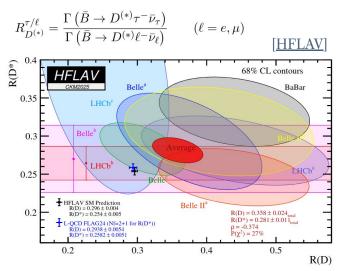
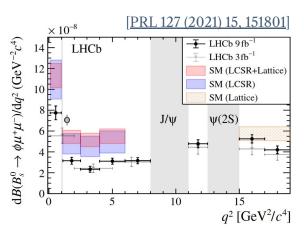
Rare B decays at Belle & Belle II

WIFAI 2025

Vidya Sagar Vobbilisetti
on behalf of the Belle II collaboration

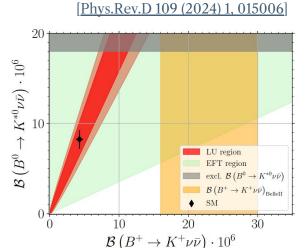


Outline


- **➤** Electroweak penguin B decays = New Physics
- > Belle II experiment and B-tagging technique
- \succ Latest results in rare b \rightarrow s τ decays
- **>** Latest results in rare b → s $v \overline{v}$ decays
- > Summary and prospects

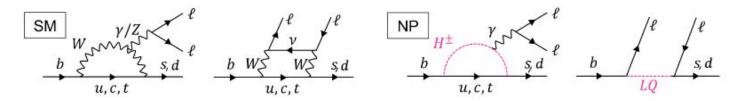
Motivation for EWP B decays

 \triangleright B anomalies in semileptonic decays and recently B \rightarrow Kvv point towards possible new physics which can be present in the loops:



Combined deviation of 3.8 σ from SM. \Rightarrow Larger coupling to τ

Amplitude analysis of $B^0 \to K^{*0} \mu^+ \mu^-$ shows a 2.1 σ deviation in \mathscr{C}_9 Wilson coefficient.


[IHEP 09 (2024) 026]

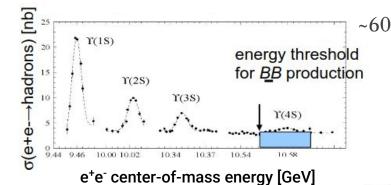
Excess in $B^+ \to K^+ v \overline{v}$ from SM \Rightarrow LFU violation

Motivation for EWP B decays

 \triangleright B anomalies in semileptonic decays and recently B \rightarrow Kvv point towards possible new physics which can be present in the loops:

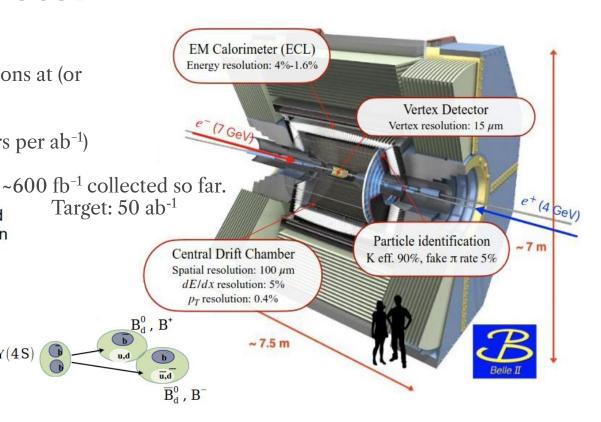
- > Flavour Changing Neutral Current prohibited @ tree level in the standard model (SM):
 - Ideal probes of Standard Model and unique portals to New Physics
- New physics models propose larger coupling to third generation and/or larger mass $\Rightarrow \tau$ (like leptoquarks) (Yukawa-like)
 - \circ May cause enhancement in B \rightarrow K τ τ, violating Lepton Flavor Universality (LFU)
 - May even allow Lepton Flavor Violation (LFV) like in B \rightarrow (K) τ ℓ

[See more details by Arthur tomorrow]


- > New physics models propose larger coupling to v.
 - \circ No intermediate gamma \Rightarrow Theoretically cleaner

