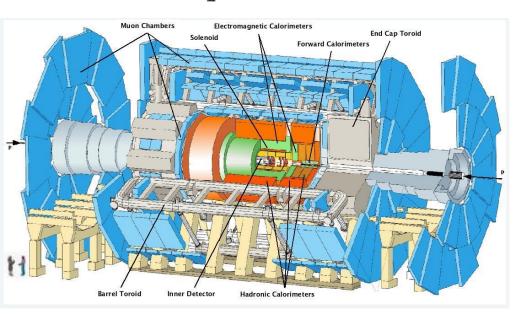
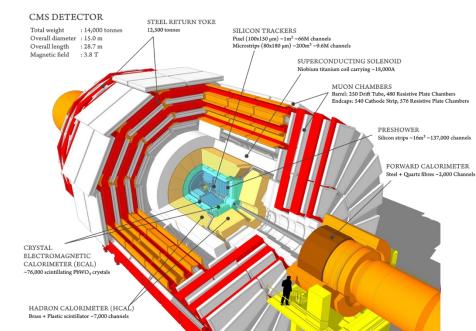
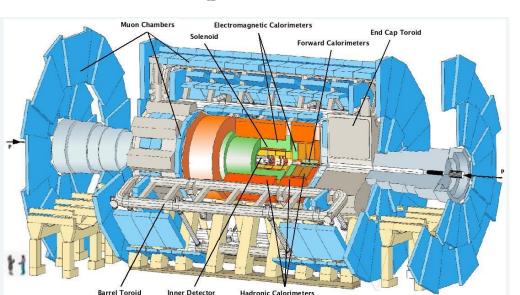
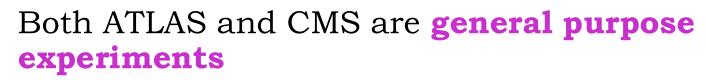

Status and perspectives on Spectroscopy in ATLAS and CMS


Valentina Mariani on behalf of the ATLAS and CMS collaboration

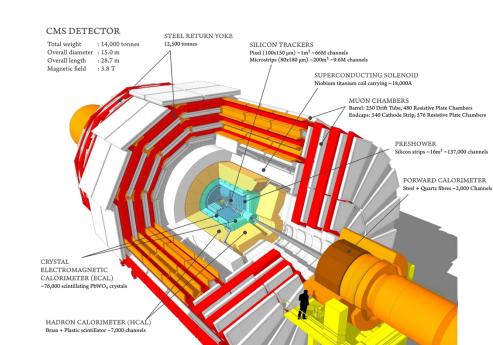

The esperiments




Both ATLAS and CMS are **general purpose experiments**

- ⇒ designed to do physics in a very wide spectrum:
- Standard Model, Higgs sector, BSM searches ...and flavor physics!

The esperiments



- ⇒ designed to do physics in a very wide spectrum:
- Standard Model, Higgs sector, BSM searches ...and flavor physics!

Like the bumblebee, they don't know they are not designed for flavour physics and they do (good!) flavor physics anyway!

- Deepens our understanding of non-perturbative QCD
- Provides crucial theoretical and experimental inputs for precision tests of the Standard Model
- Enables discovery of exotic states and new forms of hadronic matter
- Strengthens the connection between theoretical prediction and experimental observations in flavor physics

Flashing flavoured results

Observation of structures in the $J/\psi + \psi(2S)$ mass spectrum with the ATLAS detector

The ATLAS Collaboration

First exclusive reconstruction of the B^{*+} , B^{*0} , and B_s^{*0} mesons and precise measurement of their masses

The CMS Collaboration*

Observation of X(6900) and evidence for X(7100) in the $J/\psi\psi(2S) \to \mu^+\mu^-\mu^+\mu^-$ mass spectrum in 314 fb⁻¹ of pp collisions at CMS

The CMS Collaboration

Observation of a family of all-charm tetraquark candidates at the LHC

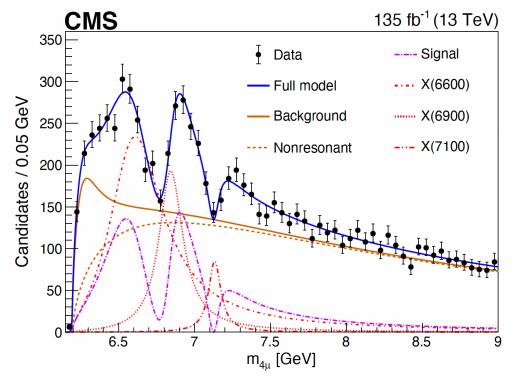
The CMS Collaboration

Determination of the spin and parity of all-charm tetraquarks

The CMS Collaboration*

That's a limited, personal and biased selection!

