

WIFAI 2025 – Fourth Italian Workshop on Physics at High Intensity

Status and perspectives of heavy and light spectroscopy at BESIII

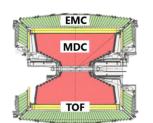
Isabella Garzia, University of Ferrara and INFN
On behalf of the BESIII Collaboration

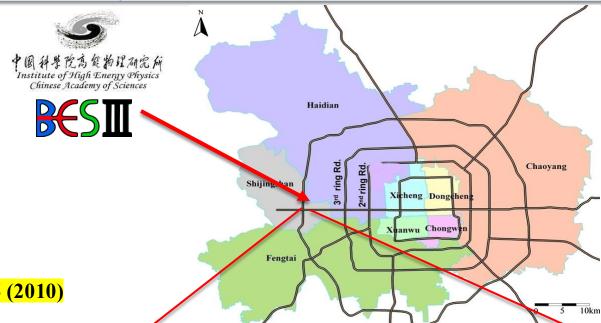
WIFAI 2025, Centro Polifunzionale per gli Studenti - BARI 11 – 14 Novembre, 2025

__<

Outline

The BESIII experiment


Selection of recent results on light hadron spectroscopy:


- The $\eta_1(1855)$ exotic isoscalar state
- X(2370): glueball-like particle in $J/\psi \rightarrow \gamma K^0_S K^0_S \eta$
- X(1880): a new state observed in $J/\psi \rightarrow \gamma(3\pi^+\pi^-)$
- PWA of $J/\psi \rightarrow \gamma\gamma\phi$
- Study of $f_1(1420)$ and $\eta(1405)$ in $J/\psi \rightarrow \gamma \pi^0 \pi^0 \pi^0$
- PWA of $\psi(3686) \rightarrow \gamma K^0_S K^0_S$
- Axial-vector strangeonium
 - Study of $\psi(3686) \rightarrow \phi \pi^0 \eta$
 - Study of $\psi(3686) \rightarrow \phi \eta \eta$
- Charmonium spectroscopy
 - $Zc\pm(3900)$: PWA of $e^+e^-\rightarrow \pi^+\pi^-J/\psi$
 - Search for 1^{-+} states in $e^+e^- \rightarrow \gamma D_s^+ D_{s1}^- (2536)$
 - Cross section of $e^+e^- \rightarrow \pi^+\pi^-h_c$

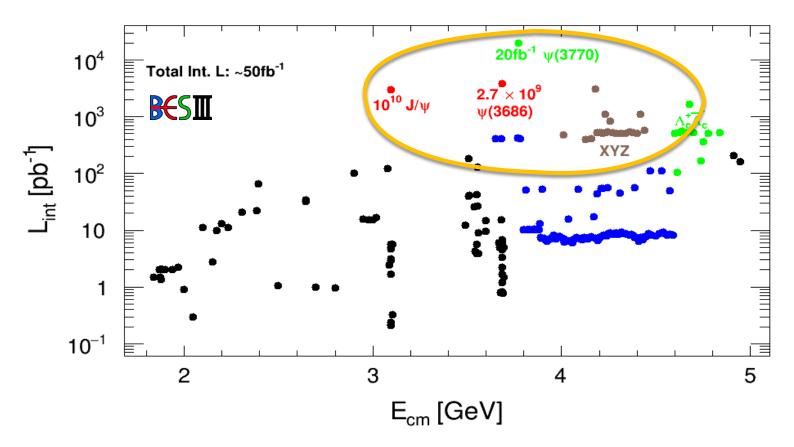
Summary and Conclusions

The BESIII experiment @ BEPCII

Nucl. Instr. Meth. A614, 345 (2010)

2004: started Beijing Electron Positron Collider II/BESIII construction

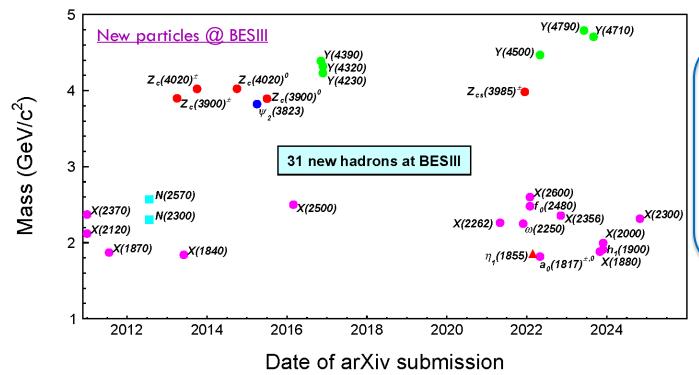
- ✓ Double rings
- ✓ Beam energy: 1 2.45 GeV
- ✓ Peak luminosity: 1.05×10^{33} cm⁻²s⁻¹ @ ψ (3770), achieved on January 7th, 2023 2009 – today: BESIII physics runs



BESIII dataset and physics program

Optimised for flavour physics in the τ -charm region

http://english.ihep.cas.cn/bes/ui/ds/202109/t20210923 284001.html



Hadron spectroscopy: establish the spectrum and study the exotic hadrons properties

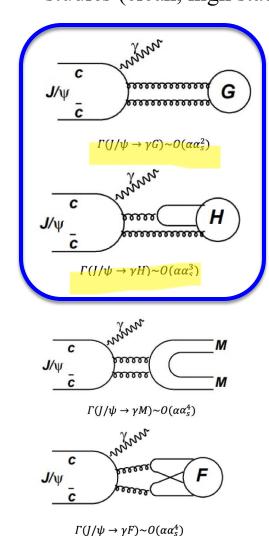
New discoveries at BESIII

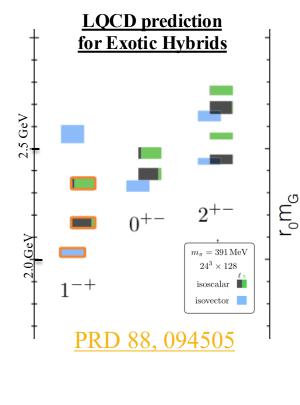
"New hadrons discovered at BESIII," Z. Q. Liu, R. E. Mitchell, Sci. Bull. 68 (2023) 2148-2150

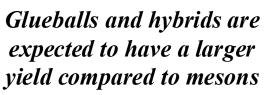
- directly produced in e⁺e⁻
- exotic flavour combination decaying into heavy mesons
- consistent with conventional cc meson
- new light baryon state
- ▲ exotic J^{PC}
- light states decaying into mesons

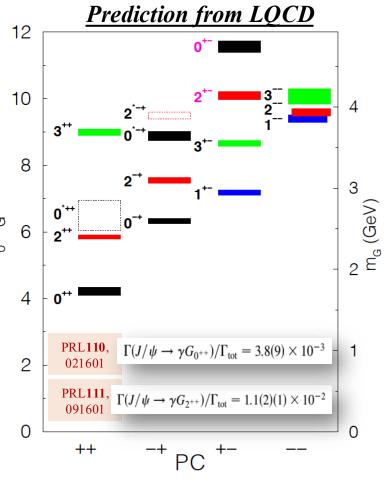
Manifestly exotic

- Quark contents more than $q\bar{q}$ or qqq
- Quantum number J^{PC} not reachable for ordinary mesons or baryons

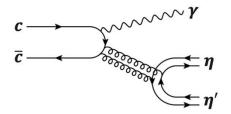

'Cryptoexotic'


- overpopulation of states
- mass/width not fitting in spectra
- production and/or decay patterns incompatible with standard mesons/baryons




Hunting for glueballs and new form of hadrons

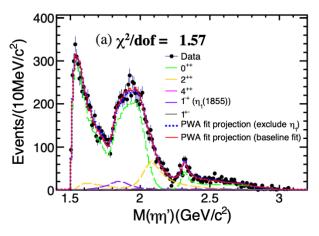
Charmonium radiative decays is the ideal laboratory for light glueballs and hybrids hadron studies (clean, high statistics and gluon-rich process)

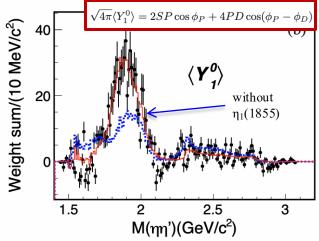

https://doi.org/10.1142/S0218 301309012124

Exotic Isoscalar State $\eta_1(1855)$ in $J/\psi \rightarrow \gamma \eta \eta$

Isoscalar 1⁻⁺ exotic hybrids to establish the hybrid nonet

✓ Can be produced in J/ψ radiative decays and decay to ηη' in P-wave (PRD 83,014021, PRD 83, 014006, Eur.Phys.J.Plus 135, 945)




@BESIII: PWA (GPUPWA) of $J/\psi \rightarrow \gamma \eta \eta'$ using 10 Billion of J/ψ data

 $\triangleright \eta \rightarrow \gamma \gamma$ and $\eta' \rightarrow \gamma \pi^+ \pi^- / \eta \pi^+ \pi^-$

PRL **129**, 192002 (2022) PRD **106**,072012 (2022) PRD **107**,079901 (2023)

- > Isoscalar 1⁻⁺ state, $\eta_1(1855)$, observed (>19 σ)
- Mass is consistent with LQCD calculation for the 1^{-+} hybrid $(1.7 2.1 \text{ GeV}/c^2)$

$$M = (1855 \pm 9^{+6}_{-1}) \,\text{MeV}/c^2; \quad \Gamma = (188 \pm 18^{+3}_{-8}) \,\text{MeV}$$

 $\mathcal{B}(J/\psi \to \gamma \eta_1(1855) \to \gamma \eta \eta') = (2.70 \pm 0.41^{+0.16}_{-0.35}) \times 10^{-6}$

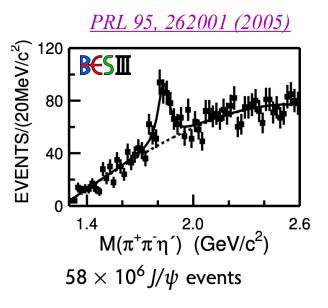
Narrow structure in $<Y^0_1>: \eta_1(1855)$ P-wave component is needed

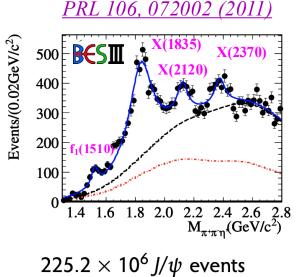
Discussion about $f_0(1500)$ and $f_0(1710)$

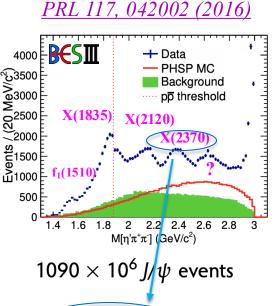
The dominant contributions in the baseline PWA are from scalar resonances:

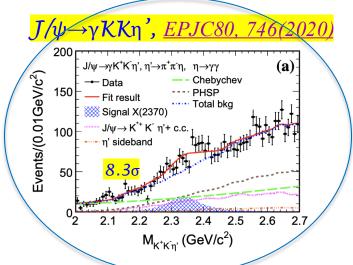
PRL **129**, 192002 (2022) PRD **106**,072012 (2022) *PRD **107**,079901 (2023)

