A REVIEW ON THE THEORY OF EXOTIC HADRONS

Angelo Esposito

WIFAI, Bari, November 2025

OUTLINE

I will give an overview of the current understanding of the nature of exotic hadrons

- What's up with exotic hadrons?
- EFT formulation of the problem
- Possible hints from "crowded" QCD
- Models and frameworks for the internal structure

<u>Disclaimer</u>: this will be a critical review, not free of personal opinions and likely incomplete

QCD is the theory of strong interactions

$$\mathcal{L} = \sum_{q} \bar{q}_i \left(i \gamma \cdot D_{ij} - m_q \delta_{ij} \right) q_j - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu,a}$$

QCD is the theory of strong interactions

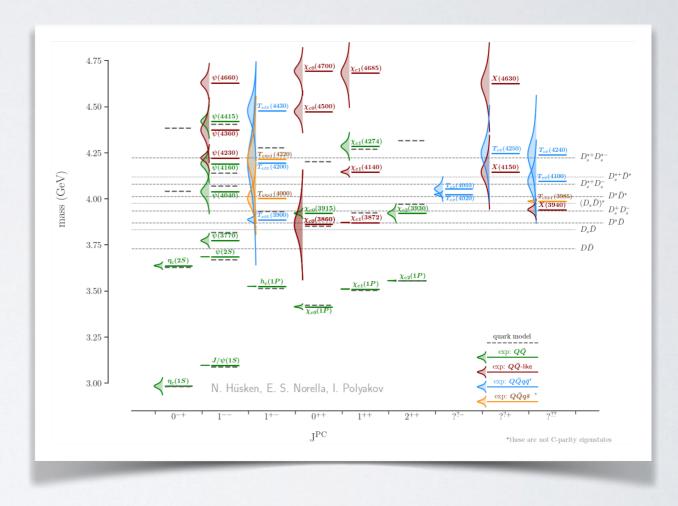
$$\mathcal{L} = \sum_{q} \bar{q}_i \left(i \gamma \cdot D_{ij} - m_q \delta_{ij} \right) q_j - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu,a}$$

Only color singlets as asymptotic states

QCD is the theory of strong interactions

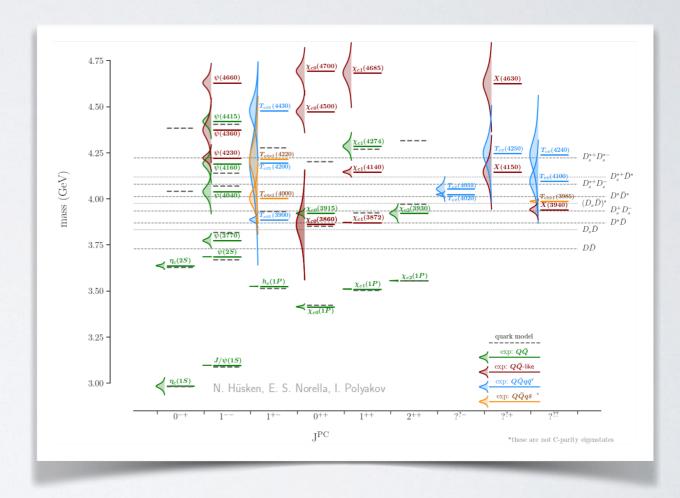
$$\mathcal{L} = \sum_{q} \bar{q}_i \left(i \gamma \cdot D_{ij} - m_q \delta_{ij} \right) q_j - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu,a}$$

Only color singlets as asymptotic states


A priori, not only mesons and baryons

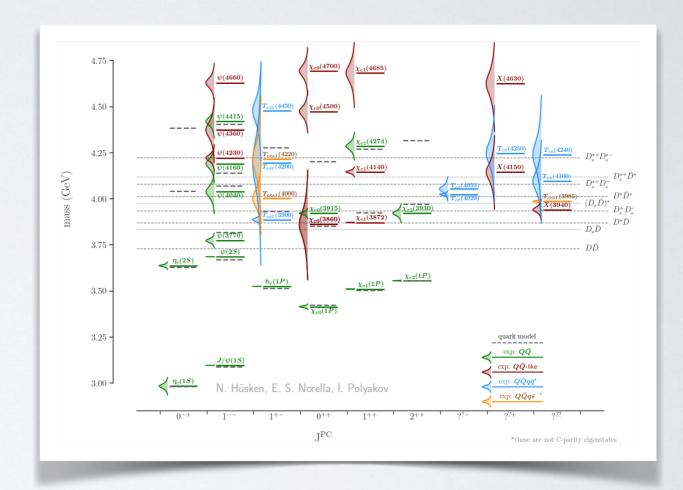
$$3 \otimes \bar{3} = 1 \oplus \dots$$
 meson $3 \otimes 3 \otimes 3 \otimes 3 = 1 \oplus \dots$ baryon $3 \otimes 3 \otimes \bar{3} \otimes \bar{3} = 1 \oplus \dots$ tetraquark $8 \otimes 8 \otimes \dots \otimes 8 = 1 \oplus \dots$ glueball

And many more...


From 2003 on, several new states in the heavy $Q\bar{Q}$ sector

From 2003 on, several new states in the heavy $Q\bar{Q}$ sector

Properties don't match quarkonium expectations:


- Unconventional masses and $J^{P\,C}$
- Unexpectedly narrow
- Isospin violation
- Very close to threshold

From 2003 on, several new states in the heavy $Q\bar{Q}$ sector

Properties don't match quarkonium expectations:

- Unconventional masses and $J^{P\,C}$
- Unexpectedly narrow
- Isospin violation
- Very close to threshold

Some are manifestly exotic:

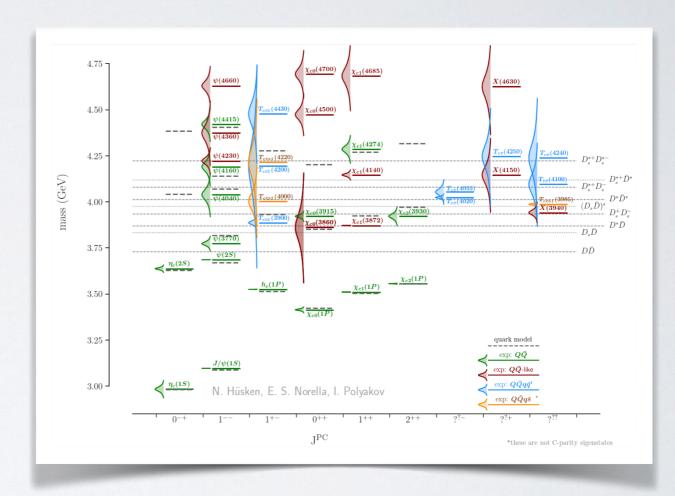
$$Z_c^+ o J/\psi \, \pi^+$$

From 2003 on, several new states in the heavy $Q\bar{Q}$ sector

Properties don't match quarkonium expectations:

- Unconventional masses and $J^{P\,C}$
- Unexpectedly narrow
- Isospin violation
- Very close to threshold

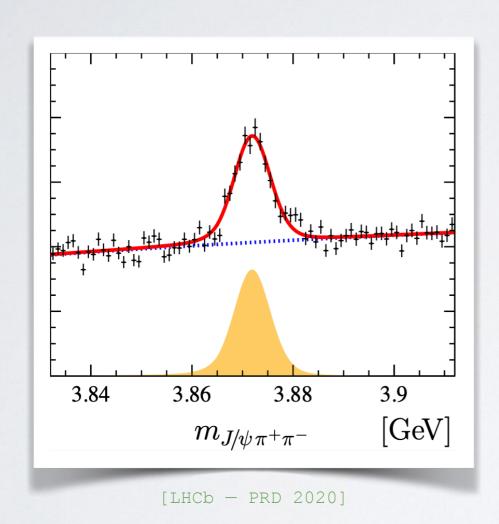
Some are manifestly exotic:


$$Z_c^+ o J/\psi \, \pi^+$$
 too heavy for vacuum production

From 2003 on, several new states in the heavy $Q\bar{Q}$ sector

Properties don't match quarkonium expectations:

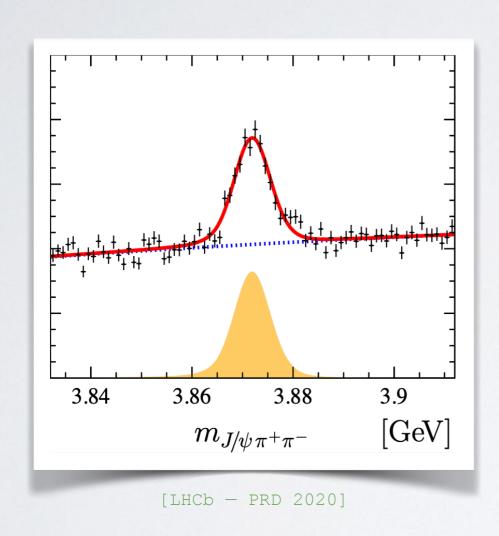
- Unconventional masses and $J^{P\,C}$
- Unexpectedly narrow
- Isospin violation
- Very close to threshold


Some are manifestly exotic:

$$Z_c^+ o J/\psi \pi^+$$
 too heavy for vacuum production charged

Most striking example is the famous X(3872)

Most striking example is the famous X(3872)