All-charm tetraquark family

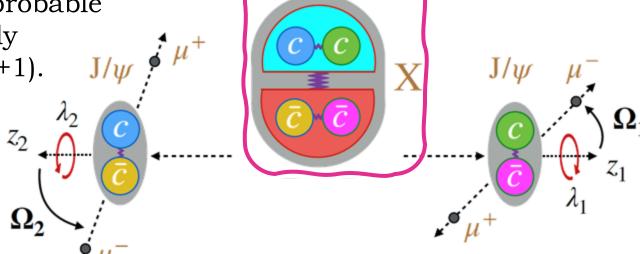

Exotic structure like tetra and pentaquarks have been largely observed by

the LHC collaborations.

CMS observed three similar states like $c\bar{c}c\bar{c}$ in $J/\psi J/\psi$ final state (with 4 μ): X(6600), X(6900), X(7100) [ref]

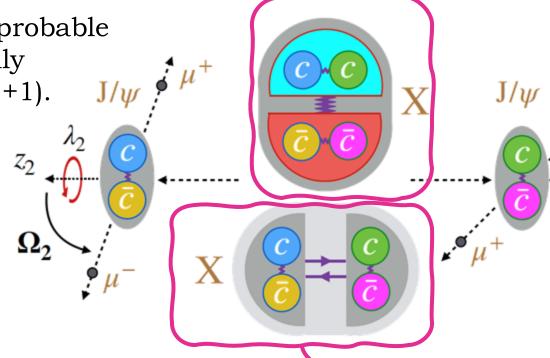
Ambigous nature of these states:

- tightly-bound tetraquark
- \triangleright loosely-bound molecule of two $c\bar{c}$ mesons



If it's a **tetraquark** parity is given by $P = (-1)^L$. The lowest and most probable energy state is spatially symmetric (L = 0, P = +1).

- If symmetric configuration=> J = 0 or 2.
- If antisymmetric => J = 0, 1, or 2.



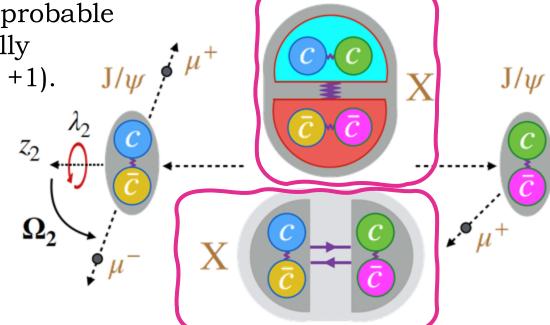
If it's a **tetraquark** parity is given by $P = (-1)^L$. The lowest and most probable energy state is spatially symmetric (L = 0, P = +1).

- If symmetric configuration => J = 0 or 2.
- If antisymmetric => J = 0, 1, or 2.

If it's a **molecule** the two mesons are not restricted to form spin -1 states $\mu^{-} \Rightarrow \text{values of J} = 0 \text{ or } 1$

are more likely. Ω_1

As the deutron, the two $c\bar{c}$ states exchange a meson containing charm quarks



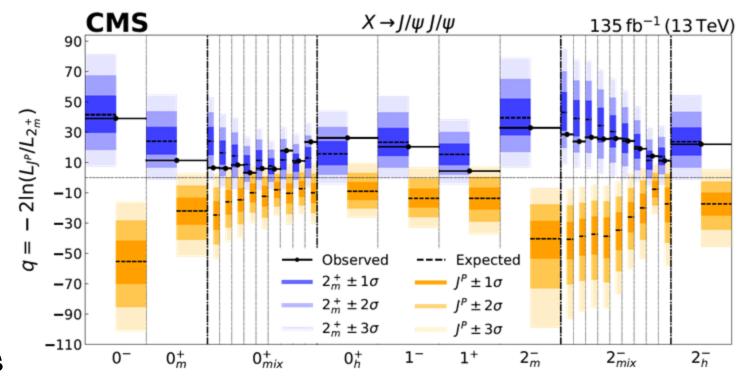
- If it's a **tetraquark** parity is given by $P = (-1)^L$. The lowest and most probable energy state is spatially
- symmetric (L = 0, P = +1). • If symmetric z_0
 - configuration => J = 0 or 2.
- If antisymmetric => J = 0, 1, or 2.