Decay mode	Resonance	$M ({\rm MeV}/c^2)$	Γ (MeV)	$M_{ m PDG}~({ m MeV}/c^2)$	Γ_{PDG} (MeV)	B.F. $(\times 10^{-5})$	Sig.
	$f_0(1500)$	1506	112	1506	112	$1.81 \pm 0.11^{+0.19}_{-0.13}$	$\gg 30\sigma$
	$f_0(1810)$	1795	95	1795	95	$0.11\pm0.01^{+0.04}_{-0.03}$	11.1σ
	$f_0(2020)$	$2010\pm6_{-4}^{+6}$	$203{\pm}9^{+13}_{-11}$	1992	442	$2.28{\pm}0.12^{+0.29}_{-0.20}$	24.6σ
$J/\psi \to \gamma X \to \gamma \eta \eta'$		$2312\pm7^{+7}_{-3}$		2314	144	$0.10{\pm}0.02^{+0.01}_{-0.02}$	13.2σ
	$\eta_1(1855)$	$1855\pm 9_{-1}^{+6}$	$188{\pm}18^{+3}_{-8}$	-	-	$0.27{\pm}0.04^{+0.02}_{-0.04}$	21.4σ
	$f_2(1565)$	1542	122	1542	122	$0.32{\pm}0.05^{+0.12}_{-0.02}$	8.7σ
	$f_2(2010)$	$2062{\pm}6^{+10}_{-7}$	$165{\pm}17^{+10}_{-5}$	2011	202	$0.71{\pm}0.06^{+0.10}_{-0.06}$	13.4σ
	$f_4(2050)$	2018	237	2018	237	$0.06{\pm}0.01^{+0.03}_{-0.01}$	4.6σ
	0 ⁺⁺ PHSP	-	-	-	-	$1.44{\pm}0.15^{+0.10}_{-0.20}$	15.7σ
$\overline{J/\psi \to \eta' X \to \gamma \eta \eta'}$	$h_1(1415)$	1416	90	1416	90	$0.08 \pm 0.01^{+0.01}_{-0.02}$	10.2σ
	$h_1(1595)$	1584	384	1584	384	$0.16{\pm}0.02^{+0.03}_{-0.01}$	9.9σ


$$\frac{\mathcal{B}(f_0(1500) \to \eta \eta')}{\mathcal{B}(f_0(1500) \to \pi \pi)} = \left(1.66^{+0.42}_{-0.40} \times 10^{-1}\right)^*$$
 Consistent with PDG


$$\frac{\mathcal{B}(f_0(1710) \to \eta \eta')}{\mathcal{B}(f_0(1710) \to \pi \pi)} < 2.87 \times 10^{-3} *$$
@90% C.L.


This suppressed decay rate supports the hypothesis that the $f_0(1710)$ has a large overlap with the ground state scalar glueball (PRD 92,121902)

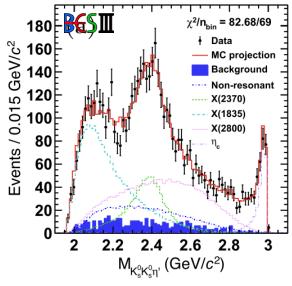

Glueball candidates in radiative \(\psi \) decays

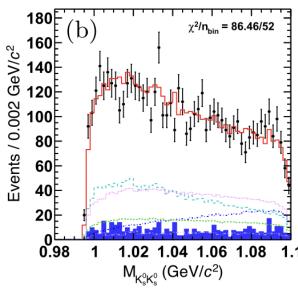
- > Structure just at or below $p\bar{p}$ threshold: X(1835)
 - ➤ Non-trivial line shape: try to fit with Flatté or sum of interfering BWs
- ➤ Additional structures: X(2120), X(2370), ?

X(2370): Glueball-like particle in $J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta$

PWA using 10 Billion of J/ ψ data @ BESIII

- Main backgrounds $(J/\psi \rightarrow \pi^0 K_S^0 K_S^0 \eta)$ and $J/\psi \rightarrow K_S^0 K_S^0 \eta$ are forbidden by exchange symmetry and CP conservation
- $M(K_{S}^{0}K_{S}^{0}) < 1.1 \text{ GeV to select the } f_{0}(980)$

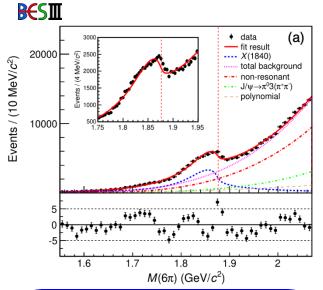

	$\overline{}$				
state	J^{PC}	Decay mode	Mass (MeV/c^2)	Width (MeV/c^2)	Significance
X(2370)	0-+	$f_0(980)\eta'$	2395 ⁺¹¹ ₋₁₁	188+18	14.9σ
X(1835)	0-+	$f_0(980)\eta'$	1844	192	22.0σ
X(2800)	0-+	$f_0(980)\eta'$	2799^{+52}_{-48}	660^{+180}_{-116}	16.4σ
η_c	0-+	$f_0(980)\eta'$	2983.9	32.0	> 20.0 <i>\sigma</i>
PHSP	0-+	$\eta'(K_S^0K_S^0)_{S-wave}$			9.0σ
	\ <u>\</u>	$\eta'(K_S^0K_S^0)_{D-wave}$			16.3σ
	$\overline{}$				

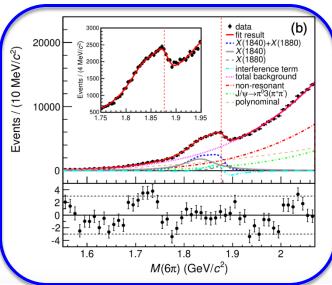

- Spin parity of X(2370) is determined to be 0^{-+} for the first time with significance greater than 10σ
- X(2800): broad structure to describe the effective contributions from possible high mass resonances (X(2600)) and the tail of the η_c line shape

$$M(X(2370)) = 2395 \pm 11^{+26}_{-94} \text{ MeV/c}^2$$

 $\Gamma(X(2370)) = 118^{+18}_{-17}(\text{stat})^{+124}_{-33}(\text{sist}) \text{ MeV}$

Good agreement with LQCD prediction of lightest pseudoscalar glueball


PRL 132, 181901 (2024



X(1880): A New State Observed in $J/\psi \rightarrow \gamma 3(\pi^+\pi^-)$

PRL **132**,151901 (2024)

10 Billion of J/ψ data @ BESIII

(45 times larger than the sample previously analyzed)

- Study the line shape around the $p\bar{p}$ threshold
- Understand the nature of the X(1840) previously observed in the J/ $\psi \rightarrow \gamma 3(\pi^+\pi^-)$ [PRD88,091502]
- An anomalous line shape near the pp mass threshold is clearly observed
- Two models:
 - 1. opening of the $X(1840) \rightarrow p\overline{p}$ decay
 - 2. interference between two resonances

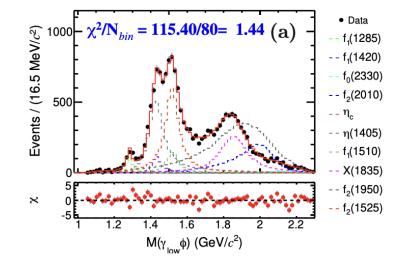
Parameters	Solution I	Soluti	on II	
$M_{X(1840)} \text{ (MeV}/c^2)$	1832.5 ±	3.1 ± 2.5	much	namowa than V(1925)
$\Gamma_{X(1840)}$ (MeV)	80.7 \pm	5.2 ± 7.7	mucn	narrower than X(1835)
$\mathcal{B}_{X(1840)}(\times 10^{-5})$	$1.19 \pm 0.30 \pm 0.15$	2.07 ± 0.5	50 ± 0.36	
$M_{X(1880)} \; (\text{MeV}/c^2)$	$1882.1 \pm$	1.7 ± 0.7		
$\Gamma_{X(1880)}$ (MeV)	$30.7 \pm$	5.5 ± 2.4		
$\mathcal{B}_{X(1880)}(\times 10^{-5})$	$0.29 \pm 0.20 \pm 0.09$	1.19 ± 0.3	31 ± 0.18	

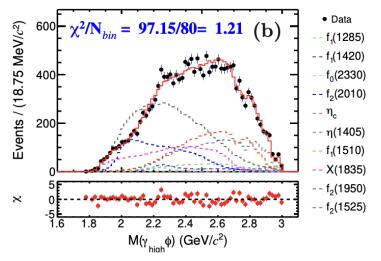
Observed line shape consistent with two overlapping resonant structure: X(1840) and X(1880) (10σ)

 \rightarrow complex resonant structures near the pp threshold

PWA of $J/\psi \rightarrow \gamma \gamma \phi$

PRD 111, 052011(2025)

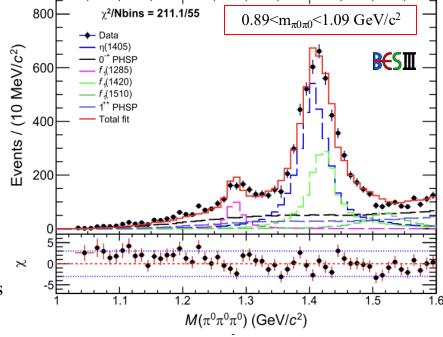

The decays $J/\psi \rightarrow \gamma X$, $X \rightarrow \gamma V$ ($V = \rho, \omega, \phi$) serve as flavor filter


• unravelling quark contents of the intermediate resonances

GPUPWA framework used to disentangle the structures

Resonance	$M~({ m MeV}/c^2)$	Γ (MeV)	$\mathcal{B}(\times 10^{-6})$	Significance
$f_1(1285)$	1281.9	22.7	$0.29 \pm 0.03^{+0.11}_{-0.09}$	17.3σ
$f_1(1420)$	1426.3	54.5	$0.55 \pm 0.07^{+0.18}_{-0.17}$	9.0σ
$\eta(1405)$	$1422.0 \pm 2.1^{+5.9}_{-7.8}$	$86.3 \pm 2.7^{+6.6}_{-17.4}$	$3.57{\pm0.18}^{+0.59}_{-0.61}$	18.9σ
$f_1(1510)$	1518.0	73.0	$0.78\pm0.09^{+0.34}_{-0.30}$	5.3σ
$f_2(1525)$	1517.4	86.0	$2.76\pm0.18^{+0.90}_{-0.61}$	16.4σ
X(1835)	$1849.3 \pm 3.0^{+7.6}_{-10.0}$	$179.6 \pm 8.7^{+22.5}_{-27.9}$	$3.37{\pm}0.19^{+0.78}_{-1.10}$	15.3σ
$f_2(1950)$	1936.0	464.0	$9.96 \pm 0.60^{+3.44}_{-2.13}$	13.1σ
$f_2(2010)$	2011.0	202.0	$4.63\pm0.43^{+1.42}_{-1.46}$	11.3σ
$f_0(2200)$	2187.0	207.0	$0.20 \pm 0.04^{+0.05}_{-0.07}$	6.3σ
η_c	2983.9	32.0	$0.21 \pm 0.03^{+0.05}_{-0.07}$	12.9σ

- $\eta(1405)$ and $f_1(1420)$ are needed to describe the structure with mass around 1.4 GeV
- X(1835) is confirmed to be 0⁻⁺ with a sizable ss component
- $\eta_c \rightarrow \gamma \phi$ observed for the first time
- No significant signals are observed for $\eta(1295)$, $\eta(1475)$, $\eta_1(1855)$ and X(2370)