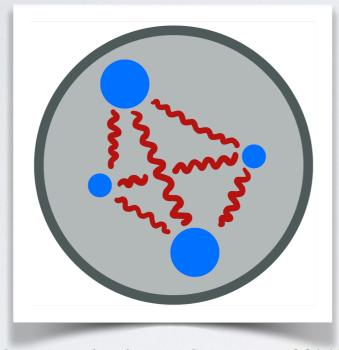
$$\left| m_X - m_{D^0} - m_{\bar{D}^{*0}} \right| \lesssim 0.1 \ \mathrm{MeV}$$
 very close to threshold

$$\Gamma_X \simeq 0.2 - 1 \, \mathrm{MeV}$$
very narrow

$$\Gamma(X \to J/\psi \rho) \simeq \Gamma(X \to J/\psi \omega)$$
large isospin violation

Most striking example is the famous X(3872)

$$\left| m_X - m_{D^0} - m_{\bar{D}^{*0}} \right| \lesssim 0.1 \ \mathrm{MeV}$$
 very close to threshold


$$\Gamma_X \simeq 0.2 - 1 \, \mathrm{MeV}$$
very narrow

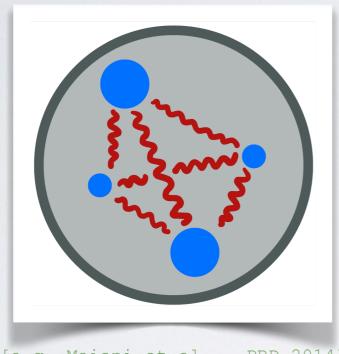
$$\Gamma(X \to J/\psi \rho) \simeq \Gamma(X \to J/\psi \omega)$$
large isospin violation

Can be explained by a $Q \bar Q q \bar q$ structure with remarkable fine tunings

How are these constituents organized?

How are these constituents organized?

[e.g. Maiani et al. - PRD 2014]

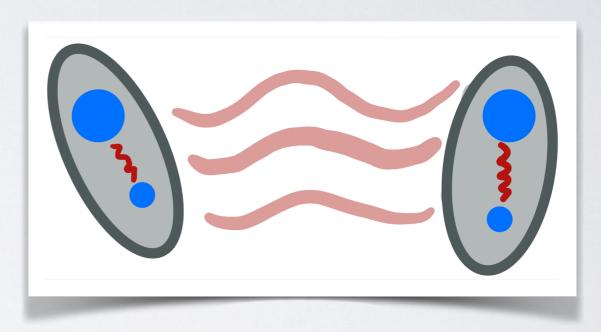

Tetraquark

Short distance QCD

Hadronic size $(r \lesssim 1 \text{ fm})$

Analogue to mesons/baryons

How are these constituents organized?


[e.g. Maiani et al. - PRD 2014]

Short distance QCD

Hadronic size $(r \leq 1 \text{ fm})$

Analogue to mesons/baryons

[e.g. Guo et al. - Rev.Mod.Phys. 2018]

Hadron molecule

Long distance QCD

Very large $(r \gg 1 \text{ fm})$

Analogue to deuteron

SHARP EFT FORMULATION

[Braaten, AE, Glioti, Guo, Hanhart, Hyodo, Kaplan, Kinugawa, Mikhasenko, Pilloni, Polosa, Rattazzi, and many more...]

Consider an EFT valid at distances $r \gg \Lambda_{\rm QCD}^{-1} \simeq 1$ fm. How does the exotic hadron arise?

Consider an EFT valid at distances $r \gg \Lambda_{\rm QCD}^{-1} \simeq 1$ fm. How does the exotic hadron arise?

Option 1: molecule

Input degrees of freedom: two standard hadrons

$$\mathcal{L}_{\text{hadr}} \sim \mathcal{L}_0(h_1, h_2) + \lambda h_1 h_1^{\dagger} h_2 h_2^{\dagger}$$

Consider an EFT valid at distances $r \gg \Lambda_{\rm QCD}^{-1} \simeq 1$ fm. How does the exotic hadron arise?

Option 1: molecule

Input degrees of freedom: two standard hadrons

$$\mathcal{L}_{\text{hadr}} \sim \mathcal{L}_0(h_1, h_2) + \lambda h_1 h_1^{\dagger} h_2 h_2^{\dagger}$$

Consider an EFT valid at distances $r \gg \Lambda_{\rm QCD}^{-1} \simeq 1$ fm. How does the exotic hadron arise?

Option 1: molecule

Input degrees of freedom: two standard hadrons

$$\mathcal{L}_{\text{hadr}} \sim \mathcal{L}_0(h_1, h_2) + \lambda h_1 h_1^{\dagger} h_2 h_2^{\dagger}$$

$$+ \cdots = \sum_{\text{pole}} = -\frac{2\pi^2}{\lambda_{\text{phys}}^2 \mu^3}$$

Option 2: tetraquark

Input degrees of freedom: two standard hadrons and one tetraquark

$$\mathcal{L}_{\text{tetra}} \sim \mathcal{L}_0(h_1, h_2) + \phi^{\dagger} \left(i \partial_t + \frac{\nabla^2}{2M} \right) \phi - \varepsilon \phi^{\dagger} \phi + g \phi h_1^{\dagger} h_2^{\dagger} + \text{h.c.}$$

Option 2: tetraquark

Input degrees of freedom: two standard hadrons and one tetraquark

$$\mathcal{L}_{\text{tetra}} \sim \mathcal{L}_0(h_1, h_2) + \phi^{\dagger} \left(i \partial_t + \frac{\nabla^2}{2M} \right) \phi - \varepsilon \phi^{\dagger} \phi + g \phi h_1^{\dagger} h_2^{\dagger} + \text{h.c.}$$

$$+ \cdots = \sum_{\text{pole at}} \text{pole at}$$

$$E_{\text{pole}} = -\varepsilon_{\text{phys}}$$

Both options need fine tuning to have the state near threshold

$$\frac{1}{\lambda_{\rm phys}} = \frac{1}{\lambda} + \mu \Lambda \ll \mu \Lambda$$
 or $\varepsilon_{\rm phys} = \varepsilon - g^2 \mu \Lambda \ll \frac{\Lambda^2}{\mu}$

Neither option is predictive about the position of the pole...

Neither option is predictive about the position of the pole...

...but, they do predict different dependences of the scattering amplitude on the energy [for a review: AE, Glioti, Germani, Polosa - Riv. Nuovo Cim. 2025]

Angelo Esposito 9/27 WIFAI 2025

Neither option is predictive about the position of the pole...

...but, they do predict different dependences of the scattering amplitude on the energy [for a review: AE, Glioti, Germani, Polosa - Riv. Nuovo Cim. 2025]

$$\mathcal{A}_{\text{mol}}(E) \sim \frac{\lambda_1 \sqrt{-2\mu E - i\epsilon} + \lambda_2}{1 - i\lambda_3 \left[\sqrt{2\mu E} + \sqrt{2\mu (E - \Delta)}\right] - \lambda_4 \sqrt{2\mu E} \sqrt{2\mu (E - \Delta)}}$$

Angelo Esposito 9/27 WIFAI 2025

Neither option is predictive about the position of the pole...

...but, they do predict different dependences of the scattering

amplitude on the energy [for a review: AE, Glioti, Germani, Polosa - Riv. Nuovo Cim. 2025]

$$\mathcal{A}_{\text{mol}}(E) \sim \frac{\lambda_1 \sqrt{-2\mu E - i\epsilon} + \lambda_2}{1 - i\lambda_3 \left[\sqrt{2\mu E} + \sqrt{2\mu (E - \Delta)} \right] - \lambda_4 \sqrt{2\mu E} \sqrt{2\mu (E - \Delta)}}$$

$$\mathcal{A}_{\text{tetra}}(E) \sim \frac{g^2}{E - \varepsilon + ig^2 \left[\sqrt{2\mu E} + \sqrt{2\mu(E - \Delta)} \right]}$$

MORE EFT'S

MORE EFT'S

The EFT has been further refined by adding a number of additional effects, addressing subtleties, computing new observables:

The EFT has been further refined by adding a number of additional effects, addressing subtleties, computing new observables:

NLO corrections in the non-relativistic expansion

[e.g., Braaten, He, Jiang - PRD 2021; Dai, Fleming, Hodges, Mehen - PRD 2023]

The EFT has been further refined by adding a number of additional effects, addressing subtleties, computing new observables:

NLO corrections in the non-relativistic expansion

[e.g., Braaten, He, Jiang - PRD 2021; Dai, Fleming, Hodges, Mehen - PRD 2023]

Long-range pion exchange

[e.g., Braaten, He, Jiang - PRD 2021; AE, Glioti, Polosa, Rattazzi - PLB 2023]

The EFT has been further refined by adding a number of additional effects, addressing subtleties, computing new observables:

- NLO corrections in the non-relativistic expansion

 [e.g., Braaten, He, Jiang PRD 2021; Dai, Fleming, Hodges, Mehen PRD 2023]
- Long-range pion exchange

[e.g., Braaten, He, Jiang - PRD 2021; AE, Glioti, Polosa, Rattazzi - PLB 2023]

Finite decay width of one of the constituents

[e.g., Braaten, He, Jiang - PRD 2021; AE, Glioti, Polosa, Rattazzi - PLB 2023]

The EFT has been further refined by adding a number of additional effects, addressing subtleties, computing new observables:

NLO corrections in the non-relativistic expansion

[e.g., Braaten, He, Jiang - PRD 2021; Dai, Fleming, Hodges, Mehen - PRD 2023]

Long-range pion exchange

[e.g., Braaten, He, Jiang - PRD 2021; AE, Glioti, Polosa, Rattazzi - PLB 2023]

Finite decay width of one of the constituents

[e.g., Braaten, He, Jiang - PRD 2021; AE, Glioti, Polosa, Rattazzi - PLB 2023]

