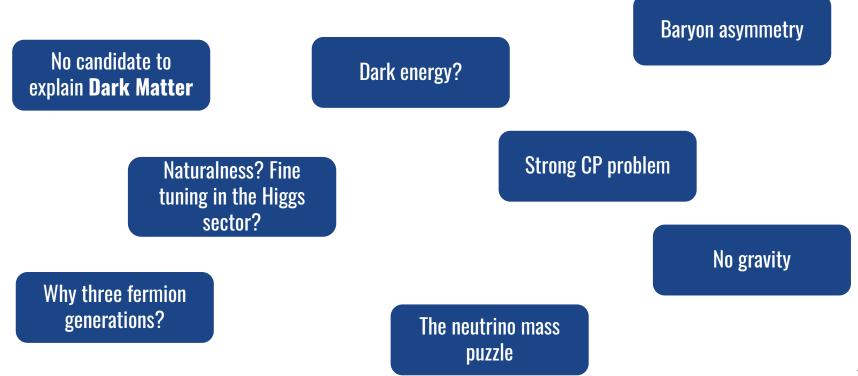
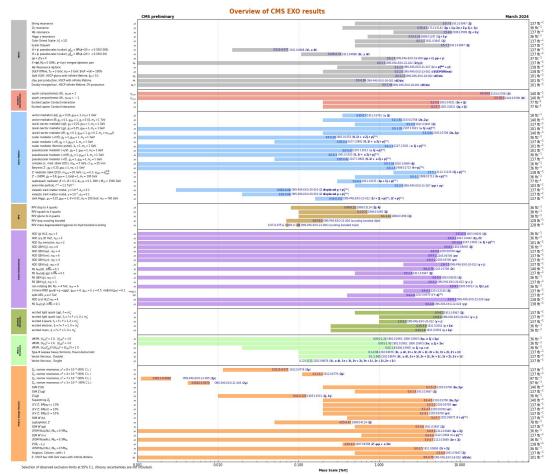


Search for Beyond Standard Model signatures with phase-2 detectors with ATLAS and CMS

Fourth Italian Workshop on Physics at High Intensity


12th November 2025

Bari, Italy

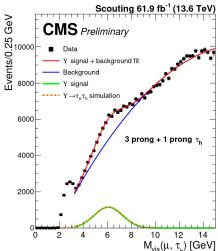

Tiziano Pauletto for the ATLAS and CMS collaborations

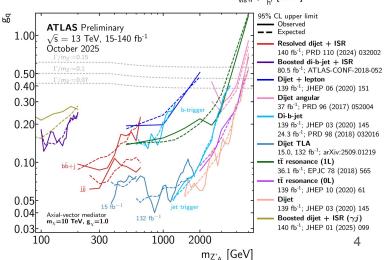
The name of the game

The Standard Model still leaves many questions unanswered.

What we are searching for

An **extensive physics program of searches**, from resonances to exotic signatures, both in ATLAS & CMS.

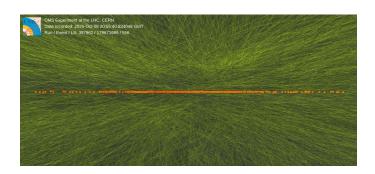

[CMS Exotica summary plots, ATLAS Summary Plots]

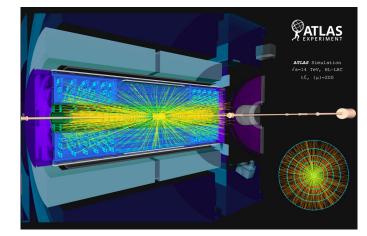

The state of the art: latest Run 3 results

Hot off the press:

- CMS-PAS-EXO-24-012: Low mass scalar $\phi \rightarrow \tau \tau$ search.
 - \circ **~100 pb limit** on pp $\rightarrow \phi \rightarrow \tau \tau$ in the whole mass range
 - Employing data scouting for this search
 - First search w. hadronically decaying tau
 at a collider probing 20-60 GeV mass range
- <u>ATL-PHYS-PUB-2025-041</u>: Constraints on axial-vector dark sector mediator [2509:01219]
 - Employing Trigger Level Analysis (TLA)
 - Up to 27 KHz data stream (vs 1.2 KHz "main")
 - From 1500 GeV constraints on dijet resonances
 - → **down to 400 GeV** with this strategy

See **G. Maineri's talk!**





The High-Luminosity LHC

From mid-2026: LHC shutdown to prepare for **High Luminosity** (HL).