 \Rightarrow values of J = 0 or 1 are more likely.

As the deutron, the two $c\bar{c}$ states exchange a meson containing charm quarks

The angular distributions in the decay of X can be expressed as a function of three angular observables θ_1 , θ_2 , and $\Phi = (\Phi 1 + \Phi 2)$

 \Rightarrow Compare the angular distributions in the decay of observed X particles with the predicted distributions for various J^{PC} models and select the one that best matches data.



 \Rightarrow Compare the angular distributions in the decay of observed X particles with the predicted distributions for various J^{PC} models and select the one

that best matches data.

J^{PC}=2⁺⁺ scenario is favoured!

- Less likely for molecule since $q\bar{q}$ pairs are not required to be spin-1 mesons
- A **tightly-bound** $c\bar{c}c\bar{c}$ **tetraquark** with a diquark-antidiquark structure requires both diquarks to be in spin-1 => naturally favours J = 2

Family of all-charm tetraquarks

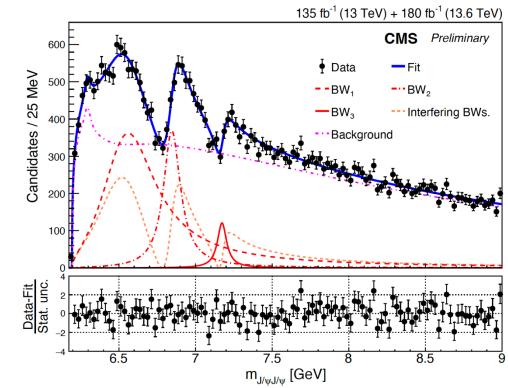
Critical issues on the characterization on the three tetracharm states remain.

- The X(7100) structure needs to be firmly established (below 5σ)
- All experiments preferred fit models utilizing quantum interference, but the models were incongruent and the interference was not statistically conclusive.

• All experiments reported an unexplained excess of J/ψ pairs just above the threshold.

Standard Mesons	Exotic	Threshold Effects			
	Molecule	Diquark	Compact (Amorphous)	Hybrid	e.g. Triangle Singularity
cc	cc	cc	$\frac{\mathbf{c}}{\mathbf{c}}$	CCC	ψ(3770)

Family of all-charm tetraquarks

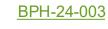

The tetraquark family investigation has been enriched with Run3 data:

■ 135 fb⁻¹ from Run2 @13TeV + 180 fb⁻¹ from Run3 (2022-24) @13.6TeV

 \Rightarrow The Run3 yield exceeds that of Run2 by over 250%, despite $\frac{L_{Run3}}{L_{Run2}} \sim \frac{4}{3}$

by virtue of an enhanced trigger efficiency

		BW_1	BW_2	BW_3
Interference	m (MeV)	$6593 {}^{+15}_{-14} \pm 25$	$6847 {}^{+10}_{-10} \pm 15$	$7173^{~+9}_{~-10}\pm13$
(Run 2+Run 3)	Γ (MeV)	$446~^{+66}_{-54}\pm87$	$135~^{+16}_{-14}\pm14$	$73~^{+18}_{-15}\pm 10$
Interference	m (MeV)	$6638 ^{+43+16}_{-38-31}$	$6847 {}^{+44+48}_{-28-20}$	$7134 \ \substack{+48 + 41 \\ -25 - 15}$
(Run 2 [12])	Γ (MeV)	$440\ ^{+230+110}_{-200-240}$	$191 {}^{+66+25}_{-49-17}$	$97 {}^{+40}_{-29} {}^{+29}_{-26}$


Family of all-charm tetraquarks

The local significances of the structures in the Run 2+3 interference fit are:

- 15.2σ for X(6600)
- 16.7 σ for X(6900)
- 7.7σ for X(7100)
- \Rightarrow The **X(7100)** structure now exceeds 5σ in a single experiment for the first time, firmly establishing a collection of three structures

Similarly, interference among the 3 structures is now statistically compelling. Interference implies that the structures have common J^{PC} quantum numbers