The Belle II detector

2 B's and nothing else

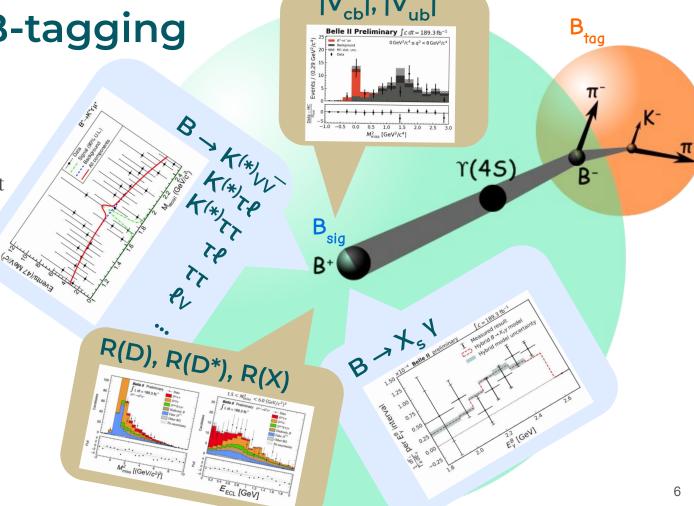

SuperKEKB: asymmetric e⁻e⁺ collisions at (or close to) Υ(4S) resonance.

Belle II: B-factory ($\sim 1.1 \times 10^9$ BB pairs per ab⁻¹)

Near 4π detector coverage 2 B's and nothing else from Y(4S)

 \Rightarrow B-tagging and flavour tagging

All results today are based on 365 fb⁻¹ collected at Belle II Can be combined with Belle (711 fb⁻¹).

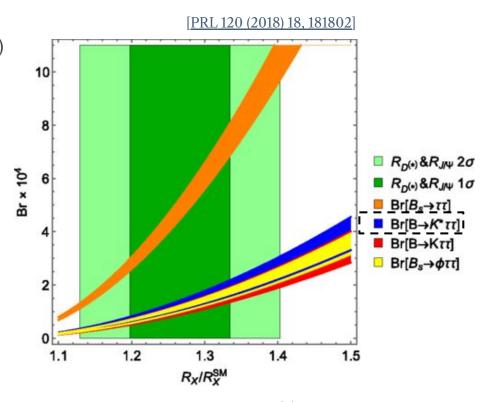

Hadronic B-tagging

A common tool

It allows reconstructing missing energy decays (neutrino or inclusive) at Belle II.

Filters BB events with high purity.

Can provide the direction of the signal B-meson and residual energy (unique to e⁻e⁺ machines).


$B^0 \to K^{*0} \tau \tau$

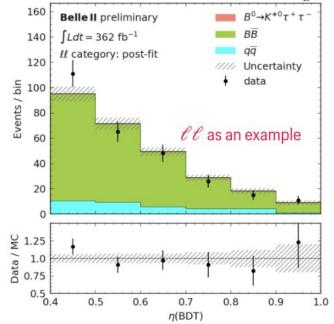
- Allowed in SM but highly suppressed: O(10⁻⁷) [Phys. Rev. Lett. 120, 181802 (2018)]
- Excess in $B \to K\nu\nu$, combined with $R_{K(^*)}$ constraints, suggests LFU violation in τ

[Phys.Lett.B 848 (2024) 138411] [Phys.Rev.D 109 (2024) 1, 015006]

- > Challenge: Two τ in the final state \Rightarrow no signal peaking kinematic observable
 - o low efficiency
 - low K*0 momentum
- Current best UL: BF < 3.1 x 10⁻³ @ Belle using older hadronic B tagging Signal as no residual energy in calorimeter.

[Phys. Rev. D 108, L011102]

NP models describing $R(D^{(*)})$ predict ×10³ branching fraction enhancement

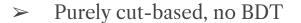

[PRL 135 (2025) 15, 151801]