- HL-LHC starting operations in 2031
- 3/4-fold increase in instantaneous luminosity w.r.t. to nominal LHC ops, pileup $<\mu>=140-200$
- Reaching **3000-4000 fb⁻¹ of delivered lumi** to ATLAS & CMS at end of operations
- Ambitious detector upgrade program for the experiments
- Challenges in detector design, event reconstruction, computing infrastructure
- ... but a lot of opportunities for BSM physics

5

Some of the detector improvements in ATLAS & CMS

- ATLAS: **installation of Inner TracKer (ITk)**, reaching coverage $|\eta| \sim 4$ and $r \sim 1$ m, much finer granularity \rightarrow **gain in acceptance** for large range of physics phenomena
- CMS: **tracker upgrade** reaching coverage $|\eta| \sim 4$, trigger at L1
- CMS: Replacement of endcap calorimeters with High Granularity CALorimeter (HGCAL) → reconstruct shower shape in space and time, sizeable gain in energy a resolution.
- CMS: **MIP Timing Detector** (MTD), charged track time res. ~ 30-60 ps
- ATLAS: **High Granularity Timing Detector** (HGTD) in endcap, time res. ~ 30-50 ps
- ATLAS: Upgrade of muon detectors, replacement of electronics and Monitored Drift Tubes in trigger
- Not an exhaustive list...

A bright future ahead

Detectors:

- Extended coverage of trackers & increase in granularity
- Upgrade of calorimeters,
 muon detectors, overhaul of electronics of existing detectors
- Addition of timing detectors

Data acquisition:

- Increase in **trigger rate**
- Dedicated data streams:
 scouting, parking, Trigger Level
 - Analyses (TLAs)
 - L1 **Track trigger** in CMS
 - **New triggers** targeting exotic •
 - signatures
 - Hardware track reconstruction

Reconstruction & data analysis:

- Heterogeneous computing used in event reconstruction
- Novel **analysis techniques**
- Improvements in **flavour** tagging
- Probing unexplored signatures

...

CMS-TDR-019

Promote Promot

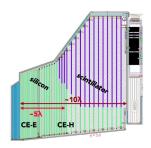
ATLAS Muon Detectors upgrades for High Luminosity LHC, M. Sessa

Reconstructed loss = $\frac{1}{n}\sum_{i}(\hat{x}_i - x_i)^2$

A bright future ahead

Detectors:

- Extended coverage of trackers & increase in granularity
- Upgrade of calorimeters,
 muon detectors, overhaul of •
 electronics of existing detectors•
- Addition of timing detectors


Data acquisition:

- Increase in **trigger rate**
- Dedicated **data streams**:
 - scouting, parking, Trigger Level●
 - Analyses (TLAs)
 - L1 **Track trigger** in CMS
 - **New triggers** targeting exotic •
 - signatures
 - Hardware track reconstruction

Reconstruction & data analysis:

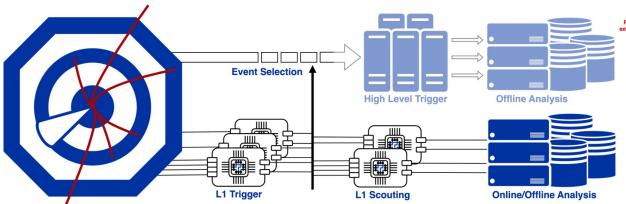
- Heterogeneous computing used in event reconstruction
 - Novel analysis techniques
- Improvements in flavour tagging
- Probing unexplored signatures
- ▶ ..

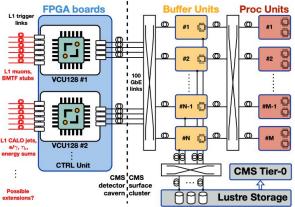
RAL Transport

This talk will focus on some physics cases related to the highlighted topics

L1 scouting

L1 Scouting at CMS




Collision rate of 40MHz \rightarrow L1 trigger selects \sim 100 kHz \rightarrow HLT selects \sim O(kHz)

Did we reject new physics hints due to our trigger selections?