Electromagnetic effects

[e.g., Mehen, Springer - PRD 2021]

The EFT has been further refined by adding a number of additional effects, addressing subtleties, computing new observables:

NLO corrections in the non-relativistic expansion

[e.g., Braaten, He, Jiang - PRD 2021; Dai, Fleming, Hodges, Mehen - PRD 2023]

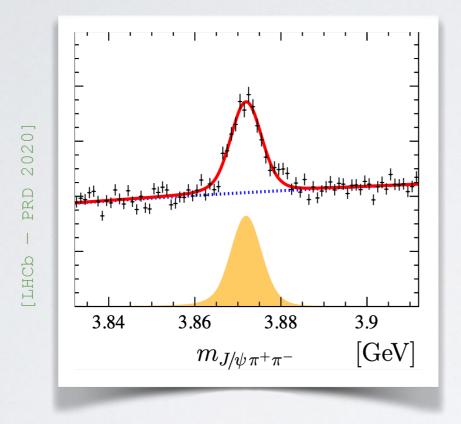
Long-range pion exchange

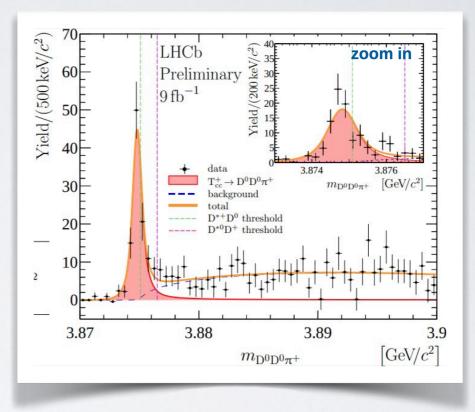
[e.g., Braaten, He, Jiang - PRD 2021; AE, Glioti, Polosa, Rattazzi - PLB 2023]

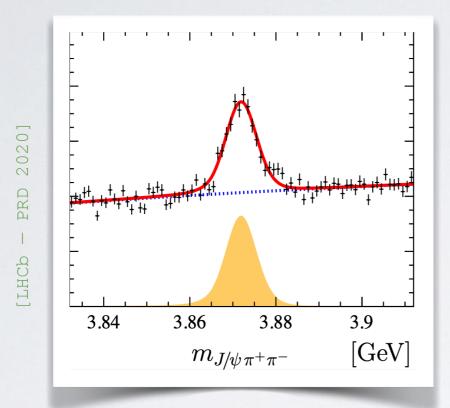
Finite decay width of one of the constituents

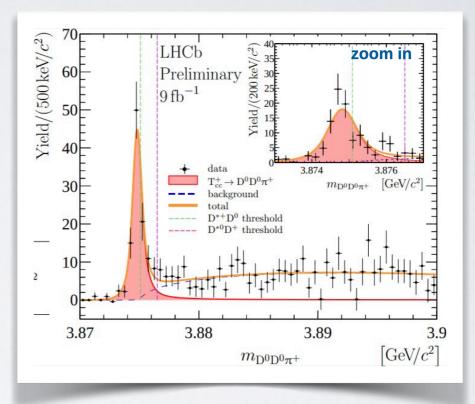
[e.g., Braaten, He, Jiang - PRD 2021; AE, Glioti, Polosa, Rattazzi - PLB 2023]

Electromagnetic effects

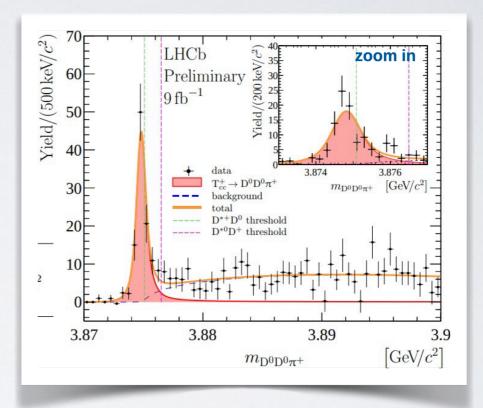

[e.g., Mehen, Springer - PRD 2021]


· ...and so on...


DATA


The lineshapes of the X and T_{cc}^{+} have been measured by LHCb

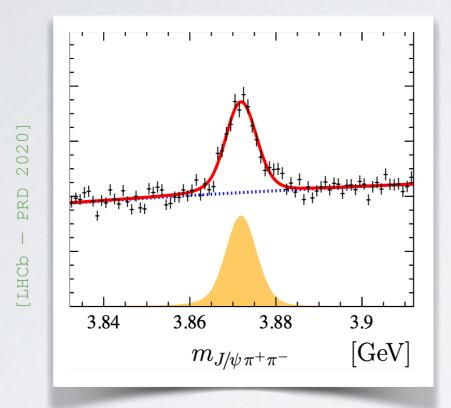
[LHCb - Nature Phys. 2022]

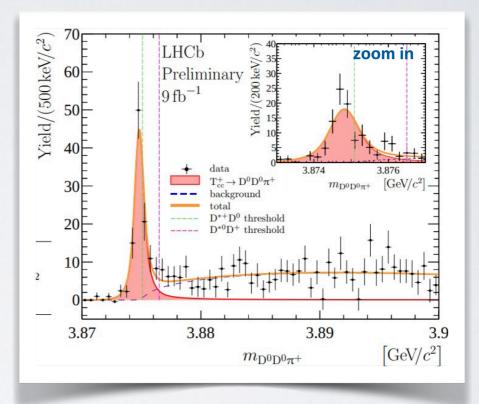

Only tested against one, simplified EFT (Flatté)

[LHCb

DATA

The lineshapes of the X and T_{cc}^+ have been measured by LHCb


[LHCb - Nature Phys. 2022]


Only tested against one, simplified EFT (Flatté)

Data seem to mildly favor tetraquarks... [AE, Maiani, Pilloni, Polosa, Riquer - PRD 2022; Mikhasenko - 2203.04622]

DATA

The lineshapes of the X and T_{cc}^+ have been measured by LHCb

[LHCb - Nature Phys. 2022]

Only tested against one, simplified EFT (Flatté)

Data seem to mildly favor tetraquarks... [AE, Maiani, Pilloni, Polosa, Riquer - PRD 2022; Mikhasenko - 2203.04622]

...but the analysis is hard and the topic is still very controversial

[e.g., Baru et al. - PLB 2022]

The EFT viewpoint makes the boundaries of the question sharper

The EFT viewpoint makes the boundaries of the question sharper

For example, it makes the famous Weinberg's compositeness criterion less ambiguous [Weinberg - Phys.Rev. 1965]

The EFT viewpoint makes the boundaries of the question sharper

For example, it makes the famous Weinberg's compositeness criterion less ambiguous [Weinberg - Phys.Rev. 1965]

Ideally, we should classify all possible EFTs, estimate their breakdown, and test them systematically against data

The EFT viewpoint makes the boundaries of the question sharper

For example, it makes the famous Weinberg's compositeness criterion less ambiguous [Weinberg - Phys.Rev. 1965]

Ideally, we should classify all possible EFTs, estimate their breakdown, and test them systematically against data

EFT amplitude → data → Lagrangian parameters

The EFT viewpoint makes the boundaries of the question sharper

For example, it makes the famous Weinberg's compositeness criterion less ambiguous [Weinberg - Phys.Rev. 1965]

Ideally, we should classify all possible EFTs, estimate their breakdown, and test them systematically against data

EFT amplitude → data → Lagrangian parameters

However, are current data sufficiently precise to even discriminate between different options?

[Abreu, Albaladejo, Braaten, AE, Ferreiro, Ingles, Liao, Navarra, Nieves, Pilloni, Polosa, Zang, and many more...]

High multiplicity events (ion-ion, proton-ion, proton-proton) are excellent probes for the nature of exotic mesons

High multiplicity events (ion-ion, proton-ion, proton-proton) are excellent probes for the nature of exotic mesons

Main idea: different formation mechanisms are sensitive to the size of the state, and are affected differently in a crowded environment

High multiplicity events (ion-ion, proton-ion, proton-proton) are excellent probes for the nature of exotic mesons

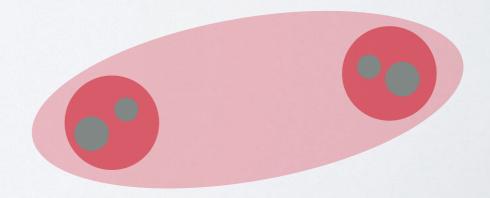
Main idea: different formation mechanisms are sensitive to the size of the state, and are affected differently in a crowded environment

Tetraquark

Binding of $Q\bar{Q}q\bar{q}$ in a volume $V \sim 1 \text{ fm}^3$

High multiplicity events (ion-ion, proton-ion, proton-proton) are excellent probes for the nature of exotic mesons

Main idea: different formation mechanisms are sensitive to the size of the state, and are affected differently in a crowded environment


Tetraquark

Binding of $Q\bar{Q}q\bar{q}$ in a volume $V \sim 1 \text{ fm}^3$

Molecule

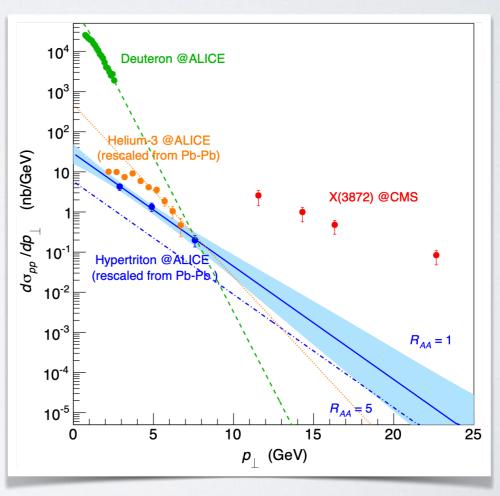
Binding of two $Q\bar{q}$ in a volume $V \sim 1 \text{ fm}^3 + \text{their coalescence}$

