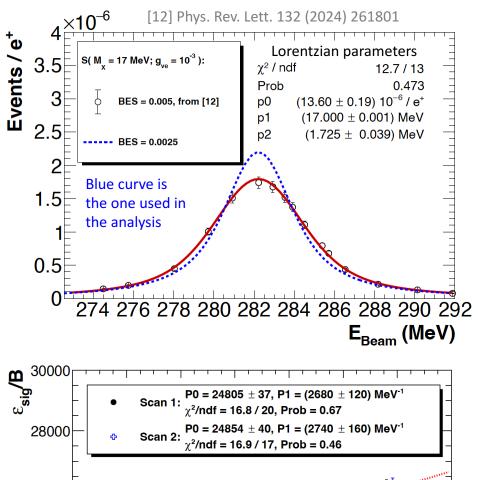
Source of uncertainty	Error on N _{PoT} [%]			
Radiation Loss. slope (uncorrelated)	Variable ~ 0.35			
Common errors on N _{PoT} (affect K(s))				
LG Calibration pC/MeV	2.0			
Energy Loss	0.5			
Radiation Loss, const. term	0.3			
Total (correlated)	2.1			

WIFAI 2025 Chiara Arcangeletti

Signal modelling & efficiency

Estimation of S and $\varepsilon_{Si,g}/B$

Signal yield estimation

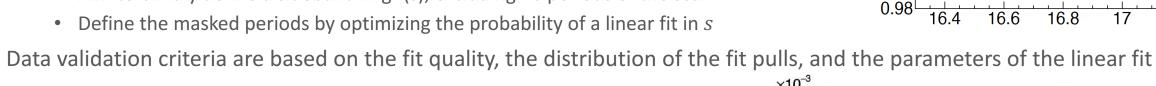

The width of the expected excess receive contributions by the beam energy spread and from the electron motion in the target.


- Functional form is a Voigt distribution parametrized as function of the beam energy: convolution of the Gaussian for the BES with a Lorentzian
- → Uncertainty in the curve parameters as nuisances:
 - Lorentzian width around the resonance energy: 1.72(4) MeV
 - Relative BES: 0.025(5)%

Signal efficiency

Expected signal efficiency ε_{Sig} determined from MC:

- Use of the ratio ε_{Sig}/B significantly reduces detector-related systematic uncertainties (similar detector illumination for both signal and background).
- \rightarrow Fit ε_{Sig}/B with a straight line \rightarrow fit parameters as nuisances:
 - Errors: ΔP0/P0 ~0.1%, ΔP1/P1 = 3%, correlation = -1.8%

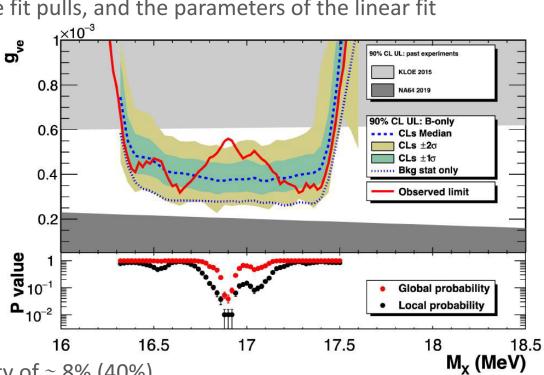


The Run III Results

Blind - unbliding procedure

Large expected X17 mass resolution \rightarrow no sideband region in \sqrt{s} can be defined to validate the statistical approach → Validation procedure described in 2503.05650 were used

- Aim to blindly define a sideband in gR(s), excluding 10 periods of the scan
- Define the masked periods by optimizing the probability of a linear fit in s


Statistical treatment

Test statistic based on Likelihood ratio between S+B and B-only and includes terms for each nuisance parameter

• For a given M_X , $CL_S = \frac{P_S}{(1-P_R)}$ is used to define the upper limit on g_{ve}

Run III Results

Excess observed, 2.5 σ local, 1.8(2) σ global significance corresponding to mass $M_X = 16.9 \, MeV$ and a coupling $g_{ve} = 5 \times 10^{-4}$

17.2

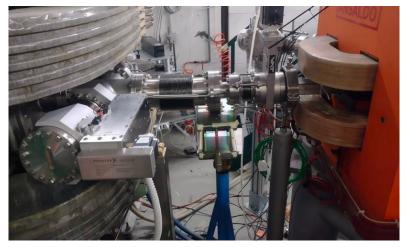
√s (MeV)

6 1.06

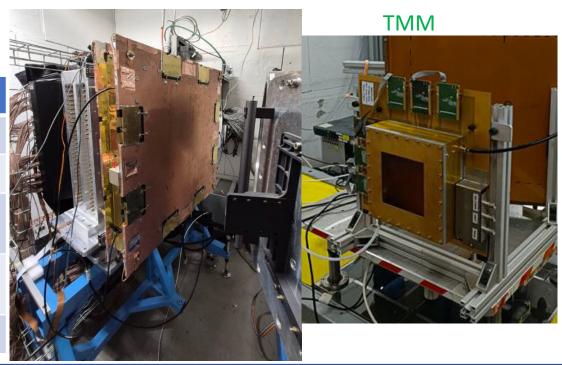
1.04

1.02

Second excess present at $M_X\cong 17.1~MeV$, with a local (global) probability of \sim 8% (40%)