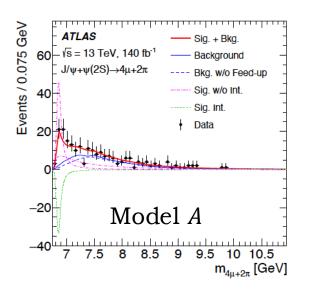
⇒suggesting a **family of states**

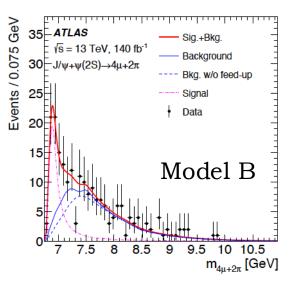
J/Psi+Psi(2S) resonance search

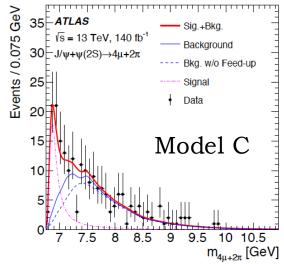
Searching similar structure in the $J/\psi + \psi(2S)$ production to gain more insight into these exotic states in two different final states:

- J/ ψ -> 2 μ and ψ (2S)-> 2 μ (4 μ)
- J/ψ -> 2μ and $\psi(2S)$ -> $J/\psi\pi^-\pi^+$ -> $2\mu\pi^-\pi^+$ ($4\mu2\pi$)
 - BR ~ twice than the 4μ final state

Run2 analysis with data @13TeV - 140 fb⁻¹







Three different fit models are carried out.

- Model A (two interfering resonances)
- Model *B* (one interfering with SPS and the other standalone)
- Model *C* assumes a standalone resonance in the $J/\psi+\psi(2S)$ channels.

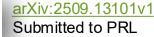
assume that X(6900) decays into both the di- J/ψ and $J/\psi+\psi(2S)$

Complete set of plots in backup



		model A	model B	model C
- Ditted to a company of the	m / GeV	$6.860 \pm 0.023 \pm 0.010$	$6.902 \pm 0.008 \pm 0.010$	$6.884 \pm 0.017^{+0.058}_{-0.005}$
 Fitted masses and widths 	Γ / GeV	$0.082 \pm 0.032 \pm 0.015$	$0.183 \pm 0.025 \pm 0.007$	$0.178 \pm 0.054^{+0.176}_{-0.024}$
and the ratio of partial widths R	R	$1.08 \pm 0.20^{+0.40}_{-0.09}$	$0.93 \pm 0.17 \pm 0.11$	_

The three fitting models seems to be consistent with each other



Fitted	masses	s ar	nd widt	ths	
and th	ne ratio	of ·	partial	widths	R

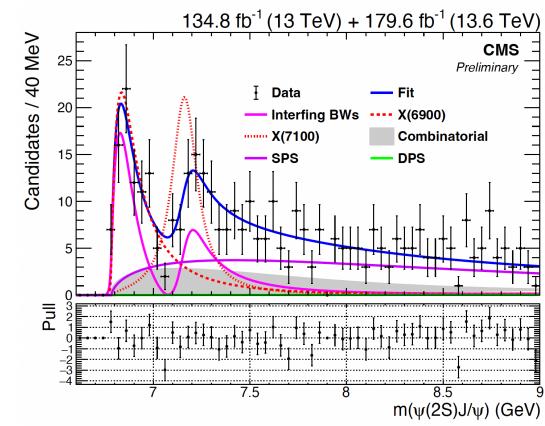
	$\operatorname{model} A$	model B	model C			
m / GeV	$6.860 \pm 0.023 \pm 0.010$	$6.902 \pm 0.008 \pm 0.010$	$6.884 \pm 0.017^{+0.058}_{-0.005}$			
Γ / GeV	$0.082 \pm 0.032 \pm 0.015$	$0.183 \pm 0.025 \pm 0.007$	$0.178 \pm 0.054^{+0.176}_{-0.024}$			
R	$1.08 \pm 0.20^{+0.40}_{-0.09}$	$0.93 \pm 0.17 \pm 0.11$	_			

- The three fitting models seems to be consistent with each other
- The signal significance is 8.9σ for the resonance near 6.9 GeV in the $J/\psi+\psi(2S)$ channels.
- The existence of X(7200) in the $J/\psi+\psi(2S)$ channels is tested in each model. The ratio of signal yields for X(7200) to X(6900) is found to be 0.12 ± 0.11 , with an upper limit of 0.41 at 95% CL.
- \Rightarrow These results **confirm the presence of structures in the** $J/\psi+\psi(2S)$ channels, favoring a single-resonance hypothesis near 6.9 GeV, while the existence of a **potential resonance near 7.2 GeV is not supported** by the current data.