New strategy: save L1 events at a rate of 40 MHz → **triggerless readout**

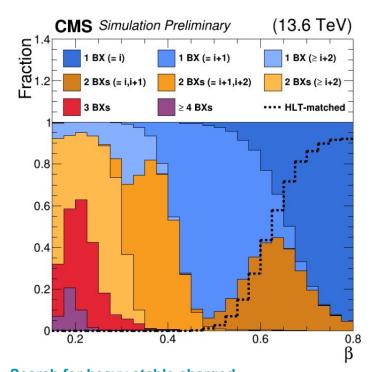
- Demonstrator added to CMS in 2024 and collecting data
- O(kB) event size compared to 7.5 MB full event

R. Ardino, M. Migliorini

CMS L1 Data Scouting for HL-LHC, L. Sieder

Opportunity for HSCPs: an example of L1 scouting

L1 scouting opens windows on:

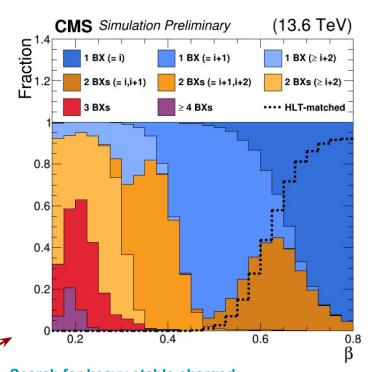

- Soft objects
- Low couplings
- Analyses requiring complex selections not possible at L1
- Correlation between bunch crossings (BX)

The latter ideal to probe very slow Heavy Stable Charged Particle (HSCP) signatures:

- Massive (m ≥ 200 GeV),
- Long lived (> detector length)

→ **Slow moving**, highly ionizing

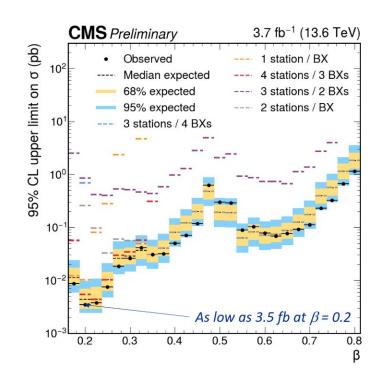
Predicted in several <u>SUSY</u>, <u>GMSB</u>, and <u>superstring</u> models.


Search for heavy stable charged particles with L1 Scouting data at the CMS experiment, C. Caillol

Opportunity for HSCPs: an example of L1 scouting

L1 scouting analysis [CMS PAS EXO-25-010]:

- Time-based HSCP analyses probe $\beta > 0.5$
- Looking at BX correlations \rightarrow going to $\beta \sim 0.2$
- Exploiting 3.7 fb⁻¹ of data, **put limits on** cross-section at fb-pb level in $\beta \sim 0.2$ -0.8 range


Search for heavy stable charged particles with L1 Scouting data at the CMS experiment, C. Caillol

Opportunity for HSCPs: an example of L1 scouting

L1 scouting analysis [CMS PAS EXO-25-010]:

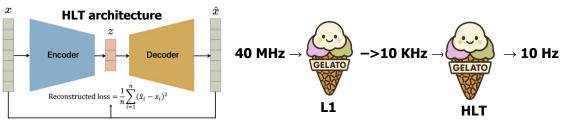
- Time-based HSCP analyses probe $\beta > 0.5$
- Looking at BX correlations \rightarrow going to $\beta \sim 0.2$
- Exploiting 3.7 fb⁻¹ of data, **put limits on cross-section at fb-pb level** in $\beta \sim 0.2$ -0.8 range

Search for heavy stable charged particles with L1 Scouting data at the CMS experiment, C. Caillol

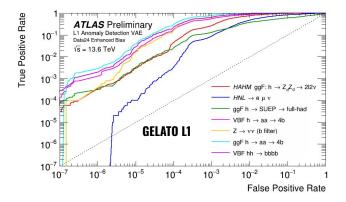
Anomaly detection at trigger level

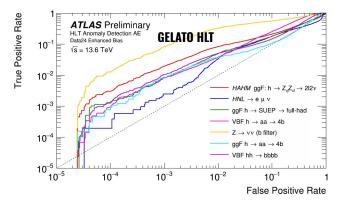
Online Anomaly Detection: GELATO

The Generic Event-Level Anomalous Trigger Option for ATLAS (GELATO) is an anomaly detection (AD) framework that **triggers at L1** (hardware) and **at HLT** (software).