PADME Upgrade for Run IV

The goal of Run IV is to increase sensibility to confirm/disprove Run III result


- Diamond target position moved downstream by ~30 cm + position readout changed
- Passive material removed and PADME Magnet fully degaussed
- Radiation loss monitor system for online LG calibration
- New detectors
 - PadMMe MicroMegas chamber replaced the ETagger
 - TMM Micromegas replace the TimePix beam monitor

Source	Uncertainty		Improvement
	Run III	Run IV	
N_2	0.6	0.3	New target position \rightarrow acceptance increased
В	0.54	0.3	PadMMe \rightarrow ee/ $\gamma\gamma$ discrimination + angular-momentum resolution increasing
N_{PoT}	0.35	0.3	3 different beam spot monitor (Target-PadMMe-TMM) + online LG calibration system
Total	0.88	0.5	

Diamond target moved

PadMMe

PadMMe: Micromegas tracker

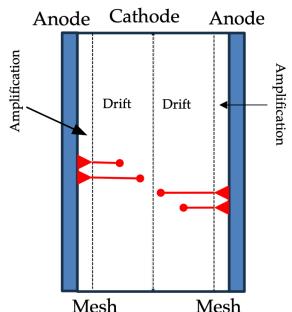
Micropatter gas detector operated in TPC mode

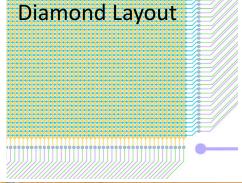
- Detector dimensions 88 × 88 cm²
- Two drift gaps of 5 cm each (~3 kV)
- Amplification gap \sim 128 μ m

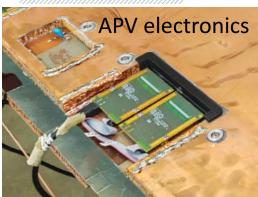
Novel diamond-shaped readout

• Able to read both x and y coordinates with reduced coupling

Readout Electronics: APV25

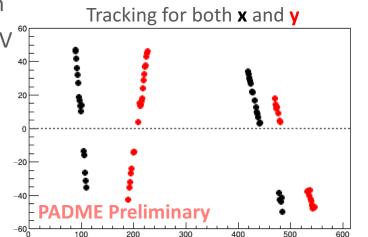

Time window up to 675 ns ns to read the entire drift time ~500 ns


Gas Mixture Ar:CF₄:Isobutane (88:10:2)

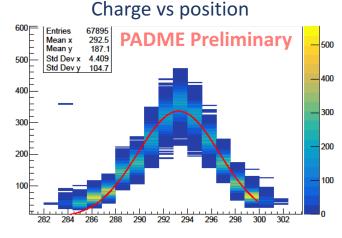

Drift velocity ~ 10.5 cm/μs

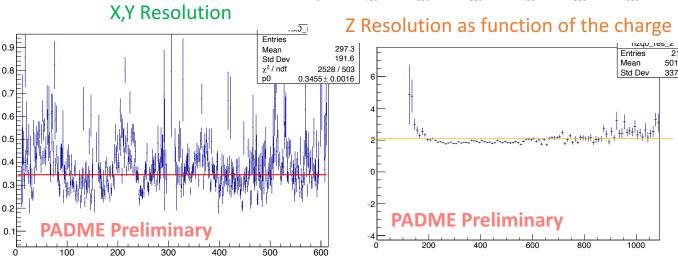
3 HV regions to be able to have a better control on the amplification in the "beam" region

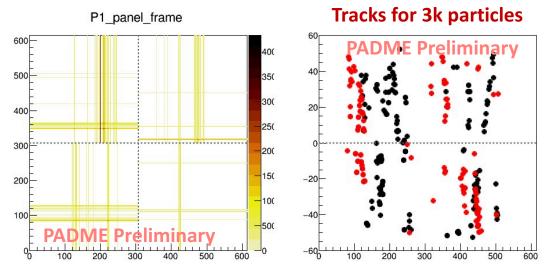
- External regions operating at 490 V
- Inner regions operating at 350 V (no amplification)



PadMMe preliminary performance

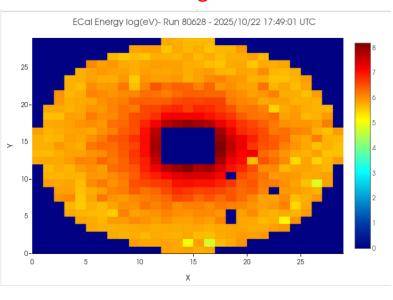

Preliminary results with cosmic data

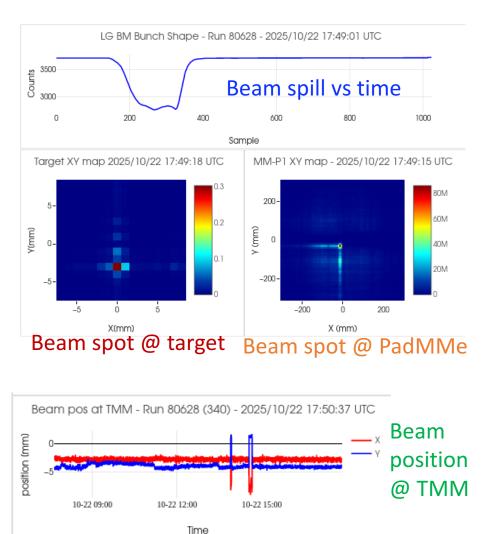

- TPC for track reconstruction
- Hit efficiency > **90**% @ 500 V
- Spatial Resolution
 - $\sigma_{\rm x,v} \sim 350 \ \mu {\rm m}$
 - σ_z ~ 2 mm → can improve with better time calibration