Study of $f_1(1420)$ and $\eta(1405)J/\psi \rightarrow \gamma \pi^0 \pi^0 \pi^0$

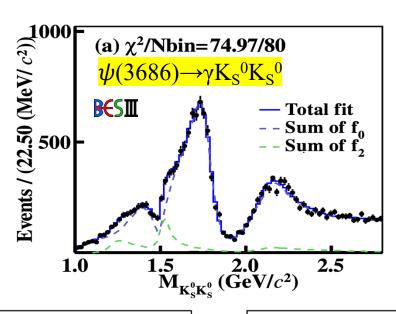
PRD 112,032007 (2025)

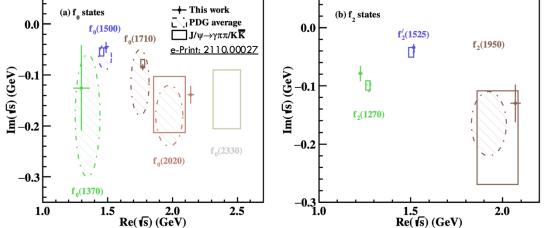
10 Billion of J/ ψ data @ BESIII

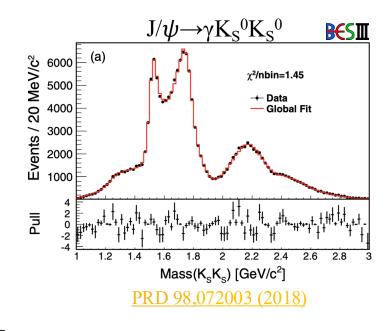
Learn more about the nature of the $\eta(1405)$ and $\eta(1475)$, and investigate the properties of pseudoscalar and axial vectors around 1.3 and 1.4 GeV/c²

- PWA using <u>GPUPWA framework</u>
 - $\pi^0\pi^0$ system: contributions from $f_0(980)$ and 0^{++} PHSP
 - Three axial vectors observed in the $3\pi^0$ for the first time
- Qualitative agreement between Mass-Indipendent in and Mass-dependent PWA
- Difficult to resolve the $\eta(1405)$ and $\eta(1475)$ structures
 - introduce large uncertainties

Resonance	$M (\mathrm{MeV}/c^2)$	Γ (MeV)	${\cal B}$	Significance (σ)
$\eta(1405)$	$1404^{+0.8}_{-1.5}{}^{+2.0}_{-8.1}$	46 ^{+1.8} +4.2	$(4.62 \pm 0.15^{+5.08}_{-0.18}) \times 10^{-6}$	19.1
0^{-+} PHSP	• • •	• • •	$(3.24 \pm 0.08^{+0.41}_{-1.54}) \times 10^{-5}$	24.8
$f_1(1285)$	1281.9	22.7	$(5.64 \pm 0.45^{+0.74}_{-3.05}) \times 10^{-7}$	13.3
$f_1(1285)$ $f_1(1420)$	$1418^{+1.7}_{-2.1}{}^{+2.0}_{-2.2}$	$46^{+3.4}_{-2.3}{}^{+6.1}_{-11.0}$	$(2.23 \pm 0.16^{+0.20}_{-1.20}) \times 10^{-6}$	13.7
$f_1(1510)$	1518	73	$(7.91 \pm 1.20^{+0.74}_{-3.83}) \times 10^{-7}$	8.8
1 ⁺⁺ PHSP	• • •		$(2.60 \pm 0.08^{+1.48}_{-1.66}) \times 10^{-5}$	13.3

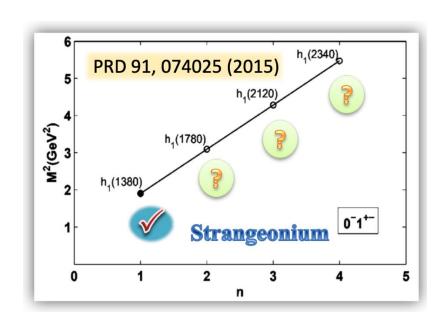



PWA of $\psi(3686) \rightarrow \gamma K_S^0 K_S^0$

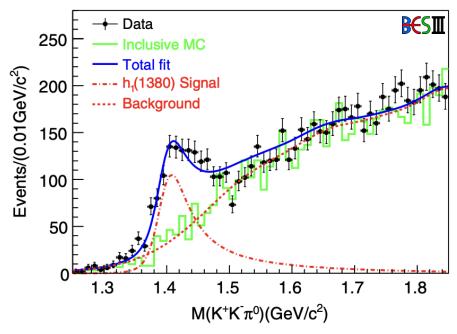

~ $2700 \times 10^6 \psi(3686)$ events

e-Print: 2502.13540 [hep-ex]

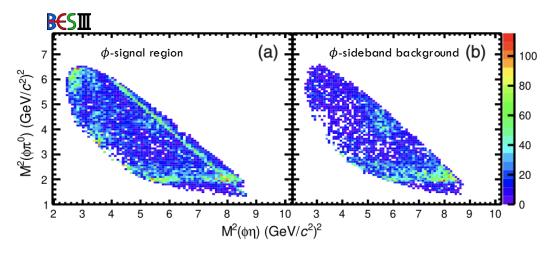
Further investigation on the f_0 and f_2 states



- Data well described with **four** poles for the f_0 -wave and **three** poles for the f_2 -wave
 - \triangleright masses and widths consistent between J/ ψ and ψ (2S) decays
- $f_0(2330)$ not observed this BESIII analysis

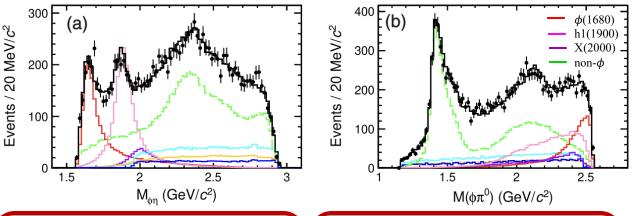

$$\frac{\mathcal{B}(\psi(3686) \to \gamma gg)}{\mathcal{B}(J\psi \to \gamma gg)} = (11.7 \pm 3.6)\%$$

Axial-Vector Strangeonium


Observation of $h_1(1380)$ in the $J/\psi \rightarrow \eta$ KK π decay <u>PRD 98, 072005 (2018)</u>

- ➤ Only the ground axial-vector state $h_1(1380)$ ($h_1(1415)$ PDG) has been confirmed
 - Observed about 35 years ago by fixed target experiments
 - Observed by BESIII in the M(KK π) in the J/ $\psi \rightarrow \eta$ KK π decay using 1.31 × 10⁹ J/ ψ events
- \triangleright Exited states (h₁(2P) and h₁(3P)) have been predicted by theory, but still not confirmed experimentally
- Fully-strange tetraquarks predicted in the same mass region and decay in the same final states

ॉ:


Study of the decay $J/\psi \rightarrow \phi \pi^0 \eta$

PRD 110, 112014 (2024)

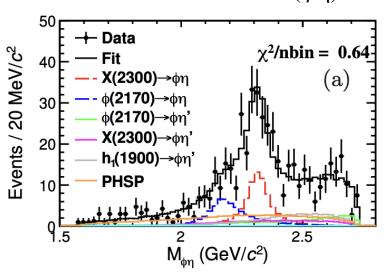
10 Billion of J/ ψ data @ BESIII

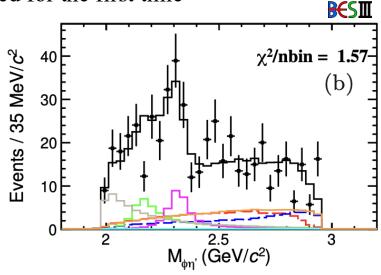
- PWA analysis based on <u>GPUPWA</u> <u>framework</u>
- Improve the understanding of the h₁ family
- Improved precision of the $a_0(980)$ - $f_0(980)$ mixing

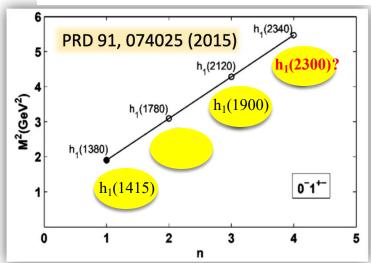
- $ightharpoonup \phi(1680)$ established vector strangeonium meson
- Two new resonances in the $M(\phi \eta)$ observed for the first time

 $M_{h_1(1900)} = 1908 \pm 6^{+8}_{-4} \text{ MeV/c}^2$ $\Gamma_{h_1(1900)} = 175 \pm 13^{+7}_{-16} \text{MeV}$ $\mathbf{h_1(1900)} \ (\mathbf{1^{+-}})$ consistent with $\mathbf{h_1(2P)}$ strangeonium state $M_{X(2000)} = 1992 \pm 12^{+15}_{-6} \text{ MeV/c}^2$ $\Gamma_{X(2000)} = 132 \pm 22^{+17}_{-4} \text{MeV}$ $X(2000) \text{ (1}^{--})$ mass and width disagree with $\phi(3\text{S/2D})$ predictions

The structure around 1.4 GeV/ c^2 in the $\phi\pi^0$ invariant mass spectra is well described by non- ϕ background

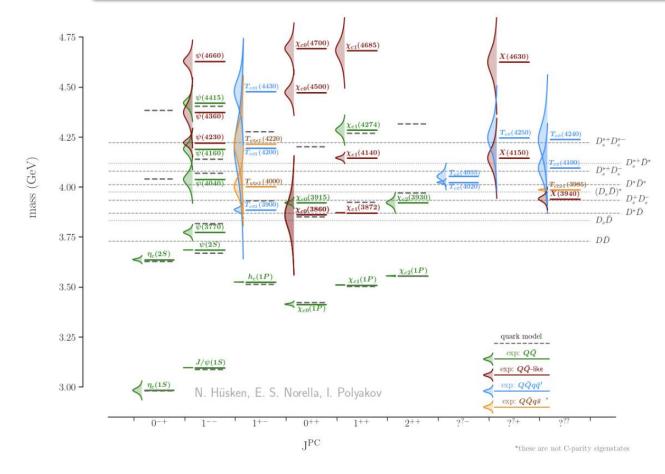



Study of $\psi(3686) \rightarrow \phi \eta \eta'$


Amplitude analysis based on $\sim 2700 \times 10^6 \, \psi(3686)$ events

e-Print: 2410.05736 [hep-ex]

- \triangleright Well established $\phi(2170)$ and $h_1(1900)$ states observed
- \triangleright An axial-vector state in the M($\phi\eta$) observed for the first time


$X(2300) \rightarrow h_1(2300)? (1^{+-})$

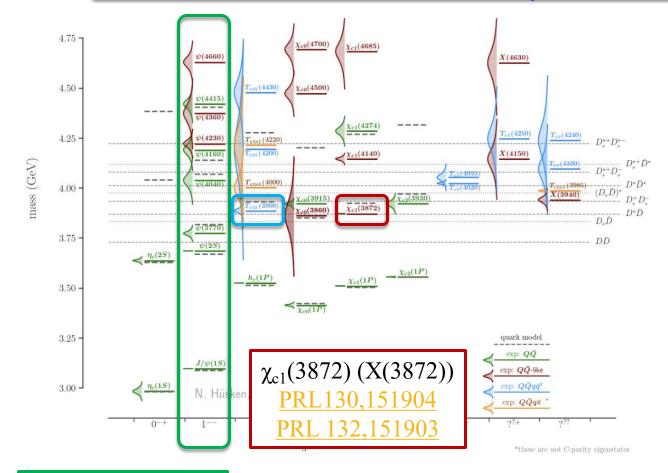
$$M_{X(2300)} = 2316 \pm 9 \pm 30 \text{ MeV/c}^2$$

 $\Gamma_{X(2300)} = 89 \pm 15 \pm 26 \text{MeV}$

- ✓ The mass of the observed resonance deviates systematically from the $h_1(3P)$ predictions
- ✓ More theoretical calculations needed to test the $T_{(ss\bar{s}\bar{s})1^{+-}}$ hypothesis

Charmonium Spectroscopy

 Conventional charmonia fit well with potential model calculations


$$V_{c\bar{c}} = -\frac{4}{3} \cdot \frac{\alpha_s(r)}{r} + k \cdot r$$

+ spin-dependent terms

- good agreement with experiments
- Many other states seen in experiments like BaBar, Belle, BESIII, LHCb, ...