Generally believed that loosely bound molecules should be hard to

form in prompt high-energy collisions [e.g., Bignamini et al. - PRL 2009; Artoisenet, Braaten - PRD 2010; Meng, Han, Chao - PRD 2017]

Generally believed that loosely bound molecules should be hard to

form in prompt high-energy collisions [e.g., Bignamini et al. - PRL 2009; Artoisenet, Braaten - PRD 2010; Meng, Han, Chao - PRD 2017]

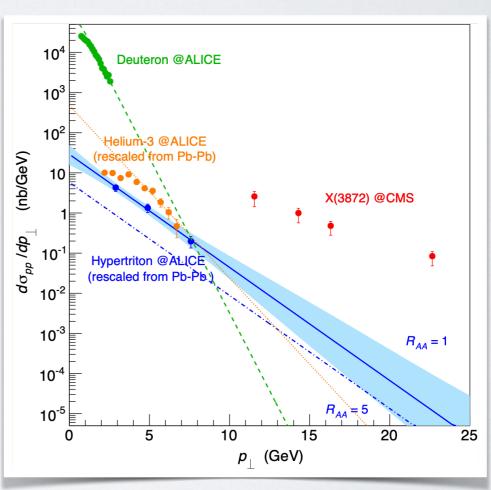

$$B \ll \frac{\Lambda_{\rm QCD}^2}{2\mu} \Rightarrow k_{\rm max} \ll \Lambda_{\rm QCD} \longrightarrow \text{unlikely at } \sqrt{s} \sim \text{GeV} - \text{TeV}$$

Generally believed that loosely bound molecules should be hard to

form in prompt high-energy collisions [e.g., Bignamini et al. - PRL 2009; Artoisenet, Braaten - PRD 2010; Meng, Han, Chao - PRD 2017]

$$B \ll \frac{\Lambda_{\rm QCD}^2}{2\mu} \Rightarrow k_{\rm max} \ll \Lambda_{\rm QCD} \longrightarrow \text{unlikely at } \sqrt{s} \sim \text{GeV} - \text{TeV}$$

This seems to be confirmed by data [AE, Guerrieri, Maiani, Piccinini, on light nuclei Pilloni, Polosa, Riquer - PRD 2015]


Generally believed that loosely bound molecules should be hard to

form in prompt high-energy collisions [e.g., Bignamini et al. - PRL 2009; Artoisenet, Braaten - PRD 2010; Meng, Han, Chao - PRD 2017]

$$B \ll \frac{\Lambda_{\rm QCD}^2}{2\mu} \Rightarrow k_{\rm max} \ll \Lambda_{\rm QCD} \longrightarrow \text{unlikely at } \sqrt{s} \sim \text{GeV} - \text{TeV}$$

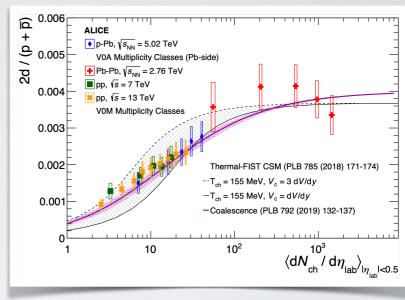
This seems to be confirmed by data [AE, Guerrieri, Maiani, Piccinini, on light nuclei Pilloni, Polosa, Riquer - PRD 2015]

... although this intuition has been [e.g., Artoisenet, Braaten - PRD 2010] challenged

The presence of a "medium" should have the effect of softening the molecular constituents

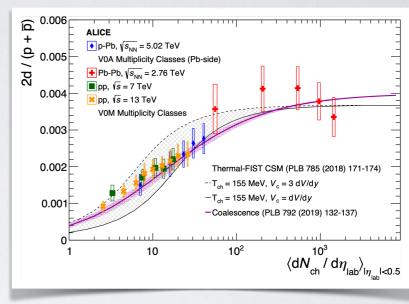
The presence of a "medium" should have the effect of softening the molecular constituents

The molecular yield is expected higher than in standard pp-collisions


The presence of a "medium" should have the effect of softening the molecular constituents

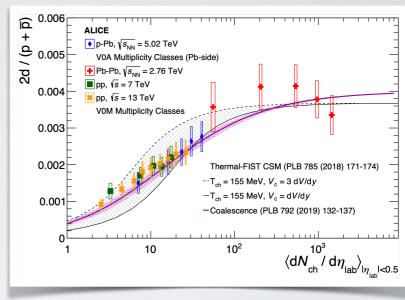
The molecular yield is expected higher than in standard pp-collisions

On the contrary, tetraquarks should dissociate more due to higher number of collisions

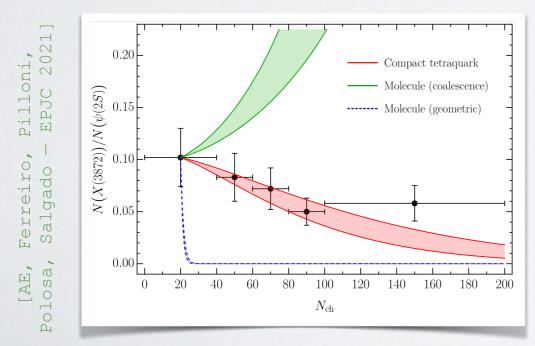

Confirmed by ALICE data on deuteron production in high-multiplicity *pp*-collisions

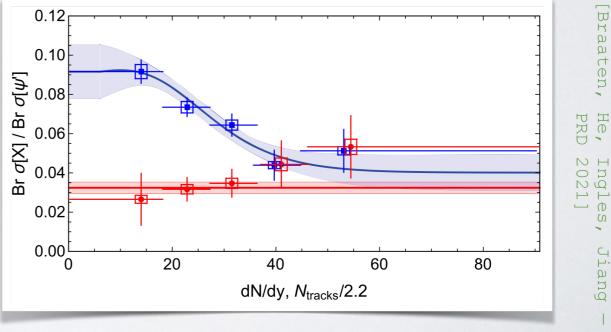
[ALICE - PLB 2019, EPJC 2020]

Confirmed by ALICE data on deuteron production in high-multiplicity *pp*-collisions


Data by LHCb, instead, show a decrease in the number of X(3872) vs $\psi(2S)$

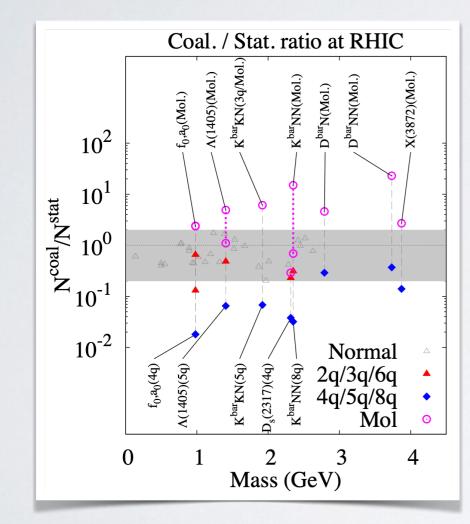
[ALICE - PLB 2019, EPJC 2020]


Confirmed by ALICE data on deuteron production in high-multiplicity *pp*-collisions


Data by LHCb, instead, show a decrease in the number of X(3872) vs $\psi(2S)$

[ALICE - PLB 2019, EPJC 2020]

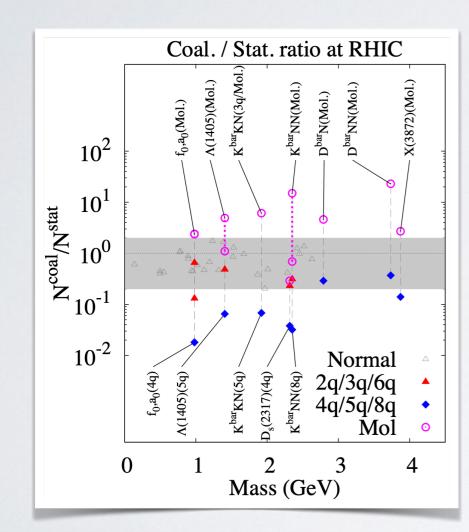
This points to a tetraquark behavior... but adding one more fitting parameter molecules can also be accommodated

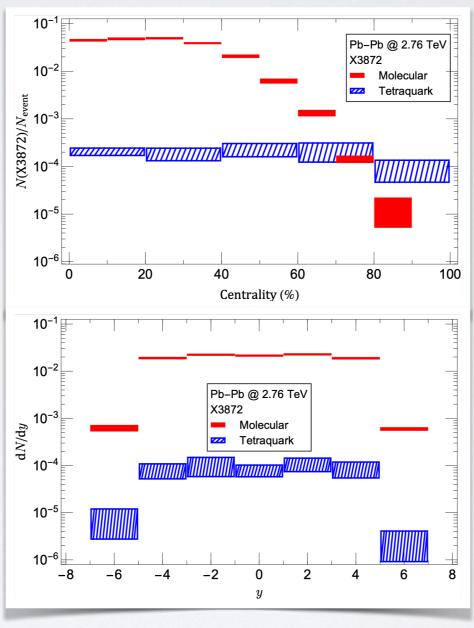


Angelo Esposito VIFAI 2025

HEAVY ION

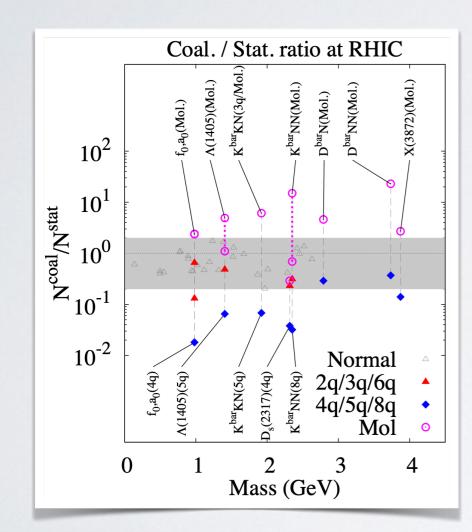
A similar trend (more molecules, less tetraquarks) is also expected in heavy ion collisions