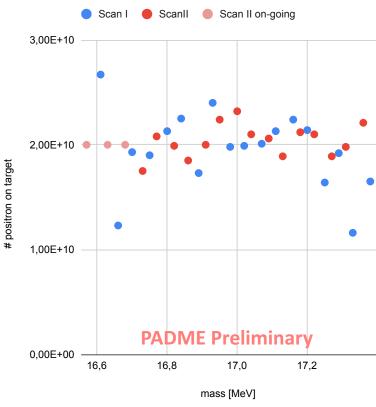
Beam Monitoring & Tracking in PADME

- Able to reconstruct the beam spot position and spread up to $\sigma \sim 3.5$ mm
- Tracking in beam conditions, occupancy as high as 50%
 - → working for a robust track reconstruction



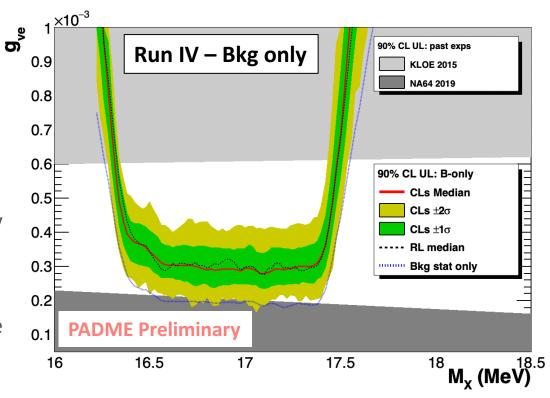


Run IV Status


Some online monitoring plots of the on-going data taking

full ECal acceptance available thanks to th target movement

Run IV Scan I already finished, while Scan II is on-going


Conclusions

The Run III data analysis has been successfully blessed using the "blind-unblinding" procedure

- Overall uncertainties ~ 0.9% per energy point
- No indications of X17 well beyond two-sigma-equivalent global p-values
- An excess has been observed @ 16.9 MeV, with global p-value equivalent to $1.8(2)\sigma$ arXiv:2505.24797

The Run IV data needed to clarify

- New Micromegas tracker were installed to measure the absolute ee/ $\gamma\gamma$ cross section allowing combined analysis + TMM to the end of the line for beam monitor
- Run IV-part 1 data already in the books
 - 18 energy scan points collected (\sim 2×10¹⁰ PoTs each) equally separated by 1.5 MeV in the range of E_{beam} = (269.5, 295) MeV \rightarrow Vs= (16.60, 17.36) MeV
- Run IV-part 2 on-going since September
 - 18-20 scan points + out-of-resonance below 16 MeV and above 18 MeV

Backup

Other Experiments

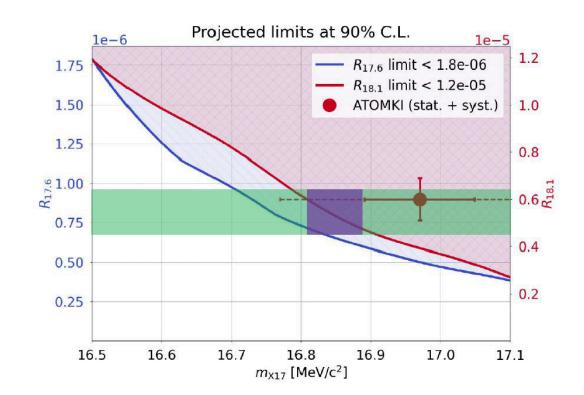
Recent result from MEG II, arXiv:2411.07994 still to be published

- Measurement on ⁷Li target to reproduce ⁸Be ATOMKI
 - → no signal found
- ULs on $\frac{\Gamma({}^8Be^* \rightarrow {}^8Be~X_{17}(ee))}{\Gamma({}^8Be^* \rightarrow {}^8Be~\gamma)}$ for 17.6 and 18.1 MeV transitions

MEG II result compatible at 1.5 σ with the ATOMKI combination $M_X = 16.85(4)$ MeV [Barducci, et al., JHEP 04 (2025) 035]

Further attempts to verify:

AN2000 facility @INFN-LNL [data taking ongoing]


n_TOF EAR2 neutron line @CERN [2025 proposal]

Tandem accelerator @Montreal [JPC Ser. 2391 (2022) 012008]

Van de Graaf accelerator @IEAP Prague [NIM. A 1047 (2023) 167858]