Charmonium Spectroscopy

 Conventional charmonia fit well with potential model calculations

$$V_{c\bar{c}} = -\frac{4}{3} \cdot \frac{\alpha_s(r)}{r} + k \cdot r$$

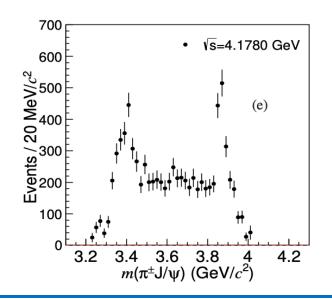
+ spin-dependent terms

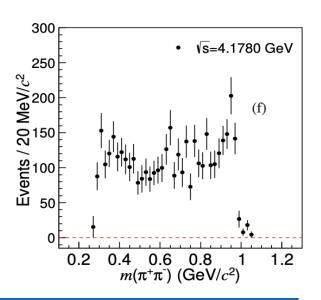
- good agreement with experiments
- Many other states seen in experiments like BaBar, Belle, BESIII, LHCb, ...

vector states (Y); commonly identified as ψ

X: remined states (non Y and non Z)

 $T_{c\bar{c}1}(3900)/Z_{c}(3900)$ Z: isospin $\neq 0$

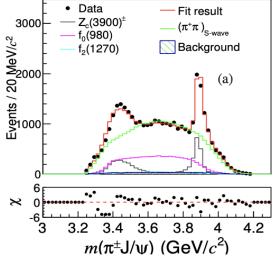


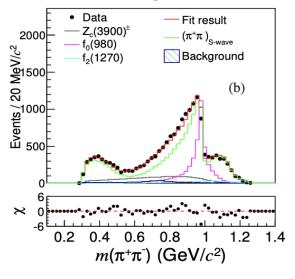

$Z_c^{\pm}(3900)$: PWA of $e^{\pm}e^{-}\rightarrow\pi^{+}\pi^{-}J/\psi$

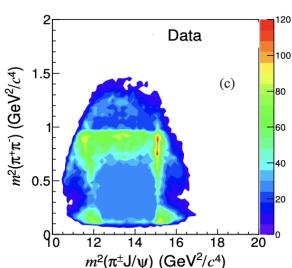
https://arxiv.org/pdf/2505.13222

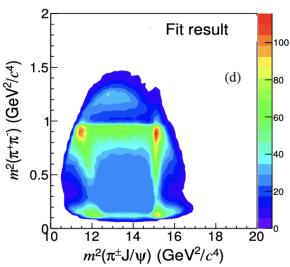
 $Z_c(3900) (T_{cc1}(3900))$

- Observed in the invariant mass distribution of J/ $\psi\pi^{\pm}$ by BESIII and Belle, and confirmed by CLEO-c
- Its internal structure is still unclear
- May be strongly correlated with the Y(4230)
- > PWA of 17 data sample (12 fb⁻¹): $\sqrt{s} = 4.13 4.36 \text{ GeV}$
 - helicity-covariant method
 - > Two models:
 - 1. $f_0(980)$ as Flatté, $\sigma(500)$, $f_0(1370)$, $f_2(1270)$ and $Z_c(3900)$ as Breit-Wigner
 - 2. $\sigma(500)$, $f_0(1370)$, $f_2(1370)$ with K-matrix, $f_2(1270)$ and $Z_c(3900)$ as Breit-Wigner







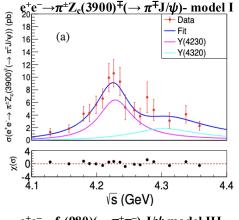

$Z_c^{\pm}(3900)$: PWA of $e^{+}e^{-}\rightarrow\pi^{+}\pi^{-}J/\psi$

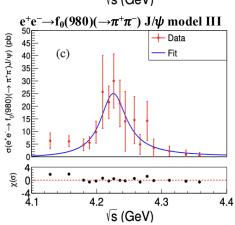
Sum over all center-of-mass energies

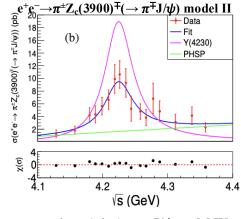
https://arxiv.org/pdf/2505.13222

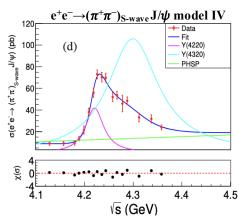
$$\pi + Z_c^-(3900)$$
, $f_j J/\psi$ (f_j
= $f_0(500)$, $f_0(980)$,
 $f_0(1370)$, $f_2(1270)$)

Further studies are ongoing to better describe the region around 3.3 GeV/ c^2 in the $\pi J/\psi$ invariant mass spectrum

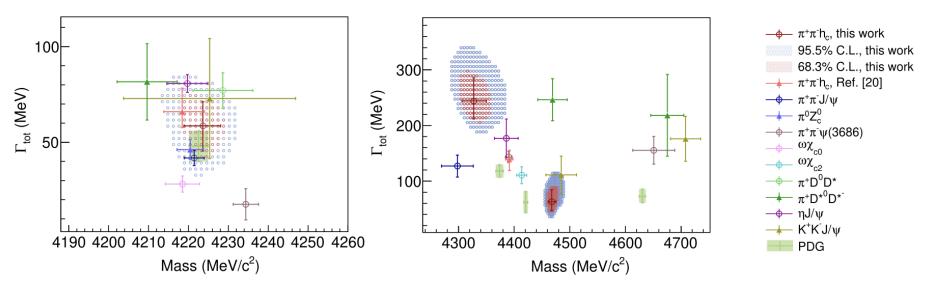

Mass and width of $Z_c(3900)^{\pm}$ from simultaneous fit


	-	
Sample	$M ({ m MeV}/c^2)$	Γ (MeV)
4.1567 - 4.1989	3883.5 ± 1.6	38.6 ± 3.6
4.2091 - 4.2357	3884.0 ± 1.0	37.8 ± 1.6
4.2438 - 4.2776	3884.9 ± 1.8	34.2 ± 3.3
4.2866 - 4.3583	3890.0 ± 2.3	36.1 ± 4.2
Average	$3884.6 \pm 0.7 \pm 3.3$	$37.2 \pm 1.3 \pm 6.6$




$Z_c^{\pm}(3900)$: PWA of $e^{+}e^{-}\rightarrow\pi^{+}\pi^{-}J/\psi$

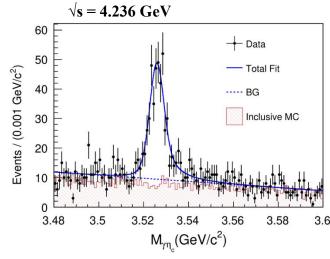
-	Process	Y(42)	Y(4320)	
	1100033	$M (\text{MeV}/c^2)$	Γ (MeV)	Significance
(a)	$\pi^{\pm}Z_c(3900)^{\mp}$ (model I)	$4227.0 \pm 7.0 \pm 6.1$	$64.4 \pm 17.2 \pm 22.3$	2.1σ
(b)	$\pi^{\pm}Z_c(3900)^{\mp}$ (model II)	$4223.5 \pm 6.6 \pm 0.6$	$52.8 \pm 20.2 \pm 0.3$	1.9σ
(c)	$f_0(980)J/\psi$ (model III)	$4224.6 \pm 4.5 \pm 0.6$	$46.4 \pm 8.0 \pm 0.2$	0.3σ
(d)	$(\pi^+\pi^-)_{ ext{S-wave}}J/\psi$ (model IV)	$4220.6 \pm 3.2 \pm 12.7$	$45.4 \pm 5.8 \pm 6.3$	12.2σ
	$Y(4220)^{\mathrm{ave}}$	$4225.8 \pm 4.2 \pm 3.1$	$55.3 \pm 9.5 \pm 11.1$	


https://arxiv.org/pdf/2505.13222

- Model I: coherent sum of two BW functions
- Model II: one BW and a two-body PHSP functions
- Model III: one BW function
- Model IV: coherent sum of two BW functions and two-body PHSP function
- Pominant contribution from $(\pi + \pi -)_{S-wave} J/\psi$
- The cross sections with Y(4220) and Y(4320) decaying into different final states appear to have different distributions
- > $f_0(980)J/\psi$ process well described by one BW (parameters consistent with those of the Y(4220))

Cross section of $e^+e^- \rightarrow \pi^+\pi^- h_c$

PRL 135, 071901(2025)

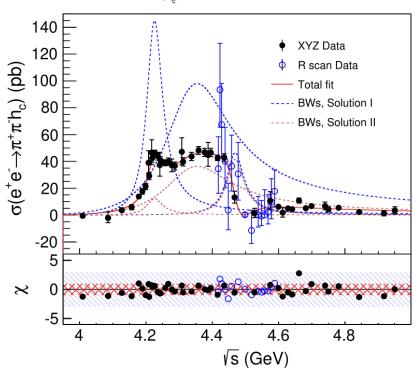

Overpopulation of vector charmonium-like states

- \triangleright The transition between vector charmonium states and h_c are expected to be suppressed due to heavy quark spin symmetry
- ➤ 4S-3D and 5S-4D mixing charmonium states are predicted to lie between 4.2 and 4.5 GeV/c²
 - ightharpoonup e⁺e⁻ $\rightarrow \pi$ ⁺ π ⁻h_c at \sqrt{s} from 4.009 to 4.950 GeV
 - 1. XYZ-I: 19 energy points with large statistics
 - 2. XYZ-II: 25 energy points with lower statistics
 - 3. R-scan: 15 energy points each with 8 pb⁻¹

- →large statistic
- → medium statistics
- → least statistics

Cross section of $e^+e^- \rightarrow \pi^+\pi^- h_c$

PRL 135, 071901(2025)


- $h_c \rightarrow \gamma \eta_c$, with η_c reconstructed in 16 exclusive hadronic final states
- Signal yield is determined by performing an unbinned maximum likelihood fit to $M(\gamma \eta_c)$

➤ Best fit model: coherent sum of 3 BW functions (needed to describe the dip at 4.5 GeV)