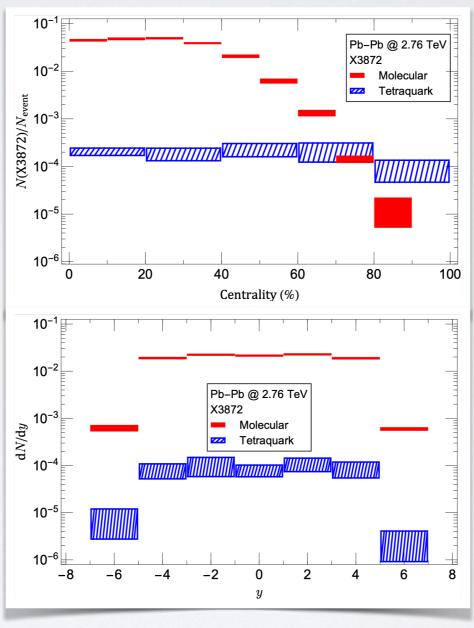

A similar trend (more molecules, less tetraquarks) is also expected in heavy ion collisions


[ExHIC coll. - PRL 2011]

A similar trend (more molecules, less tetraquarks) is also expected in

heavy ion collisions

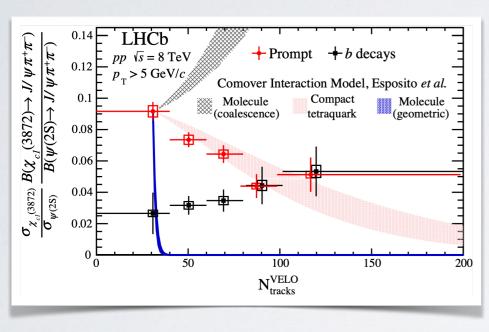

[ExHIC coll. - PRL 2011]


[Zhang et al. - PRL 2021]

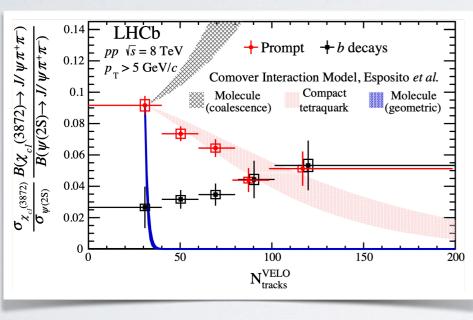
A similar trend (more molecules, less tetraquarks) is also expected in

heavy ion collisions

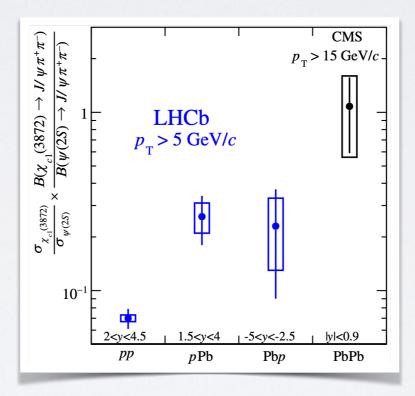
[ExHIC coll. - PRL 2011]

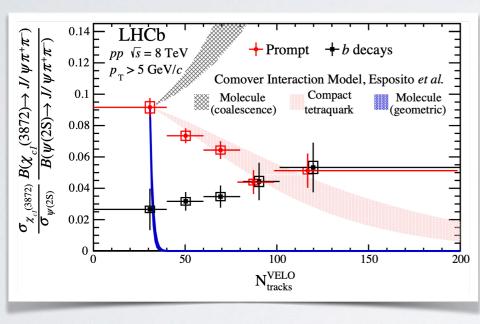

[Chen et al. - PRC 2022]

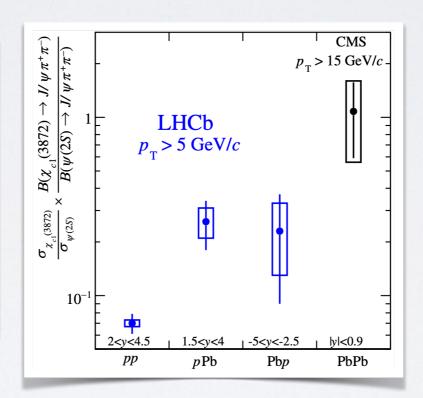
Although, not

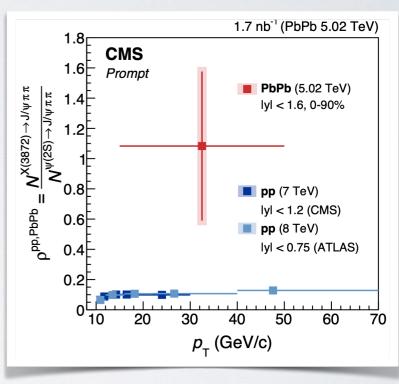

always...

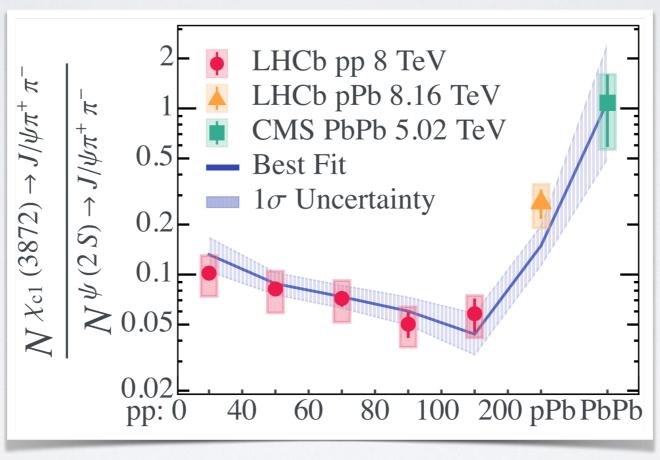
[Zhang et al. - PRL 2021]



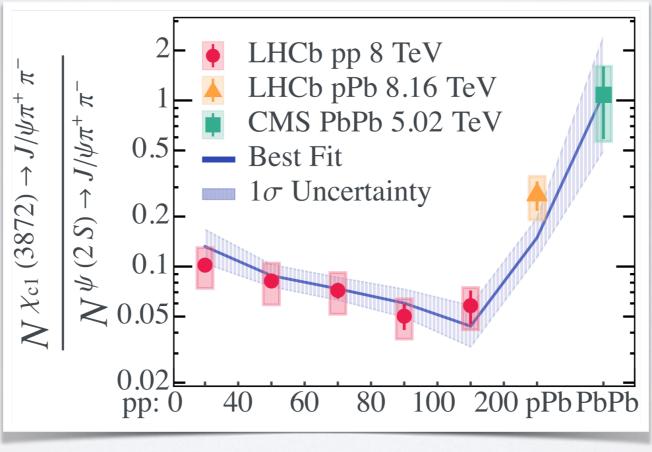

[LHCb - PRL 2021]


[LHCb - PRL 2021]


[LHCb - PRL 2024]


[LHCb - PRL 2021]

[LHCb - PRL 2024]



[CMS - PRL 2022]

[Guo, Guo, Liao, Wang, Xing - PRC 2024]

However, experimental data show a curious trend when going from small to large systems $(pp \rightarrow pPb \rightarrow PbPb)$

[Guo, Guo, Liao, Wang, Xing - PRC 2024]

Could be due to new creation mechanisms kicking in for larger systems

"QCD media" treat different internal structures differently -> they can be very interesting probes on the nature of exotic hadrons

"QCD media" treat different internal structures differently -> they can be very interesting probes on the nature of exotic hadrons

Many more studies have been done...

"QCD media" treat different internal structures differently -> they can be very interesting probes on the nature of exotic hadrons

Many more studies have been done...

• extended to different exotic hadrons ($Z_c(3900), X(4014), ...$)

[e.g., Abreu, Magalhães, Vieira, Navarra - J.Phys.G 2024; Montaña, Ramos, Tolos, Torres-Rincon - PRD 2023]

"QCD media" treat different internal structures differently -> they can be very interesting probes on the nature of exotic hadrons

Many more studies have been done...

- extended to different exotic hadrons $(Z_c(3900), X(4014), ...)$ [e.g., Abreu, Magalhães, Vieira, Navarra J.Phys.G 2024; Montaña, Ramos, Tolos, Torres-Rincon PRD 2023]
- studied the effects on different properties

 [e.g., Albaladejo, Nieves, Tolos PRC 2021]

Angelo Esposito 20/27 WIFAI 2025

"QCD media" treat different internal structures differently -> they can be very interesting probes on the nature of exotic hadrons

Many more studies have been done...