BPH-22-004

Search in the J/ ψ -> 2 μ and ψ (2S)-> 2 μ (4 μ) final state with Run2+Run3 data (314 fb⁻¹) carried out by CMS as well.

The strategy follows what already done for $J/\psi J/\psi$



Search in the J/ ψ -> 2 μ and ψ (2S)-> 2 μ (4 μ) final state with Run2+Run3 data (314 fb⁻¹) carried out by CMS as well.

The strategy follows what already done for $J/\psi J/\psi$

 \Rightarrow X(6900) and X(7100) clearly visible with 7.9 σ and 4.0 σ respectively

Fit	Sample	Interf.		X(6600)	X(6900)	X(7100)
f_{i23}	$J/\psi\psi(2S)$	BW ₂ , BW ₃	<i>m</i> :	_	$6876^{+46+110}_{-29-110}$	7169^{+26+74}_{-52-70}
			Γ :	_	$253^{+290+120}_{-100-120}$	$154^{+110+140}_{-82-160}$
f_{JJ} [1]	$J/\psi J/\psi$	BW_1 , BW_2 , BW_3	m:	6638^{+43+16}_{-38-31}	6847^{+44+48}_{-28-20}	7134_{-25-15}^{+48+41}
			Γ:	$440^{+230+110}_{-200-240}$	191^{+66+25}_{-49-17}	97^{+40+29}_{-29-26}

Reconstruction of the B^{*+} , B^{*0} , and B_s^{*0} mesons

The ground states of beauty mesons B^+ , B^0 , and B_s^0 are well known while the corresponding excited states B^{*+} , B^{*0} , and B_s^{*0} are much less explored.

 \Rightarrow The main challenge stems from the low-energy (40–50MeV) photons emitted in B* \rightarrow By decays

The ground states of beauty mesons B^+ , B^0 , and B_s^0 are well known while the corresponding excited states B^{*+} , B^{*0} , and B_s^{*0} are much less explored.

 \Rightarrow The main challenge stems from the low-energy (40–50MeV) photons emitted in B* \rightarrow By decays

The analysis uses Run2 data @13TeV, with 140 fb⁻¹.

- Low-energy γ are reconstructed through the conversions into e⁺e⁻ pairs
- Ground-state B mesons are reconstructed using the decays: $B^+ \to \psi K^+$, $B^0 \to \psi K^{*0}$, and $B_s^0 \to \psi \phi$
 - ψ stands for the J/ ψ and ψ (2S) mesons in $\mu^+\mu^-$ decay
 - K^{*0} and φ refer to the $K^*(892)^0$ and $\varphi(1020)$ mesons, reconstructed through their decays to $K^+\pi^-$ and K^+K^-

Photon conversion candidates are formed from two OS tracks with:

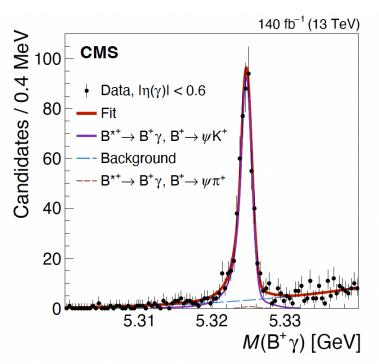
- small angular separation and small distance of closest approach
- conversion vertex at least 1.5 cm away from the beam axis
- and a χ² probability above 0.05% for a kinematic fit that constrains the two tracks to originate from a common vertex with 0 invariant mass
- \Rightarrow Only photon candidates with $p_T > 300 \text{MeV}$ and $|\eta| < 1.5$ are kept

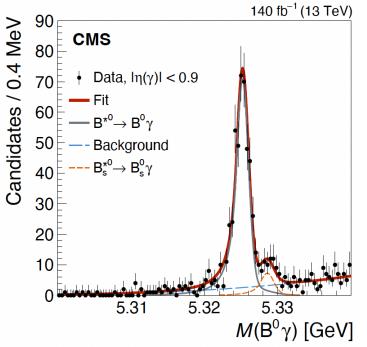
Photon conversion candidates are formed from two OS tracks with:

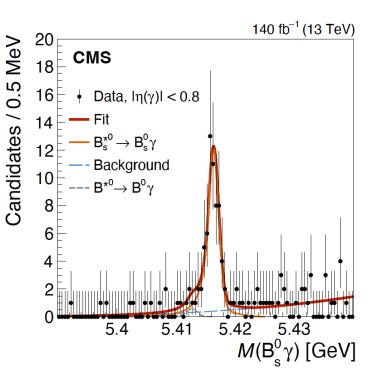
- small angular separation and small distance of closest approach
- conversion vertex at least 1.5 cm away from the beam axis
- and a χ² probability above 0.05% for a kinematic fit that constrains the two tracks to originate from a common vertex with 0 invariant mass
- \Rightarrow Only photon candidates with $p_T > 300 \text{MeV}$ and $|\eta| < 1.5$ are kept

The measured momenta of the e^{\pm} tracks tend to be lower than the true momenta due to loosing energy while traversing the tracker

- \Rightarrow photon energy scale (PES) correction is performed using $\pi^0 \rightarrow \gamma \gamma$ reconstructed from two converted γ in several ranges of p_T and $|\eta|$.
- ⇒PES is 1.002–1.04 in the kinematic range relevant for this analysis







The By invariant mass is evaluated using $M(B\gamma) = m(B\gamma) - m(B) + M_B^{PDG}$ $M(B\gamma)$ resolution depends strongly on $|\eta(\gamma)|$

 \Rightarrow from 0.7MeV at $|\eta(\gamma)|$ close to zero to about 2MeV at $|\eta(\gamma)|$ around 1.5

The fit returns

$$\Delta m(B^{*+}) \equiv m(B^{*+}) - m(B^{+})$$
 $45.277 \pm 0.039 \pm 0.027 \text{ MeV}$
 $\Delta m(B^{*0}) \equiv m(B^{*0}) - m(B^{0})$ $45.471 \pm 0.056 \pm 0.028 \text{ MeV}$
 $\Delta m(B_{s}^{*0}) \equiv m(B_{s}^{*0}) - m(B_{s}^{0})$ $49.407 \pm 0.132 \pm 0.041 \text{ MeV}$

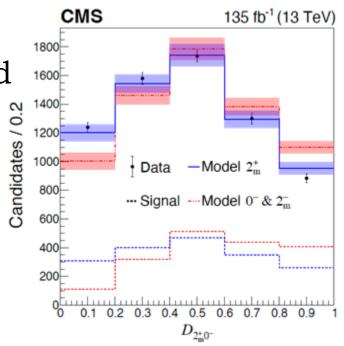
⇒Values are consistent with the world average value and one order of magnitude more precise!

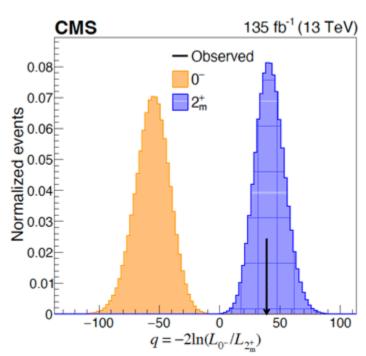
Spectroscopy is an active field for both ATLAS and CMS collaborations

- A large attention is devoted to the **tetraquark candidates**, that may brings us closer to uncovering tetraquarks true nature beyond the traditional quark model
- Transitions that involve **low energy photons** are tricky and challenging to measure, but experimental performances demonstrated to be good enough to reach results

Run 3 data will be crucial (for both statistics and new trigger strategy!) to continue the investigation toward – hopefully – new states!

backup

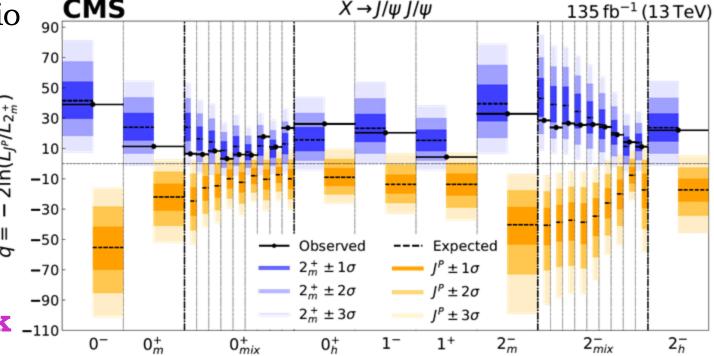



arXiv:2506.07944v1
Submitted to Nature

The aim: identify the model that best matches the experimental data.