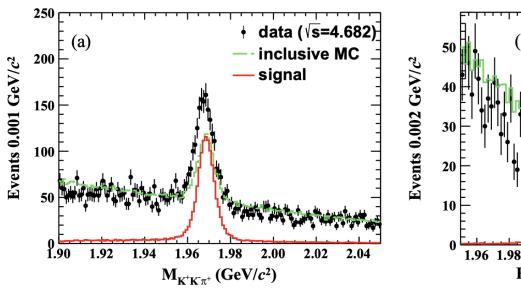
$$|BW_1(\sqrt{s}) + e^{i\phi_2}BW_2(\sqrt{s}) + e^{i\phi_3}BW_3(\sqrt{s})|^2$$

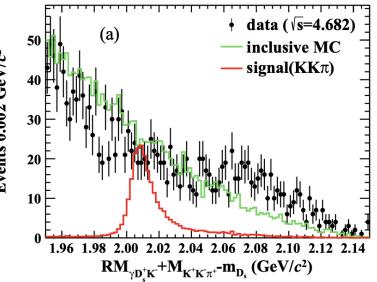
$$\frac{M_k}{\sqrt{s}} \cdot \frac{\sqrt{12\pi(\Gamma_{ee}\mathcal{B}(R_k \to \pi^+\pi^-h_c))_k\Gamma_k}}{s - M_k^2 + iM_k\Gamma_k} \cdot \sqrt{\frac{PS(\sqrt{s})}{PS(M_k)}}$$

- First resonance consistent with those reported for Y(4220) by BESIII
- \triangleright Significance of R3 > 5 σ
- Mass of R2 consistent with the $\psi(4360)$ but the width is 100 MeV broader
- Width of R3 consistent with the $\psi(4500)$ but the mass is 40 MeV higher

Search for 1^{-+} states in $e^+e^- \rightarrow \gamma D^+_{s1}(2536)$

Search for states with exotic quantum number JPC=1⁻⁺

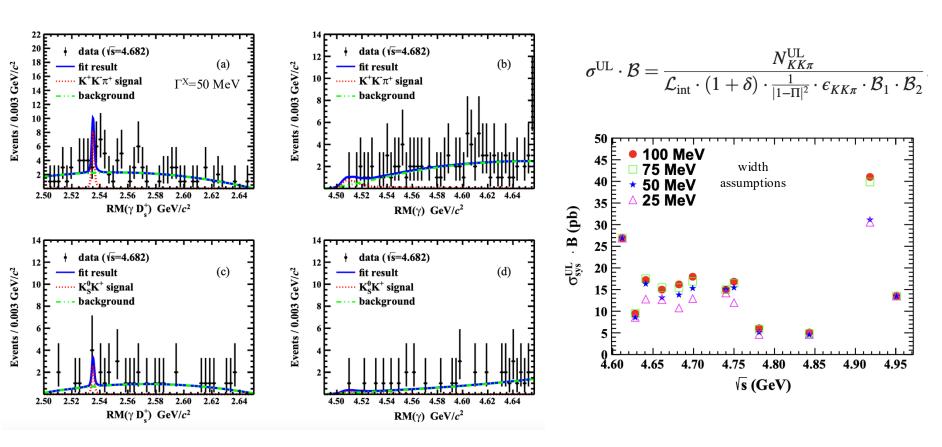

PRD 112, 032002 (2025)


- no evidence in the charmonium energy region
- Q. Wang [PRD 89, 114013] predicts 1^{-+} molecule state $DD_1(2420)$
 - Extend to D meson with strange quark $D_s^+D_{s1}^-(2536)$
- Data sample (5.8 fb⁻¹): $\sqrt{s} = 4.61 4.95 \text{ GeV}$

Partial reconstruction method:

$$e^{+}e^{-} \rightarrow P_{s}^{+}D_{s1}^{-}(2536); D_{s}^{+} \rightarrow K^{+}K^{-}\pi^{+}; D_{s1}^{-}(2536) \rightarrow K^{-}\bar{D}^{*0}$$

$$e^{+}e^{-} \rightarrow P_{s}^{+}D_{s1}^{-}(2536); D_{s}^{+} \rightarrow K_{S}^{0}\pi^{+}; D_{s1}^{-}(2536) \rightarrow K^{-}\bar{D}^{*0}$$


Clear D_s are observed, but no significant $\overline{D}^{*\theta}$

Search for 1^{-+} states in $e^+e^- \rightarrow \gamma D^+_s D^-_{s1}$ (2536)

PRD 112, 032002 (2025)

Unbinned two-dimensional simultaneous fit

No significant signal is observed and the ULs of $\sigma(e^+e^-\to\gamma X)*B(X\to D_s^+D_{s1}^-(2536))$ are determined at 90% CL by means of Bayesian method, assuming $M_X = 4.503$ GeV/c2 and $\Gamma X = 25, 50, 75$ or 100 MeV

Status and Perspectives

e⁺e⁻ offers a particularly clean environment and high-statistics data samples, making it an excellent laboratory for detailed spectroscopy studies.

Light hadron spectroscopy

- Exotic state and glueball-like particle J/ψ radiative decays
- Observation of new states
- PWA analysis studies

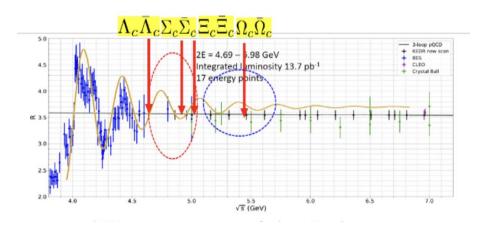
Axial-vector strangeonium

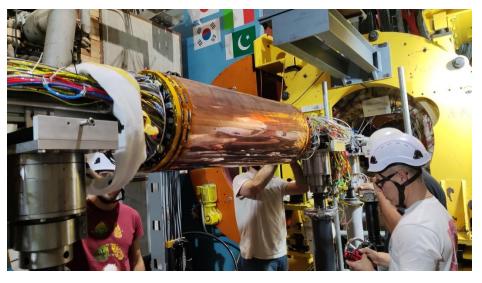
> Search for exited axial vector strangeonium states and fully strange tetraquarks

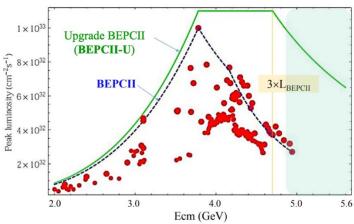
Charmonium spectroscopy

- Study the nature of XYZ states
- > Search for new decay modes and charged/neutral partner
- Test tetraquark hypothesis, threshold effect, kinematic reflection, ...

Ongoing studies:


- \checkmark J/ $\psi \rightarrow \gamma K^0_S K^0_S \pi^0$ and J/ $\psi \rightarrow \gamma \pi^0 \pi^0 \eta$ preliminary results on the X(2370)
- ✓ Advanced analysis techniques
 - ✓ PWA, improved parameterized methods like the K-matrix approach, line shape studies ...
- ✓ Coupled channel approaches are required and are being developed both for **light-hadron** and **charmonium spectroscopy**
 - \checkmark Tc $\overline{c}(4020)^- \rightarrow D^{*0}D^{*-}, \pi^-J/\psi$, and π^-h_c
 - **√**




Status and Perspectives

2024/2025: Detector and BEPCII upgrade

- ➤ Upgrade in energy (5.6 GeV) and luminosity (BEPCII-U, 3x)
 - precision XYZ physics
 - fine energy scans to study cross sections
 - ► large datasets at single \sqrt{s} to study X, Z_c lineshapes
- ➤ A new inner tracker (CGEM) was installed
- Proportunities to study other charmed baryons (Σ_c , Ξ_c , Ω_c) in the BEPCII-U

Above the $J/\psi p\bar{p}$ threshold, can we produce pentaquarks?

Status and Perspectives

BEPCII-U Operation plan

for installation
Pata taking @1.843GeV ψ (3686)
GeV & 2.35GeV (project test)
& LINAC final upgrade
beam energy 2.1-2.5GeV
beam energy 2.5-2.8GeV

C.H. Yu @ BESIII 2025 summer Col. meeting

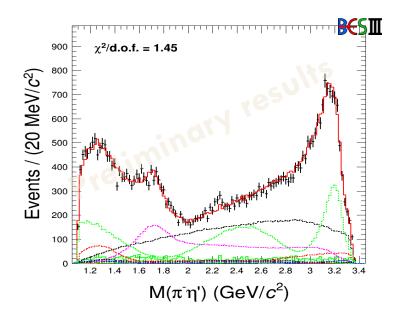
■ 2025/26 (round 19) — allocation not final BEPCII-U: demonstrate operation at high energy, show gain in luminosity Run at 4680 MeV — start collecting $\Lambda_c^+ \overline{\Lambda}_c^-$ sample (requested total of 9 fb⁻¹) Scans around X(3872) and χ_{c2} (about one month each)

Conclusions

➤ Both light and heavy hadron spectroscopy have made remarkable progress, with several new and intriguing states observed

BUT

- ➤ Many open questions remain concerning their nature, internal structure, and possible exotic configurations
- ➤ Future analyses, including coupled-channel and amplitude studies, together with new data from BESIII and upcoming experiments, will be crucial to deepen our understanding of strong interactions in the non-perturbative regime


Thank you for your attention

Back-up slides

The $\pi_1(1600)$ in χ_{c1} decays

Based on ~ 2700×10⁶ ψ (3686) events a PWA is performed on the ψ (2S) $\rightarrow \gamma \chi_{c1}$, χ_{c1} , $\rightarrow \pi^+ \pi^- \eta'$ (a factor of 100 more statistics than CLEOc)

- Opportunity to search for $J^{PC} = 1^{-+}$ exotics in the $\eta'\pi$ systems
- 1⁻⁺ hybrid experimental candidates: $\pi_1(1400)$, $\pi_1(1600)$, $\pi_1(2015)$
- Studies claimed that the $\pi_1(1400)$ and $\pi_1(1600)$ might originate from a same pole (Eur.Phys.J.C 81 (2021) 12, 1056, Phys.Rev.Lett. 122 (2019) 4, 042002)

- \checkmark $\pi_1(1600)$ is first observed in $\chi_{c1} \to \pi^+\pi^-\eta'$ process with well over 10σ significance
- ✓ The J^{pc} of $\pi_1(1600)$ is measured to be exotic $\mathbf{1}^{-+}$ with over $\mathbf{10}\sigma$

X(2370)

X(2370) measurements:

J^{pc} = 0⁻⁺ with significance >9.8σ

 $M = 2395 \pm 11^{+26}_{-94} MeV$

 $\Gamma = 188^{+18}_{-17}^{+124}_{-33} \text{ MeV}$

 $B(J/\psi \rightarrow \gamma X(2370))B(X(2370) \rightarrow f_0(980)\eta')B(f_0(980) \rightarrow K^0_s K^0_s)$ = 1.31 ± 0.22+2.85_{-0.84} ×10⁻⁵

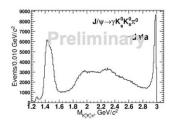
PRL 132 (2024) 181901

LQCD prediction on lightest pseudoscalar glueball:

 $J^{pc} = 0^{-+}$

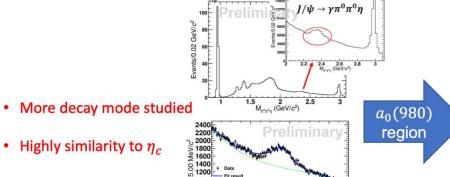
 $M = 2395 \pm 14 \,\text{MeV}$

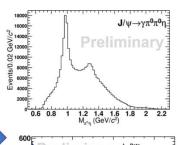
 $B(J/\psi \rightarrow \gamma G_{0-+}) = 2.31 \pm 0.80 \times 10^{-4}$