GELATO L1:

- VAE-GAN architecture on FPGAs
- \circ 45 features: $(p_{\tau}\eta,\varphi)$ of 6 jets, 4 taus, 4 muons + MET


• GELATO HLT:

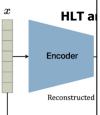

- AE architecture, implemented on HLT CPUs
- 47 features: from 6 jets, 3 electrons, 3 muons and 3 photons +
 MET

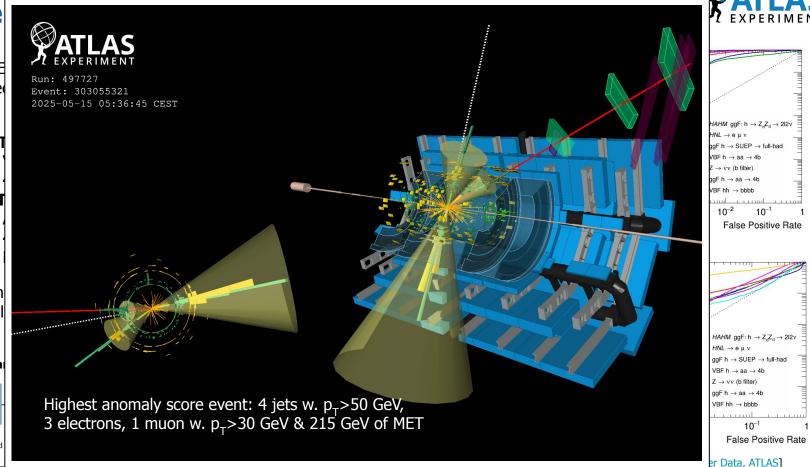
Trained on Enhanced Bias data, **shows significant discriminating power** in several models. Testing in early 2025, prescaled data-taking started in June.

In CMS similar effort: AXOL1TL

[Public Combined Plots For Trigger Data, ATLAS]

15


Online


The Generic E anomaly detect (software).

GELAT

GELAT

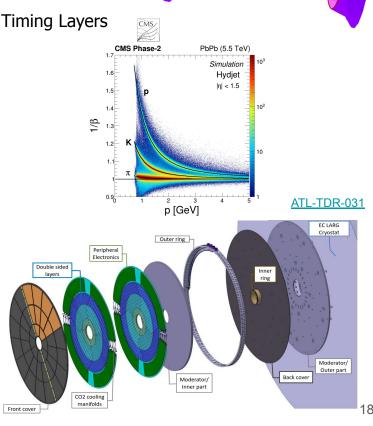
Trained on En several model

A new dimension for searches: time

The timing detectors: MTD and HGTD

The **MIP Timing Detector** (MTD) will be installed in CMS:

Made of Barrel (BTL, $|\eta|$ <1.5) and Endcap (ETL, 1.6< $|\eta|$ <3.0) Timing Layers

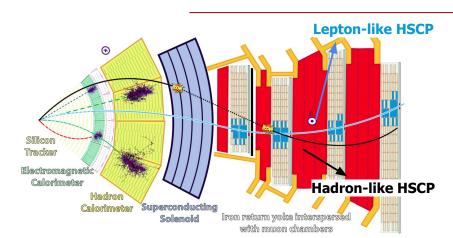

• LYSO:Ce scintillators in the barrel and LGADs in the endcap

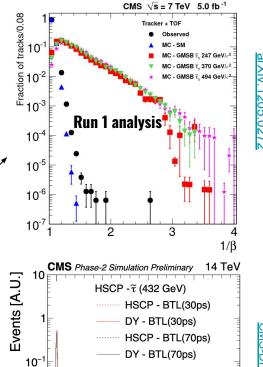
- Track time resolution of ~30-60 ps
- Assignment of vertex time:

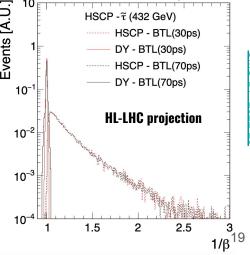
The **High Granularity Timing Detector** (HGTD) will be installed in ATLAS:

- Composed of two instrumented double layers of LGADs
- Covering 2.4< $|\eta|$ <4.0
- Time resolution ~ 30-50 ps
- Recovers current pileup rejection in forward detectors

CMS-TDR-020

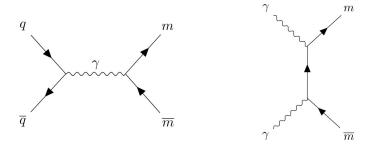

Hunting HSCPs with MTD

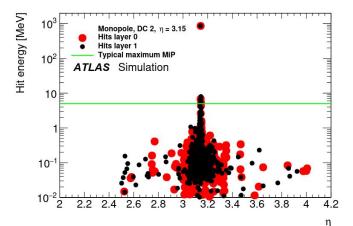

Returning to HSCPs → possible to search for them using a **Time-of-Flight** (ToF) **signature**.