- extended to different exotic hadrons $(Z_c(3900), X(4014), ...)$ [e.g., Abreu, Magalhães, Vieira, Navarra J.Phys.G 2024; Montaña, Ramos, Tolos, Torres-Rincon PRD 2023]
- studied the effects on different properties

 [e.g., Albaladejo, Nieves, Tolos PRC 2021]
- · ...and so on...

"QCD media" treat different internal structures differently -> they can be very interesting probes on the nature of exotic hadrons

Many more studies have been done...

- extended to different exotic hadrons $(Z_c(3900), X(4014), ...)$ [e.g., Abreu, Magalhães, Vieira, Navarra J.Phys.G 2024; Montaña, Ramos, Tolos, Torres-Rincon PRD 2023]
- studied the effects on different properties

 [e.g., Albaladejo, Nieves, Tolos PRC 2021]
- · ...and so on...

However: are we sure we can learn anything about puzzling particles from systems we do not fully understand yet?

FRAMEWORKS FOR THE INTERNAL STRUCTURE

[Brambilla, Brodsky, Germani, Grinstein, Guo, Hanart, Lebed, Maiani, Piccini, Polosa, Vairo, and many more...]

The most natural thing to do (ideally) would be to study the actual internal structure of these states

The most natural thing to do (ideally) would be to study the actual internal structure of these states

Tetraquark

How are the four quarks organized? How do they talk to each other?

The most natural thing to do (ideally) would be to study the actual internal structure of these states

Tetraquark

How are the four quarks organized? How do they talk to each other?

Very first attempt:

$$H = \sum_{i} m_{i} + \sum_{i,j} \kappa_{i,j} \mathbf{S}_{i} \cdot \mathbf{S}_{j}$$

[Maiani, Piccini, Polosa, Riquer - PRD 2005; Maiani, Piccini, Polosa, Riquer - PRD 2014]

The most natural thing to do (ideally) would be to study the actual internal structure of these states

Tetraquark

How are the four quarks organized? How do they talk to each other?

Very first attempt:

$$H = \sum_{i} m_{i} + \sum_{i,j} \kappa_{i,j} \mathbf{S}_{i} \cdot \mathbf{S}_{j}$$

[Maiani, Piccini, Polosa, Riquer - PRD 2005; Maiani, Piccini, Polosa, Riquer - PRD 2014]

Molecule

What's the mechanism binding two hadrons together?

The most natural thing to do (ideally) would be to study the actual internal structure of these states

Tetraquark

How are the four quarks organized? How do they talk to each other?

Very first attempt:

$$H = \sum_{i} m_{i} + \sum_{i,j} \kappa_{i,j} \mathbf{S}_{i} \cdot \mathbf{S}_{j}$$

[Maiani, Piccini, Polosa, Riquer - PRD 2005; Maiani, Piccini, Polosa, Riquer - PRD 2014]

Molecule

What's the mechanism binding two hadrons together?

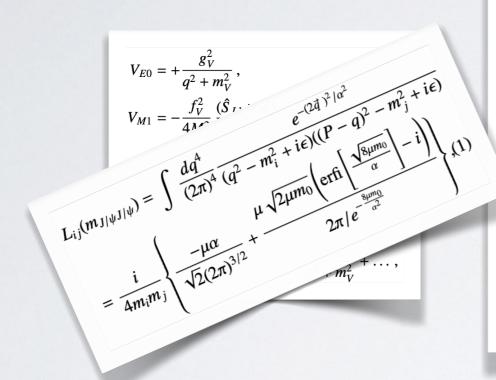
Very first attempt:

$$V_{\pi}(r) \sim \frac{e^{-\mu r}}{m_{\pi}r}$$

[Swanson - PLB 2004; Tornqvist - PLB 2004]

In both instances, models, parameters and mechanism have quickly proliferated

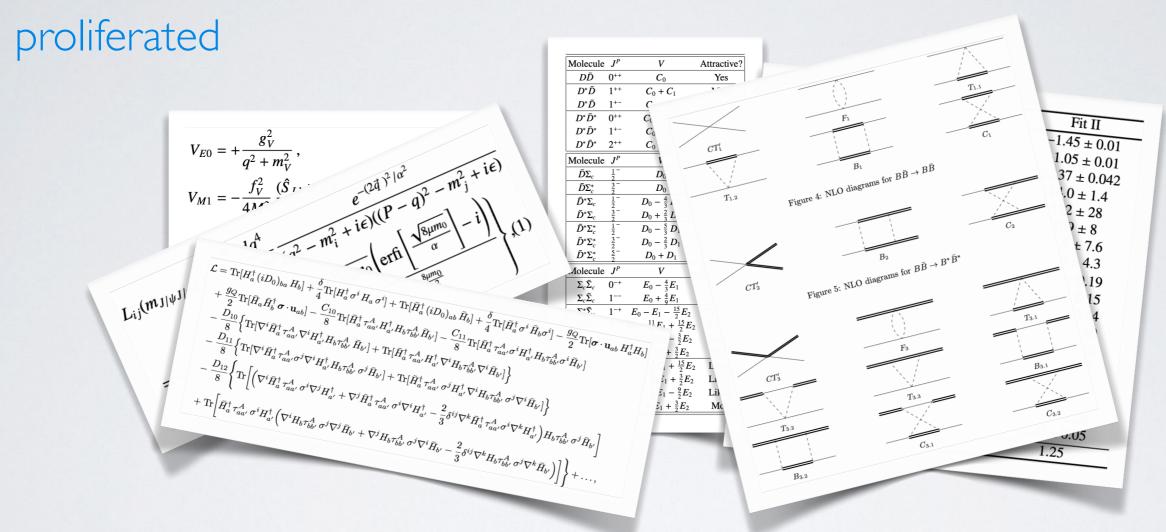
In both instances, models, parameters and mechanism have quickly


proliferated

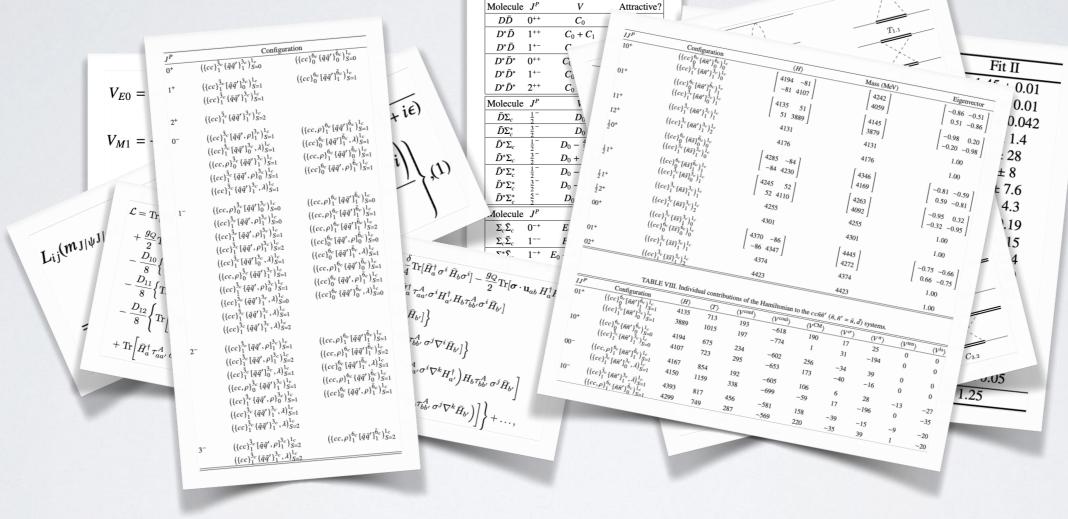
$$\begin{split} V_{E0} &= + \frac{g_V^2}{q^2 + m_V^2} \,, \\ V_{M1} &= - \frac{f_V^2}{4M^2} \, \frac{(\hat{S}_{L1} \times \vec{q}) \cdot (\hat{S}_{L2} \times \vec{q})}{q^2 + m_V^2} \\ &= - \frac{2}{3} \, \frac{f_V^2}{4M^2} \, \hat{S}_{L1} \cdot \hat{S}_{L2} \, \frac{q^2}{q^2 + m_V^2} + \dots \,, \\ V_{E2} &= + \frac{h_V^2}{4M^4} \, \frac{(\hat{Q}_{L1,ij} \, q_i q_j) \, (\hat{Q}_{L2,lm} \, q_l q_m)}{q^2 + m_V^2} \\ &= + \frac{h_V^2}{36M^4} \, (\hat{Q}_{L1,ij} \, \hat{Q}_{L2,ij}) \, \frac{q^4}{q^2 + m_V^2} + \dots \,, \end{split}$$