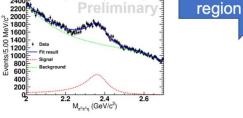

PRD 100 (2019) 054511

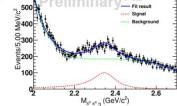
- The measurements are in a agreement with the predictions on lightest pseudoscalar glueball
 - → The spin-parity of the X(2370) is determined to be 0⁻⁺ for the first time
 - Mass is in a agreement with LQCD predictions
 - ♦ The estimation on B(J/ ψ → γ X(2370)) and prediction on B(J/ ψ → γ G₀₋₊) are consistent within errors (assuming ~5% decay rate, B(J/ ψ → γ X(2370)) = 10.7+22.8₋₇ ×10⁻⁴)

Courtesy of Yanping Huang

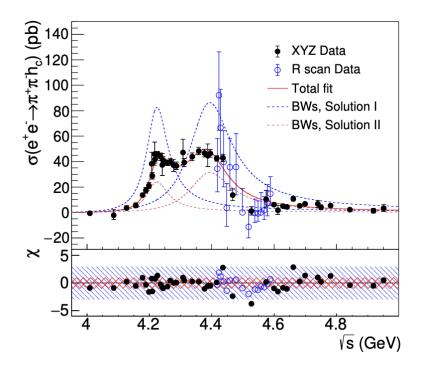

X(2370)


- Observation of X(2370) in $J/\psi o \gamma K_s^0 K_s^0 \pi^0$
 - ✓ Almost background free channel


21400 №1200 £ 800 600 ₩ 400 2.2 2.4 M_{K⁰₁K⁰₂x⁰ (GeV/c²)}


- Observation of X(2370) in $J/\psi o \gamma \pi^0 \pi^0 \eta$
 - ✓ Almost background free channel

- Highly similarity to η_c



Statistical significance: >> 5σ

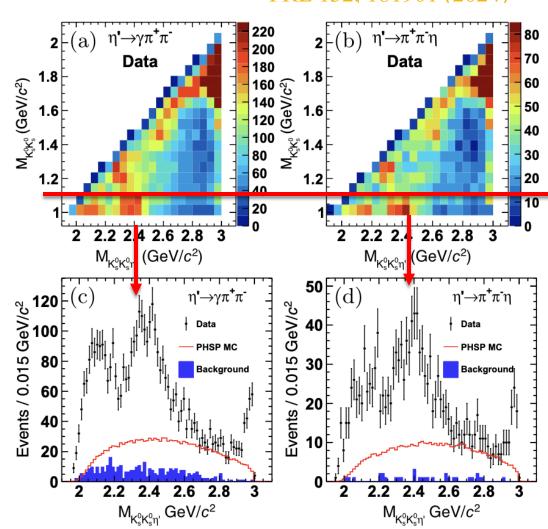
Statistical significance: >> 5σ

Cross section of $e^+e^- \rightarrow \pi^+\pi^- h_c$

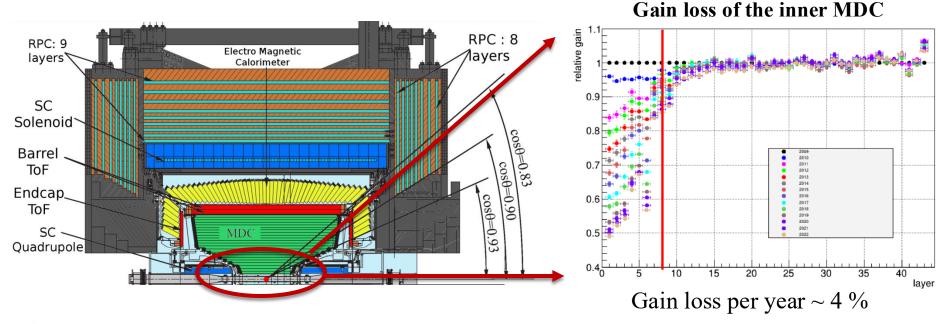
PRL 135, 071901(2025)

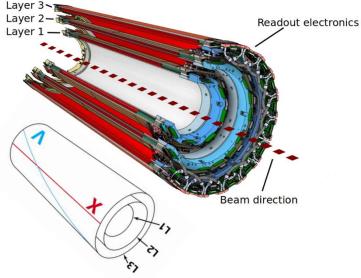
> 2 BW fit results

Parameter	R_1	R_2	R_3
$M (\text{MeV}/c^2)$	$4223.6^{+3.6+2.6}_{-3.7-2.9}$	$4327.4_{-18.8-9.3}^{+20.1+10.7}$	4467.4 ^{+7.2+3.2} -5.4-2.7
Γ (MeV)	$58.5^{+10.8+6.7}_{-11.4-6.5}$	$244.1^{+34.0+24.2}_{-27.1-18.3}$	$62.8^{+19.2+9.9}_{-14.4-7.0}$
$\Gamma_{ee}\cdot\mathcal{B}(R\to\pi^+\pi^-h_c)~(\mathrm{eV})$	$10.2^{+1.2+1.4}_{-1.5-1.4}\ (0.9^{+0.4+0.3}_{-0.4-0.2})$	$29.1^{+5.7+4.4}_{-3.9-3.4}\ (10.8^{+2.5+1.9}_{-1.8-1.5})$	$3.9^{+3.5+1.7}_{-1.7-0.5} \ (3.5^{+3.0+1.5}_{-1.6-0.7})$
ϕ (rad)	•••	$3.6^{+0.1+0.1}_{-0.1-0.1}\ (0.7^{+0.3+0.2}_{-0.3-0.2})$	$0.7^{+0.3+0.1}_{-0.3-0.2} \ (-2.2^{+0.3+0.2}_{-0.3-0.1})$


X(2370): Glueball-like particle in $J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta$

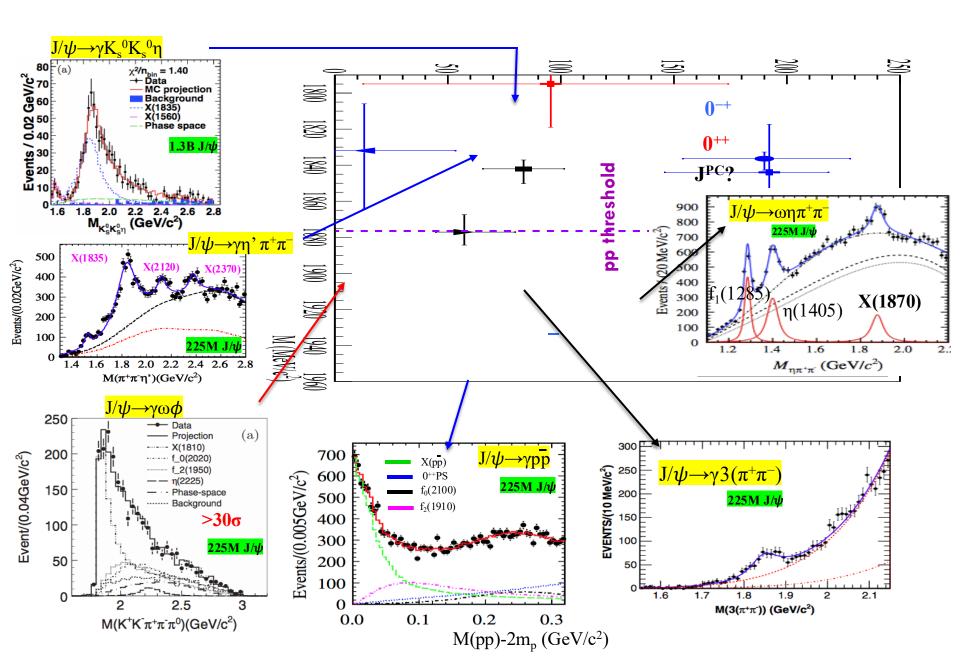
BESII


PRL 132, 181901 (2024)


PWA using 10 Billion of J/ψ data @ BESIII

- Minimal background contribution: $J/\psi \rightarrow \pi^0 K_S^0 K_S^0 \eta$ and $J/\psi \rightarrow K_S^0 K_S^0 \eta$ since they are forbidden by exchange symmetry and CP conservation
- \blacktriangleright $\eta' \rightarrow \gamma \pi^+ \pi^- / \eta \pi^+ \pi^-; K_S^0 \rightarrow \pi^+ \pi^-$
- Strong enhancement near $K_S^0K_S^0$ mass threshold from $f_0(980)$
- Clear connection between $f_0(980)$ and the structure around 2.4 GeV
- $M(K_S^0K_S^0) < 1.1 \text{ GeV to select the}$ $f_0(980)$

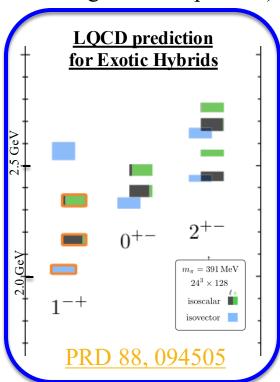
Why CGEM-IT?

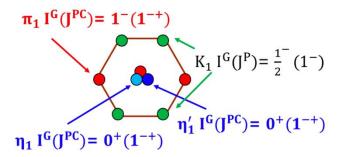


- Replace the inner MDC with 3 layers of cylindrical triple-GEM detectors
- Improve rate capability, aging and secondary vertex reconstruction, while retaining the current momentum and tracking performance

Main system requirements:

- O Low Material budget $\sim 1.5\%$ of X_0 in total
- O Spatial resolution of 130-150 μm with charge and time readout

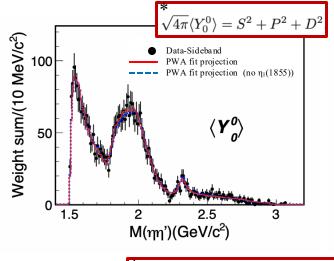

Structures between 1.8-1.9 GeV



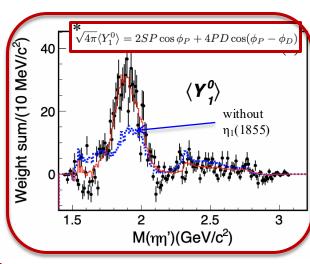
Hunting for glueballs and new form of hadrons

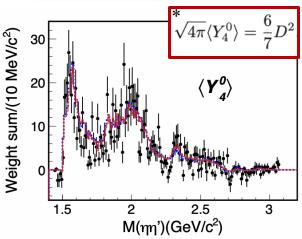
➤ Charmonium radiative decays is the ideal laboratory for light glueballs and hybrids hadron studies (clean, high statistics and gluon-rich process)

- > Exotic Hybrids:
 - $J^{PC} = 0^{+-}, 1^{-+}, 2^{+-}$ (forbidden in the conventional QCD scheme)
- ➤ The exotic J^{PC} = 1⁻⁺ nonet of hybrids is predicted to be the lightest
- Only isovector candidate observed yet: $\pi_1(1400)$, $\pi_1(1600)$ [the most extensively studied], $\pi_1(2015)$


BESIII experiment offers the ideal environment for this search $J/\psi \rightarrow \gamma \eta \eta$ '