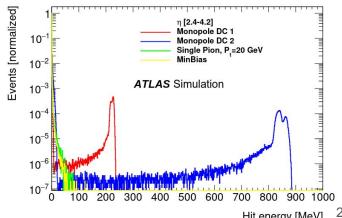

Now ToF given by CMS muon system. During HL-LHC \rightarrow MTD can be exploited.

MTD will change the landscape of HSCP searches:

Going from ~1.5 ns track time resolution in muon system (now) to ~30-60 ps (MTD)


Triggering on magnetic monopoles with HGTD


Magnetic monopoles → highly charged particles leaving large energy deposits in detector.


Already searched for in calorimeters & tracker [2308.04835], HGTD sensitive to an unprobed mass range m < 200 GeV.

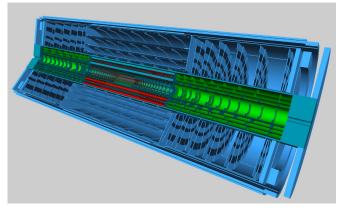
Monopole charge is multiple of Dirac Charge (DC) ~ 68.5 e

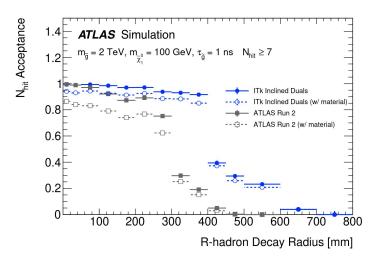
- **Large energy deposition in HGTD** → well separated **from MIP** deposits
- Explored possibility to use HGTD to **recognize candidates** online & use information to trigger
- Scenario would require a modification of readout electronics → case under study

Tracking improvements

Displaced vertex signature

New Inner TracKer (ITk) design:

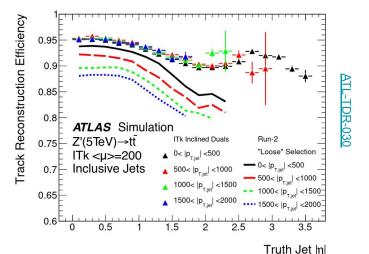

- All-silicon tracker: pixel (inner part) and strips (outer region)
- Improved coverage $|\eta| < 2.5 \rightarrow |\eta| < 4.2$
- 165 m² active area and 5 B / 60 M channels of pixels/strips

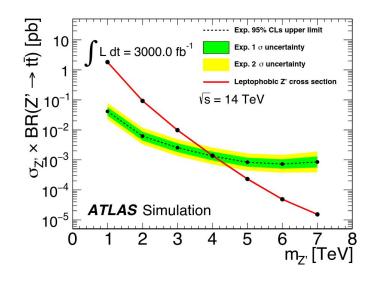

BSM particles with lifetime ~ 10 ps - 10 ns can decay inside the tracker volume.

e.g. particles from <u>Hidden Valley</u>,

<u>R-parity violating</u> and <u>split SUSY</u> models,
that arise from SUSY scenarios with large
squark mass

Efficiency on displaced vertices is greatly increased with ITk, especially at ~ 300-400 mm, extending reach up to 550 mm.




Bonus: heavy resonances decaying to top quark pairs

There are some models in which resonances decay preferably to top quarks. Considering here a <u>leptophobic</u> <u>topcolour-assisted technicolour Z'</u>.

- Run 3 analyses exclude m₇,< 3.2 TeV
- For higher masses, **boosted ttbar topology**, b-jets with $p_{\tau} > 600 \text{ GeV}$
- Tracking system crucial to disentangle high-density track environment

Sizeable increase in track reconstruction efficiency in large η range

Expected to probe **4 TeV mediator mass** in this model

Outlook

Outlook

- ATLAS and CMS gearing up for the HL-LHC, ambitious upgrade program ongoing
- HL-LHC will deliver an unprecedented amount of integrated luminosity to the experiments & unlock discovery possibilities in many models
- In this presentation: overview of some of the improvements on detecting capabilities & their impact on the discovery potential of ATLAS & CMS
- The quest for new physics is ongoing, stay tuned
- Many upgrade topics not covered here, open to discussion

THE TRUTH IS OUT THERE

Thanks for listening