 \Rightarrow compare the angular distributions in the decay of observed X particles in the experiment with the predicted distributions for various J^{PC} models and select the model that is consistent with the data.

 \Rightarrow Single observable D_{ij} defined: constructed from the likelihood ratio between two models labelled i and j.



arXiv:2506.07944v1
Submitted to Nature

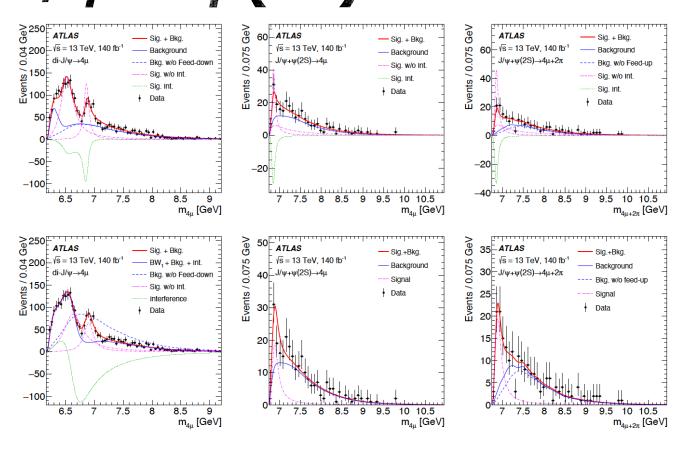
The results favour J^{PC}=2⁺⁺ scenario

• In a molecular scenario, the $q\bar{q}$ pairs are not required to be spin-1 mesons, making a J = 2 configuration less likely

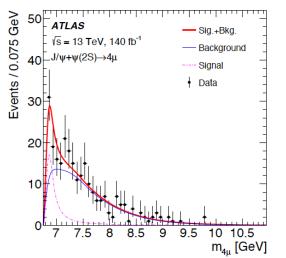
• A **tightly-bound** *cccc* **tetraquark** ₋₁₁₀ with a diquark-antidiquark structure requires both diquarks to be in spin-1 states, which naturally favours a J = 2 configuration

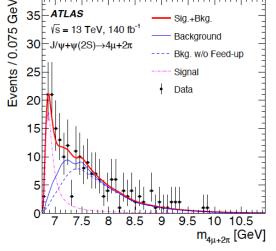
arXiv:2509.13101v1
Submitted to PRL

Different backgrounds are considered:


- "others", with at most one real charmonium modeled from data requiring at least one charmonium candidate to contain a track that fails μ identification
- non-prompt, estimated in MC and corrected and normalised in CR with reverse L_{xv}^{charm} request
- DPS and SPS, estimated in MC and corrected in several kinematic variables in dedicated CR
- Several feed-down backgrounds are limited with a BDT -> reduced by ~65% while keeping 92% of the signal

4μ channel		$4\mu + 2\pi$ channel		
SR CR		SR	CR	
Di-muon or tri-muon triggers, oppositely charged muons from each charmonium, Loose muons, $p_{T1,2,3,4} > 4, 4, 3, 3$ GeV and $ \eta_{1,2,3,4} < 2.5$ for the four muons, $m_{J/\psi} \in [2.94, 3.25]$ GeV, $m_{\psi(2S)} \in [3.56, 3.80]$ GeV				
Two <i>loose</i> OS ID tracks with $p_T > 0.5$ Ge for pions, BDT requirement				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\Delta R(J/\psi, \psi(2S)) < 0.25$	$\Delta R(J/\psi, \psi(2S)) \ge 0.25$	$\Delta R(J/\psi, \psi(2S)) < 0.25$	$\Delta R(J/\psi, \psi(2S)) \ge 0.25$	





Fits to the $J/\psi+\psi(2S)$ mass spectra with model C in the SRs of the 4μ (left) and $4\mu+2\pi$ (right) channels. The purple dash-dotted lines represent the signal resonances.

Fits to the di- J/ψ and $J/\psi + \psi(2S)$ mass spectra in the SRs for model A (top) and B (bottom). For each model, the di- J/ψ spectrum (left) and the $J/\psi + \psi(2S)$ spectra in the 4μ (middle) and $4\mu + 2\pi$ (right) channels are shown. The purple dash-dotted lines represent the components of individual resonances, and the green short dashed ones represent the interferences. No interference is present in the $J/\psi + \psi(2S)$ channels with model B since X(6900) is standalone.