- ➤ Isoscalar 1⁻⁺ hybrids is important to establish the hybrid nonet
 - \triangleright Can be produced in J/ ψ radiative decays
 - Can decay to ηη' in P-wave (PRD 83,014021, PRD 83, 014006, Eur.Phys.J.Plus 135, 945)


Further Checks on the $\eta_1(1855)$


The $\cos(\theta_{\eta})$ distribution can be expressed as an expansion in terms of Legendre polynomials; the coefficients (unnormalized moments of expansion) $\langle Y_l^0 \rangle \equiv \sum_{i=1}^{N_k} W_i Y_l^0 (\cos \theta_{\eta}^i)$. characterize the spin of the $\eta \eta$ ' resonances

- Neglecting resonance contributions in the γη^(*) subsystem and amplitude with spin greater than 2, the moments are related to the spin-0 (S), spin-1 (P) and spin-2 (D) amplitudes
- Good data/PWA consistency
- Narrow structure in $\langle Y^0_1 \rangle$: $\eta_1(1855)$ P-wave component is needed

^{*}Assuming ηη' system has zero helicity

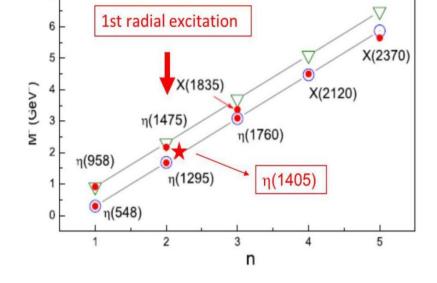
J/ψ radiative decay: PWA status in a nutshell

	0+	2+	0-
$J/\psi \rightarrow \gamma PP$	$J/\psi \rightarrow \gamma \eta \eta$ (PRD87,092009) $J/\psi \rightarrow \gamma \pi^0 \pi^0$ (PRD92,052003) $J/\psi \rightarrow \gamma K_S K_S$ (PRD98,072003) $J/\psi \rightarrow \gamma \eta \eta$ (PRL129,192002) $J/\psi \rightarrow \gamma \eta$ (PRD105,072002)		
$J/\psi{ ightarrow}\gamma VV$		$J/\psi \rightarrow \gamma \omega \phi$ (PRD87,032008) $J/\psi \rightarrow \gamma \phi \phi$ (PRD93,112011) $J/\psi \rightarrow \gamma \omega \omega$ (PRD100,052012)	
$J/\psi \rightarrow \gamma PPP$			$J/\psi \rightarrow \gamma \eta$ ' $\pi \pi$ (PRL106,072002, noPWA) $J/\psi \rightarrow \gamma K_S K_S \eta$ (PRL115,091803) $J/\psi \rightarrow \gamma K_S K_S \pi^0$ (JHEP 03,121)

- Mass Dependent (MD) PWA: model the dynamics of particle interactions as coherent sum of resonances
- Mass Independent (MI) PWA: make minimal model assumptions and measure the dynamical amplitudes independently in small regions of two-meson invariant mass (JHEP 03,121 (2023))

- $J/\psi \rightarrow \gamma PP: 0^{++}, 2^{++}, ...$
- $J/\psi \rightarrow \gamma PPP, \gamma VV: 0^{-+}$
- Neutral channel is much cleaner than the charged ones

Amplitude Analysis: toll to extract the complex amplitudes from experimental data


- Models with free parameters
- Consider the kinematic of final states particles
- Vary the parameters to maximize the likelihood

Toward the $\eta(1405)/\eta(1475)$ puzzle solving

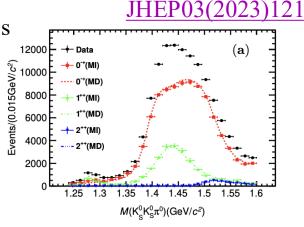
JHEP03(2023)121

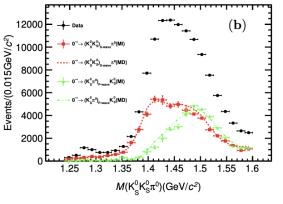
What's the nature of pseudoscalar structure with a mass around 1.4 GeV/ c^2 (the so called "1" state)?

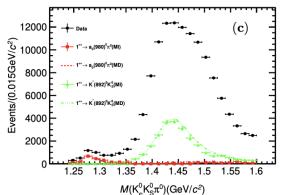
- Observed first in the J/ ψ radiative decay to the KK π final state in the early 1980s by the Crystal Barrel [PHL 97, 328] and Mark II [PRL 49, 259]
- Quark model predicts only one pseudoscalar meson near 1.4 GeV
- ➤ Theoretical interpretation:
 - \triangleright $\eta(1475)$: first radial excitation of η '
 - \triangleright $\eta(1405)$: glueball candidate
- ➤ LQCD prediction for the 0⁻⁺ lightest glueball candidate: [2.3-2.6] GeV

 $\eta(1405)$ and $\eta(1475)$ are two separate states or just one pseudoscalar state, namely $\eta(1440)$, in different decay mode?

What's the nature of the outnumbered $\eta(1405)$?


$J/\psi \rightarrow \gamma K^{O}{}_{S}K^{O}{}_{S}\pi^{O}$ - Mass Independent PWA


- \triangleright Mass independent fit by scanning the invariant $K^0_S K^0_S \pi^0$ mass
 - > identification of the strongest waves
- > The pseudoscalar component is the dominant contribution
 - ➤ relatively constant around 1.4 GeV/c²
 - $ightharpoonup (K^0{}_SK^0{}_S)_{S-wave}\pi^0$ and $(K^0{}_S\pi^0)_{P-wave}K^0{}_S$ partial waves are of comparable magnitude, but with different line shapes and peaks
 - > two resonances parameterization needed
- ➤ Axial vector component peaking at 1.28 GeV/c² and 1.42 GeV/c²; Tensor component around 1.52 GeV/c² decaying into K*(892)⁰K⁰_S observed for the first time


Resonance	$M({ m MeV}/c^2)$	$\Gamma({ m MeV})$
$\eta(1405)$	$1391.7 \pm 0.7^{+11.3}_{-0.3}$	$60.8 \pm 1.2^{+5.5}_{-12.0}$
$\eta(1475)$	$1507.6 \pm 1.6^{+15.5}_{-32.2}$	$115.8 \pm 2.4^{+14.8}_{-10.9}$
$f_1(1285)$	$1280.2 \pm 0.6^{+1.2}_{-1.5}$	$28.2 \pm 1.1^{+5.5}_{-2.9}$
$f_1(1420)$	$1433.5 \pm 1.1^{+27.9}_{-0.7}$	$95.9 \pm 2.3^{+13.6}_{-10.9}$
$f_2(1525)$	$1515.4 \pm 2.5^{+3.2}_{-7.6}$	$64.0 \pm 4.3^{+2.0}_{-6.1}$

Consistency between MI and MD results

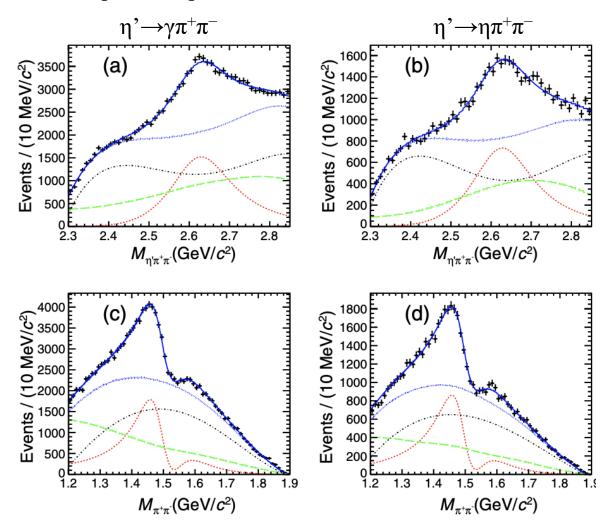
Theorists attempt to reveal the $\eta(1405)/\eta(1475)$ pole structure [PRD107, L091505]

X(2600): A New State Observed in $J/\psi \rightarrow \gamma \pi^+\pi^-\eta^2$

10 Billion of J/\psi data @ BESIII $(\eta' \rightarrow \gamma \pi^+ \pi^- / \eta \pi^+ \pi^-)$

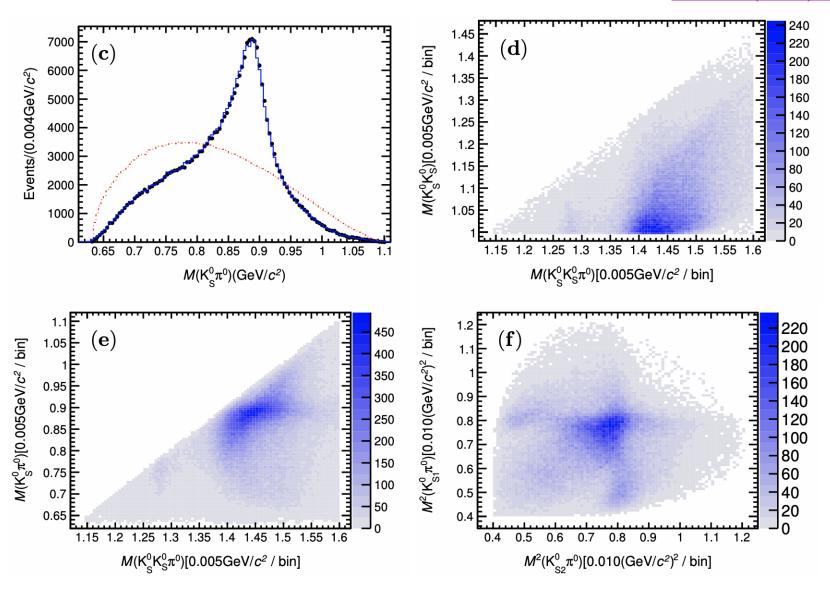
PRL 129, 042001 (2022)

A new state in $M(\eta'\pi^+\pi^-)$ invariant mass is observed around 2.6 GeV/c², which is correlated to a structure in $M(\pi^+\pi^-)$ @ 1.5 GeV/c²

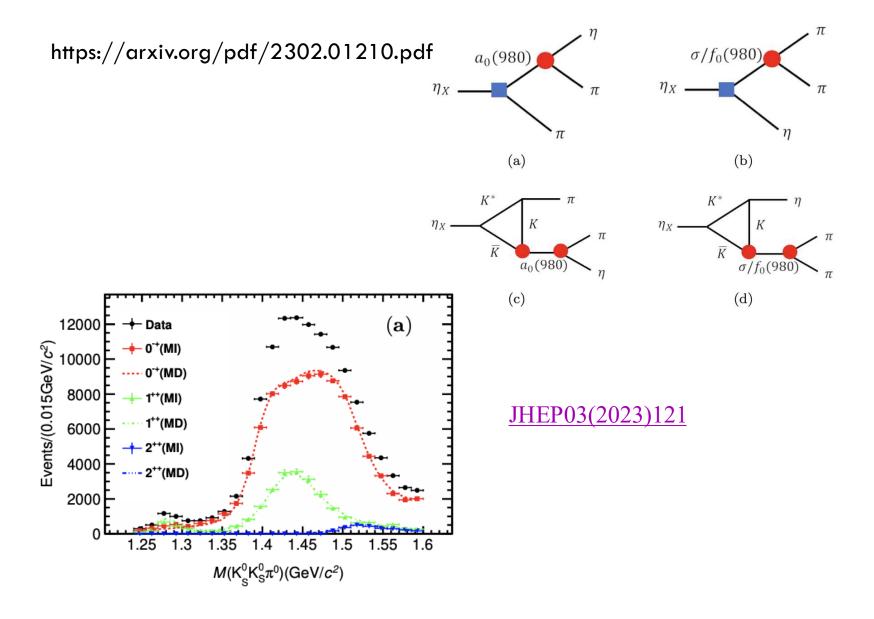

X(2600): A New State Observed in $J/\psi \rightarrow \gamma \pi^+\pi^-\eta^2$

PRL 129, 042001 (2022)