Molecule	J^P	V	Attractive'
$Dar{D}$	0++	C_0	Yes
$D^*ar{D}$	1++	$C_0 + C_1$	Most
$D^*ar{D}$	1+-	$C_0 - C_1$	Likely
$D^*\bar{D}^*$	0++	$C_0 - 2C_1$	Likely
$D^*\bar{D}^*$	1+-	$C_0 - C_1$	Likely
$D^*\bar{D}^*$	2++	$C_0 + C_1$	Most
Molecule	J^P	V	Attractive'
$ar{D}\Sigma_c$	1 -	D_0	Yes
$\bar{D}\Sigma_c^*$	$\frac{1}{2}$ $\frac{3}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	D_0	Yes
$\bar{D}^*\Sigma_c$	1 -	$D_0 - \frac{4}{3} D_1$	Likely
$\bar{D}^*\Sigma_c$	$\frac{3}{2}$	$D_0 + \frac{2}{3} D_1$	Most
$\bar{D}^*\Sigma_c^*$	1 -	$D_0 - \frac{5}{3} D_1$	Likely
$\bar{D}^*\Sigma_c^*$	$\frac{3}{2}$	$D_0 - \frac{2}{3} D_1$	Likely
$ar{D}^*\Sigma_c^*$	<u>5</u> -	$D_0 + D_1$	Most
Molecule		V	Attractive'
$\Sigma_c \bar{\Sigma}_c$	0-+	$E_0 - \frac{4}{3}E_1$	Likely
$\Sigma_car{\Sigma}_c$	1		Yes
$\Sigma_c^* \bar{\Sigma}_c$	1-+	$E_0 - E_1 - \frac{15}{2}E_2$	Likely
$\Sigma_c^* \bar{\Sigma}_c$	1	$E_0 - \frac{11}{9}E_1 + \frac{15}{2}E_2$	Likely
$\Sigma_c^* \bar{\Sigma}_c$	2-+	$E_0 + \frac{1}{3}E_1 - \frac{3}{2}E_2$	Likely
$\Sigma_c^* \bar{\Sigma}_c$	2	$E_0 + E_1 + \frac{3}{2}E_2$	Most
$\Sigma_c^* \bar{\Sigma}_c^*$	0^{-+}	$E_0 - \frac{15}{9}E_1 + \frac{15}{2}E_2$	Likely
$\Sigma_c^* \bar{\Sigma}_c^*$	1	$E_0 - \frac{11}{9}E_1 + \frac{3}{2}E_2$	Likely
$\Sigma_c^* \bar{\Sigma}_c^*$	2-+	$E_0 - \frac{1}{3}E_1 - \frac{9}{2}E_2$	Likely
$\Sigma_c^* \bar{\Sigma}_c^*$	3	$E_0 + E_1 + \frac{3}{2}E_2$	Most

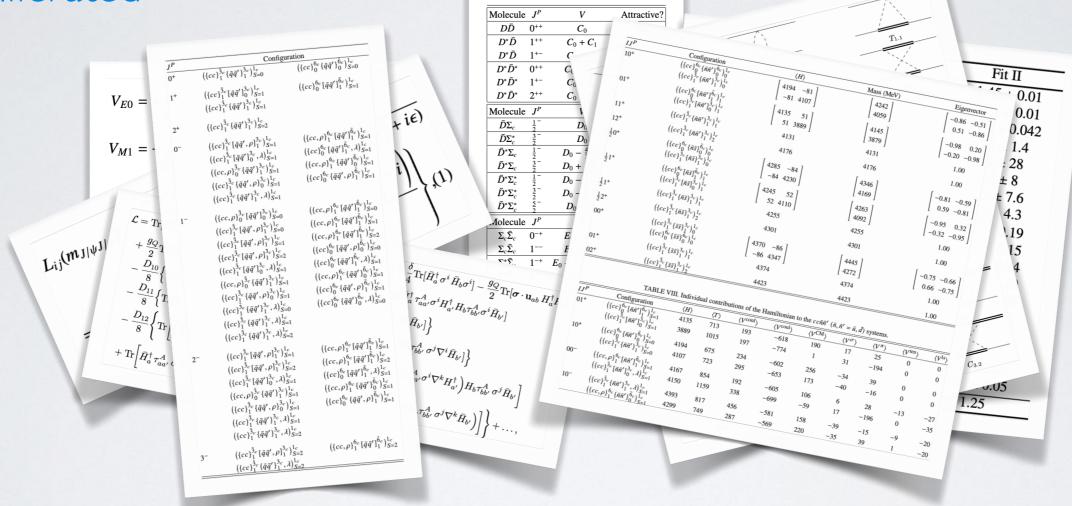
In both instances, models, parameters and mechanism have quickly


proliferated

	Molecule	J^P	V	Attractive?
	$D\bar{D}$	0++	C_0	Yes
	$D^*ar{D}$	1++	$C_0 + C_1$	Most
	$D^*ar{D}$	1+-	$C_0 - C_1$	Likely
	$D^*\bar{D}^*$	0++	$C_0 - 2C_1$	Likely
	$D^*\bar{D}^*$	1+-	$C_0 - C_1$	Likely
	$D^*ar{D}^*$	2++	$C_0 + C_1$	Most
	Molecule	J^P	V	Attractive?
	$ar{D}\Sigma_c$	$\frac{\frac{1}{2}^{-}}{\frac{3}{2}^{-}}$ $\frac{1}{2}^{-}$ $\frac{1}{2}^{-}$ $\frac{3}{2}^{-}$	D_0	Yes
	$\bar{D}\Sigma_c^*$	$\frac{3}{2}^{-}$	D_0	Yes
	$\bar{D}^*\Sigma_c$	1-	$D_0 - \frac{4}{3} D_1$	Likely
	$\bar{D}^*\Sigma_c$	$\frac{3}{2}^{-}$	$D_0 + \frac{2}{3} D_1$	Most
	$\bar{D}^*\Sigma_c^*$	$\frac{1}{2}$ $\frac{1}{3}$ $ \frac{1}{2}$ $\frac{1}{2}$ $ \frac{1}{2}$ $ \frac{1}{2}$ $ -$	$D_0 - \frac{5}{3} D_1$	Likely
V	$\bar{D}^*\Sigma_c^*$	$\frac{3}{2}^{-}$	$D_0 - \frac{2}{3} D_1$	Likely
1	$\bar{D}^*\Sigma_c^*$		$D_0 + D_1$	Most
	Molecule	J^P	V	Attractive?
	$\Sigma_c \bar{\Sigma}_c$	0-+	$E_0 - \frac{4}{3}E_1$	Likely
	$\Sigma_c \bar{\Sigma}_c$	1	$E_0 + \frac{4}{9}E_1$	Yes
	$\Sigma_c^* \bar{\Sigma}_c$	1-+	$E_0 - E_1 - \frac{15}{2}E_2$	Likely
	$\Sigma_c^* \bar{\Sigma}_c$	1	$E_0 - \frac{11}{9}E_1 + \frac{15}{2}E_2$	Likely
	$\Sigma_c^* \bar{\Sigma}_c$	2^{-+}	$E_0 + \frac{1}{3}E_1 - \frac{3}{2}E_2$	Likely
	$\Sigma_c^* \bar{\Sigma}_c$	2	$E_0 + E_1 + \frac{3}{2}E_2$	Most
	$\Sigma_c^* \bar{\Sigma}_c^*$	0^{-+}	$E_0 - \frac{15}{9}E_1 + \frac{15}{2}E_2$	Likely
	$\Sigma_c^* \bar{\Sigma}_c^*$	1	$E_0 - \frac{11}{9}E_1 + \frac{3}{2}E_2$	Likely
	$\Sigma_c^* \bar{\Sigma}_c^*$	2^{-+}	$E_0 - \frac{1}{3}E_1 - \frac{9}{2}E_2$	Likel
	$\Sigma_c^* \bar{\Sigma}_c^*$	3	$E_0 + E_1 + \frac{3}{2}E_2$	Mos
		_		


Parameters		
c_0 (GeV ⁻¹)	Fit I	
C' (GeV-1)	-1.52 ± 0.02	Fit II
c_0' (GeV ⁻¹)	-0.946 ± 0.058	-1.45 ± 0.01
$ g'_{direct}/g_{direct} $	0.0767 ± 0.0204	-1.05 ± 0.01
$g_{J/\psi J/\psi}/g_{direct}$	8.53 ± 3.64	0.137 ± 0.042
$ g_{\eta_{cX_{c1}}}/g' $	91.6 ± 3.64	14.0 ± 1.4
$ \mathcal{S}J/\psi_{h_c}/\mathcal{G}_J $	91.6 ± 75.4	112 ± 28
$\delta_{\chi_{c0}\chi_{c1}}/g_{direct}$	69.7 ± 16.1	109 ± 8
$ g_{\chi_{c0\chi'_{c1}}}/g_{direct} $	33.3 ± 8.2	38.5 ± 7.6
$\phi_{J/\psi J/\psi}$ (rad)	25.8 ± 10.6	10.0 ± 7.6
$\phi_{\eta_{c\chi_{c1}}}$ (rad)	1.53 ± 0.51	19.0 ± 4.3
$\phi_{J/\psi h_c}$ (rad)	2.69 ± 0.20	3.16 ± 0.19
$\phi_{\chi_{c0}\chi_{c1}}$ (rad)	4.40 ± 0.33	2.80 ± 0.15
$\phi_{\chi_{c0}\chi'_{c1}}$ (rad)	2.14 ± 0.18	2.95 ± 0.24
$\alpha_{v_1v_2}$ (C.13)	2.00 ± 0.33	2.89 ± 0.20
$\alpha_{J/\psi J/\psi}$ (GeV)	1.71 ± 0.01	3.23 ± 0.20
$\alpha_{\eta_c\chi_{c1}}$ (GeV)	1.71 ± 0.01	2.30 ± 0.21
$\alpha_{J/\psi h_c}$ (GeV)	1.71 ± 0.01	1.20 ± 0.21
$\alpha_{\chi_{c0}\chi_{c1}}$ (GeV)	1.71 ± 0.01 1.71 ± 0.01	1.20 ± 0.03
$\alpha_{\chi_{c0\chi'_{c1}}}$ (GeV)	1.71 ± 0.01	1.73 ± 0.26
$\chi^2/d.o.f$	1.71 ± 0.01	5.20 ± 0.05
	1.41	
		1.25