 \triangleright Simultaneous fit to $\eta' \pi^+ \pi^-$ and $\pi^+ \pi^-$ mass spectra is performed

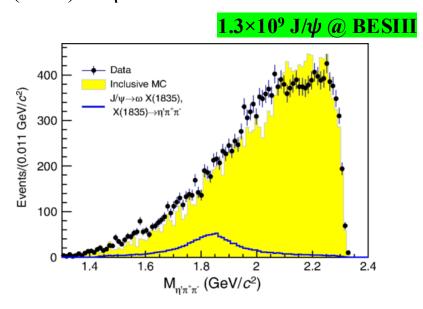

Resonance	Mass (MeV/ c^2)	Width (MeV)
$f_0(1500)$	$1492.5 \pm 3.6^{+2.4}_{-20.5}$	$107 \pm 9^{+21}_{-7}$
X(1540)	$1540.2 \pm 7.0^{+36.3}_{-6.1}$	$157 \pm 19^{+11}_{-77}$
X(2600)	$2618.3 \pm 2.0^{+16.3}_{-1.4}$	$195 \pm 5_{-17}^{+26}$

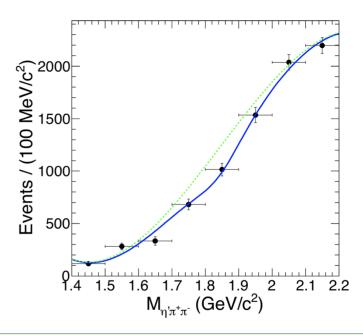
- X(2600) resonance observed for the first time with a statistical significance greater than 20σ
- The structure in $M(\pi^+\pi^-)$ around 1.5 GeV/ c^2 can be well described with the interference between $f_0(1500)$ and the X(1540) resonances



Dalitz Plot - $J/\psi \rightarrow \gamma K^{0}{}_{S}K^{0}{}_{S}\pi^{0}$

JHEP03(2023)121


Dalitz Plot - $J/\psi \rightarrow \gamma K^{0}{}_{S}K^{0}{}_{S}\pi^{0}$



Search for X(1835) in other decay modes

• J/ ψ $\rightarrow \omega \eta' \pi^+ \pi^-$ hadronic decay and search for X(1835) $\rightarrow \eta' \pi^+ \pi^-$

PRD **99**, 071101 (R) (2019)

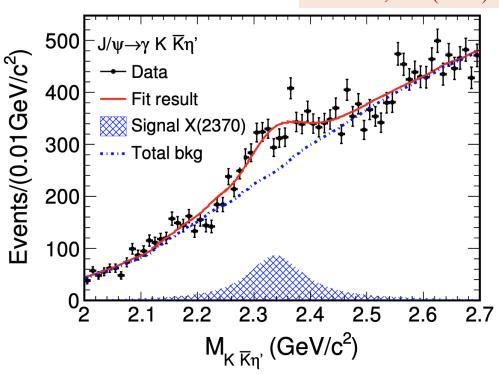
- No obvious sign of X(1835)'s existence
- Large gluon component? [PRD74,034019]

$$\mathcal{B}(J/\psi \to \omega \eta' \pi^+ \pi^-) = (1.12 \pm 0.02 \pm 0.13) \times 10^{-3}$$

$$\mathcal{B}(J/\psi \to \omega X(1835), \ X(1835) \to \eta' \pi^+ \pi^-) < 6.2 \times 10^{-5}$$

The puzzle is still not complete

@ 90% C.L.

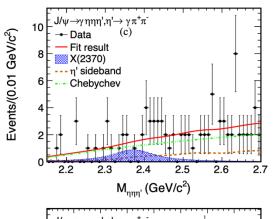

First Observation of X(2370) in $J/\psi \rightarrow \gamma K \overline{K} \eta$

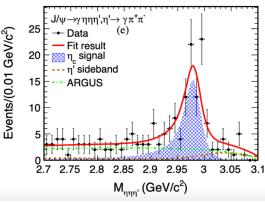
- X(2120) and X(2370) states observed in the $\pi^-\pi^+\eta$ invariant mass spectra (PRL106,072002)
- The **X(2370)** measured mass is consistent with the pseudoscalar glueball candidate predicted by LQCD calculation (PRD**73**,014516)
 - Simulataneus fit performed for two decay η' modes
- ➤ No evidence of X(2120) is found

$$\begin{split} \mathcal{B}(J/\psi \to \gamma X(2120) \to \gamma K^+ K^- \eta') &< 1.49 \times 10^{-5} \\ \mathcal{B}(J/\psi \to \gamma X(2120) \to \gamma K_S^0 K_S^0 \eta') &< 6.38 \times 10^{-6} \end{split}$$

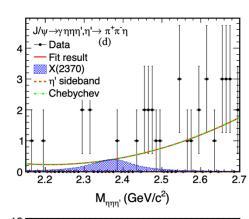
$1.3 \times 10^9 \text{ J/} \psi$ @ BESIII

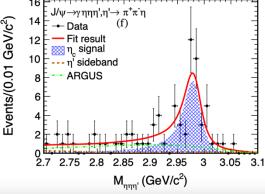
EPJC **80**, 746 (2020)




Clear X(2370) signal observed with significance of about 8.3σ

$$\begin{split} M_{X(2370)} &= 2341.6 \pm 6.5 \pm 5.7 \; \mathrm{MeV}/c^2 \quad \Gamma_{X(2370)} = 117 \pm 10 \pm 8 \; \mathrm{MeV} \\ \mathcal{B}(J/\psi \to \gamma X(2370) \to \gamma K^+ K^- \eta') &= (1.79 \pm 0.23 \pm 0.65) \times 10^{-5} \\ \mathcal{B}(J/\psi \to \gamma X(2370) \to \gamma K_S^0 K_S^0 \eta') &= (1.18 \pm 0.32 \pm 0.39) \times 10^{-5} \end{split}$$


Search for X(2370) in $J/\psi \rightarrow \gamma \eta \eta \eta$


PRD **103**, 012009 (2021)

1.3×10⁹ J/ψ @ BESIII

Branching ratios prediction for the decay of pseudoscalar glueball with M~2.37 GeV into three pseudoscalar mesons (PRD **87**,054036 (2013))

$$\Gamma_{G \to \eta \eta \eta'} / \Gamma_G^{tot} = 0.00082$$

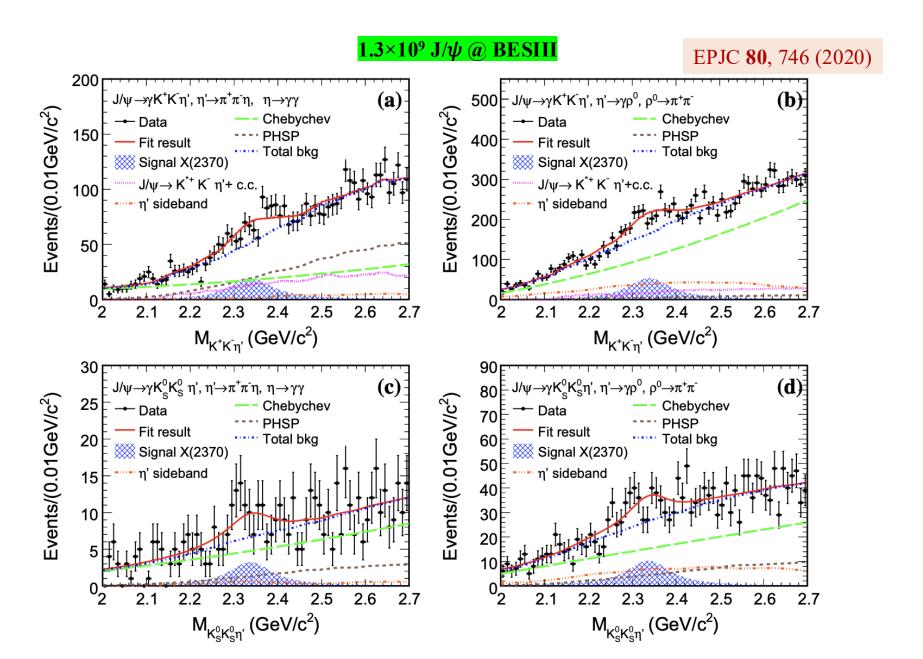
$$\Gamma_{G \to KK\eta'} / \Gamma_G^{tot} = 0.011$$

$$\Gamma_{G \to \pi \pi \eta'} / \Gamma_G^{tot} = 0.090$$

\triangleright No obvious signal of X(2370)

Simultaneous unbinned maximum likelihood fit to the ηηη' is performed and the 90% C.L. upper limit is calculated

$$\mathcal{B}(J/\psi \to \gamma X(2370) \to \gamma \eta \eta \eta') < 9.2 \times 10^{-6}$$


Events/(0.01 GeV/c^2)

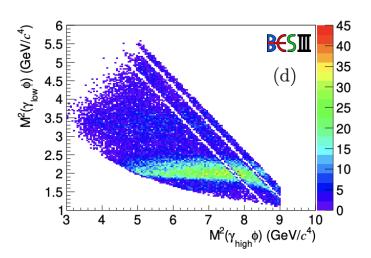
(it does not contradict PRD 87,054036)

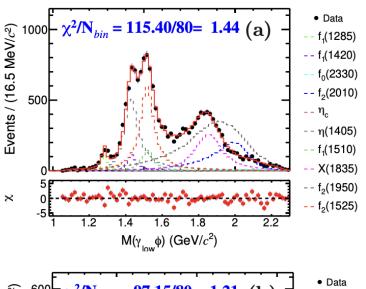
$$\mathcal{B}(J/\psi \to \gamma \eta_c) \cdot \mathcal{B}(\eta_c \to \eta \eta \eta') = (4.86 \pm 0.62 \pm 0.45) \times 10^{-5}$$

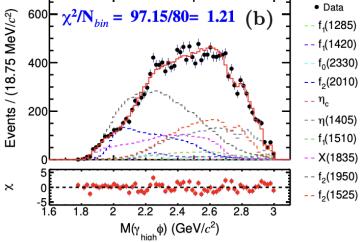
FIRST OBSERVATION in the ηηη' invariant mass spectra

First Observation of X(2370) in $J/\psi \rightarrow \gamma K \overline{K} \eta$

PWA of $J/\psi \rightarrow \gamma \gamma \phi$


PRD 111, 052011(2025)


The decays $J/\psi \rightarrow \gamma X$, $X \rightarrow \gamma V$ ($V = \rho, \omega, \phi$) serve as flavor filter


• unravelling quark contents of the intermediate resonances

GPUPWA

framework used to disentangle the structures in the Dalitz plot