In both instances, models, parameters and mechanism have quickly


In both instances, models, parameters and mechanism have quickly

In both instances, models, parameters and mechanism have quickly

proliferated

Beside a few exceptions, properties and spectrum are extremely model

dependent -- hardly the right way to shed light on the issue

A more systematic framework leverages the existing hierarchies

A more systematic framework leverages the existing hierarchies

Since $m_Q\gg m_q$, $\Lambda_{\rm QCD}$ one develops a Born-Oppenheimer approximation for the 4-quark constituents

[e.g., Braaten, Langmack, Smith - PRD 2014; Berwein, Brambilla, Castellà, Vairo - PRD 2015; Maiani, Polosa, Riquer - PRD 2019; Allaman, Ekterachian, Nardi, Rattazzi, Stelz - JHEP 2024; Braaten, Bruschini - PLB 2025]

A more systematic framework leverages the existing hierarchies

Since $m_Q \gg m_q$, $\Lambda_{\rm QCD}$ one develops a Born-Oppenheimer approximation for the 4-quark constituents

[e.g., Braaten, Langmack, Smith - PRD 2014; Berwein, Brambilla, Castellà, Vairo - PRD 2015; Maiani, Polosa, Riquer - PRD 2019; Allaman, Ekterachian, Nardi, Rattazzi, Stelz - JHEP 2024; Braaten, Bruschini - PLB 2025]

Solve the light quark problem with static heavy quarks

Light quark energy as effective potential for the heavy quarks

$m_Q \gg m_q$, $\Lambda_{\rm QCD}$

A more systematic framework leverages the existing hierarchies

Since $m_Q\gg m_q$, $\Lambda_{\rm QCD}$ one develops a Born-Oppenheimer approximation for the 4-quark constituents

[e.g., Braaten, Langmack, Smith - PRD 2014; Berwein, Brambilla, Castellà, Vairo - PRD 2015; Maiani, Polosa, Riquer - PRD 2019; Allaman, Ekterachian, Nardi, Rattazzi, Stelz - JHEP 2024; Braaten, Bruschini - PLB 2025]

Solve the light quark problem with static heavy quarks

Light quark energy as effective potential for the heavy quarks

The separation of scales makes the problem clean and with corrections that can be estimated systematically

The systematic EFT for the Born-Oppenheimer approximation has

been developed -> see Antonio Vairo's talk!

[Berwein, Brambilla, Castellà, Vairo - PRD 2015; Brambilla, Krein, Castellà, Vairo - PRD 2018; Soto, Castellà - PRD 2020; Berwein, Brambilla, Mohapatra, Vairo - PRD 2024; Brambilla, Mohapatra, Vairo - PRL 2025]

The systematic EFT for the Born-Oppenheimer approximation has

been developed -> see Antonio Vairo's talk!

[Berwein, Brambilla, Castellà, Vairo - PRD 2015; Brambilla, Krein, Castellà, Vairo - PRD 2018; Soto, Castellà - PRD 2020; Berwein, Brambilla, Mohapatra, Vairo - PRD 2024; Brambilla, Mohapatra, Scirpa, Vairo - PRL 2025]

Different approaches have been employed to work out this Born-Oppenheimer approximation

The systematic EFT for the Born-Oppenheimer approximation has

been developed -> see Antonio Vairo's talk!

[Berwein, Brambilla, Castellà, Vairo - PRD 2015; Brambilla, Krein, Castellà, Vairo - PRD 2018; Soto, Castellà - PRD 2020; Berwein, Brambilla, Mohapatra, Vairo - PRD 2024; Brambilla, Mohapatra, Scirpa, Vairo - PRL 2025]

Different approaches have been employed to work out this Born-Oppenheimer approximation

Approximate analytical solutions

[e.g., Maiani, Polosa, Riquer - PRD 2019; Maiani, Pilloni, Polosa, Riquer - PLB 2023; Germani, Niliani, Polosa - EPJC 2024; Germani, Grinstein, Polosa - JHEP 2025]

The systematic EFT for the Born-Oppenheimer approximation has been developed

see Antonio Vairo's talk!

[Berwein, Brambilla, Castellà, Vairo - PRD 2015; Brambilla, Krein, Castellà, Vairo - PRD 2018; Soto, Castellà - PRD 2020; Berwein, Brambilla, Mohapatra, Vairo - PRD 2024; Brambilla, Mohapatra, Scirpa, Vairo - PRL 2025]

Different approaches have been employed to work out this Born-Oppenheimer approximation

Approximate analytical solutions

[e.g., Maiani, Polosa, Riquer - PRD 2019; Maiani, Pilloni, Polosa, Riquer - PLB 2023; Germani, Niliani, Polosa - EPJC 2024; Germani, Grinstein, Polosa - JHEP 2025]

Lattice QCD for the heavy quark potential

[e.g., Braaten, Langmack, Smith - PRL 2014; Braaten, Langmack, Smith - PRD 2014]

The systematic EFT for the Born-Oppenheimer approximation has

been developed -> see Antonio Vairo's talk!

[Berwein, Brambilla, Castellà, Vairo - PRD 2015; Brambilla, Krein, Castellà, Vairo - PRD 2018; Soto, Castellà - PRD 2020; Berwein, Brambilla, Mohapatra, Vairo - PRD 2024; Brambilla, Mohapatra, Scirpa, Vairo - PRL 2025]

Different approaches have been employed to work out this Born-Oppenheimer approximation

Approximate analytical solutions

[e.g., Maiani, Polosa, Riquer - PRD 2019; Maiani, Pilloni, Polosa, Riquer - PLB 2023; Germani, Niliani, Polosa - EPJC 2024; Germani, Grinstein, Polosa - JHEP 2025]

Lattice QCD for the heavy quark potential

[e.g., Braaten, Langmack, Smith - PRL 2014; Braaten, Langmack, Smith - PRD 2014]

• Large-N and large m_Q expansion

[e.g., Allaman, Ekterachian, Nardi, Rattazzi, Stelz - JHEP 2024]

I have neglected many studies and results on the topic

I have neglected many studies and results on the topic

An (very personal) honorable mention goes to:

I have neglected many studies and results on the topic

An (very personal) honorable mention goes to:

• Attempt to a simple "smoothness" argument to provide a selection rule on the existence of exotic states, and an explanation of their fine tunings [Braaten, Bruschini - PLB 2025; Alasiri, Braaten, Bruschini - 2507.06991]

Angelo Esposito 26/27 WIFAI 2025

I have neglected many studies and results on the topic

An (very personal) honorable mention goes to:

- Attempt to a simple "smoothness" argument to provide a selection rule on the existence of exotic states, and an explanation of their fine tunings [Braaten, Bruschini PLB 2025; Alasiri, Braaten, Bruschini 2507.06991]
- Study of the radiative decays of the X [Grinstein, Maiani, Polosa PRD 2024; Germani, Grinstein, Polosa JHEP 2025; Colangelo, De Fazio, Roselli PRD 2025]

Angelo Esposito 26/27 WIFAI 2025

I have neglected many studies and results on the topic

An (very personal) honorable mention goes to:

- Attempt to a simple "smoothness" argument to provide a selection rule on the existence of exotic states, and an explanation of their fine tunings [Braaten, Bruschini PLB 2025; Alasiri, Braaten, Bruschini 2507.06991]
- Study of the radiative decays of the X [Grinstein, Maiani, Polosa PRD 2024; Germani, Grinstein, Polosa JHEP 2025; Colangelo, De Fazio, Roselli PRD 2025]
- Study of different states. Most notably, the fully charmed $X(6900) \sim cc\bar{c}\bar{c}$ [e.g., Richard, Valcarce, Vijande PRC 2018; Becchi, Ferretti, Giachino, Maiani, Santopinto PLB 2020; Dong, Baru, Guo, Hanhart, Nefediev, Zou Sci. Bull. 2021]

Angelo Esposito 26/27 WIFAI 2025

I have neglected many studies and results on the topic

An (very personal) honorable mention goes to:

- Attempt to a simple "smoothness" argument to provide a selection rule on the existence of exotic states, and an explanation of their fine tunings [Braaten, Bruschini PLB 2025; Alasiri, Braaten, Bruschini 2507.06991]
- Study of the radiative decays of the X [Grinstein, Maiani, Polosa PRD 2024; Germani, Grinstein, Polosa JHEP 2025; Colangelo, De Fazio, Roselli PRD 2025]
- Study of different states. Most notably, the fully charmed $X(6900) \sim cc\bar{c}\bar{c}$ [e.g., Richard, Valcarce, Vijande PRC 2018; Becchi, Ferretti, Giachino, Maiani, Santopinto PLB 2020; Dong, Baru, Guo, Hanhart, Nefediev, Zou Sci. Bull. 2021]
- Production in ultra-periferal heavy ion collisions

[e.g., Moreira, Bertulani, Gonçalves, Navarra — PRD 2016; AE, Manzari, Pilloni, Polosa — PRD 2021; Gonçalves, Moreira — PLB 2021; Niu, Ding, Wang, Yang — CPL 2025]

Understanding the nature of exotic hadrons is one of the most compelling open problems in low energy QCD

Understanding the nature of exotic hadrons is one of the most compelling open problems in low energy QCD

Theory finds itself in need to navigate a huge plethora of available experimental data

Understanding the nature of exotic hadrons is one of the most compelling open problems in low energy QCD

Theory finds itself in need to navigate a huge plethora of available experimental data

We are in need of systematic, clear cut frameworks, which can allow us to provide a non-ambiguous answer to the question "what are these states?"

Understanding the nature of exotic hadrons is one of the most compelling open problems in low energy QCD

Theory finds itself in need to navigate a huge plethora of available experimental data

We are in need of systematic, clear cut frameworks, which can allow us to provide a non-ambiguous answer to the question "what are these states?"

Thank you for the attention!