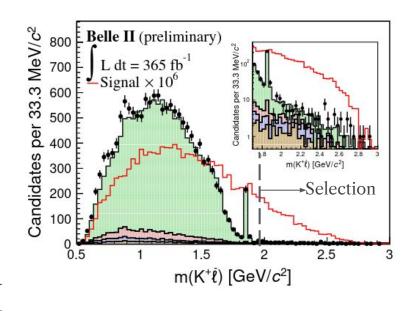
$B^0 \to K^{*0} \tau \tau$

- \rightarrow SM prediction: O(10⁻⁷)
- > Current best UL: BF < 3.1 x 10⁻³ @ Belle
- Two τ in the final state [Phys. Rev. D 108, L011102] \Rightarrow no signal peaking kinematic observable
- ightharpoonup au o one-prong (μ , e, π , ρ) reconstruction
- > Categorized into: $\ell\ell$, $\ell\pi$, $\pi\pi$, ρX (X = ℓ , π , ρ)
- > BDT based on: missing energy, residual energy in calorimeter, q², m(K*t₂)
- Additional calibrations are performed in same-flavor, off-resonance samples.
- \rightarrow Validation using embedded sample with $B^0 \rightarrow K^{*0} J/\psi$

Twice better limit with only half sample wrt Belle! Better tagging + more categories + BDT classifier...

Simultaneous fit of BDT score to 4 categories




$$\mathcal{B}(B^0 \to K^{*0}\tau^+\tau^-) < 1.8 \times 10^{-3}$$

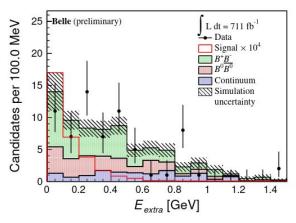
at 90% CL.

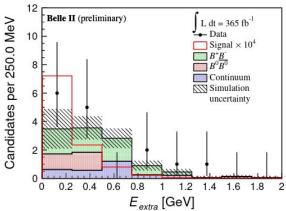
Belle II Preliminary

$B^+ \to K^+ \tau \tau$

- > SM prediction: O(10⁻⁷) [PRD 107 (2023) 1, 014511]
- Current best UL: BF < 2.2 x 10⁻³ @ BaBar (469 fb⁻¹)
 [PRL 118 (2017) 3, 031802]
- Two τ in the final state \Rightarrow no signal peaking kinematic observable
- Combine Belle and Belle II datasets for higher statistics
- Only τ → lepton (μ, e) reconstruction
 Primary background: B⁺ → D [→ K ℓ⁺ ν] ℓ⁻ ν
- ightharpoonup Charm-depleted signal region in M (K⁺ ℓ ⁻) > 1.9 GeV
- Require no extra tracks and kinematically suppress simpler background (B \rightarrow K J/ ψ and B \rightarrow K ψ (2S)).
- ightharpoonup Require large squared missing mass, p_{ℓ} and small $E_{\rm extra}$ (residual energy in calorimeter).

$B^+ \to K^+ \tau \tau$


Compare counts with background-only expectation, extrapolated from sidebands in $E_{\rm extra}$, q^2 and $M_{\rm bc}^{\rm tag}$ sidebands.


	Belle	Belle II
$\overline{N_{ m bkg}}$	$14.05 \pm 1.60 \pm 1.85$	$3.48 \pm 0.73 \pm 0.91$
$N_{ m obs}$	11	6
$\epsilon_{\rm sig}(\times 10^{-5})$		$1.26 \pm 0.04 \pm 0.17$
$\mathcal{B}(B^+ \to K^+ \tau^+ \tau^-) (\times 10^{-4})$	$-2.76^{+3.31}_{-2.70} \pm 2.24$	$5.05^{+5.62}_{-4.27} \pm 2.46$
Observed (expected) limit	$0.6 (1.0) \times 10^{-3}$	$2.1\ (1.2)\times 10^{-3}$

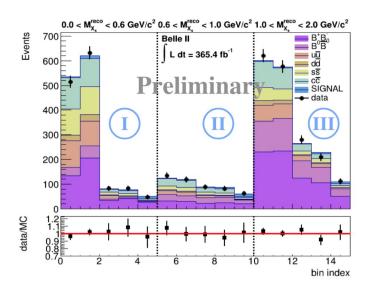
No evidence for signal.

Combined upper limit $\mathcal{B}(B^+ \to K^+\tau\tau) < 0.87 \cdot 10^{-3}$ at 90% CL.


2.6 times better than previous BaBar measurement and complementary with LHCb.

$B \to X_s \nu \bar{\nu}$

- SM prediction: $(2.9 \pm 0.3) \times 10^{-5}$ [JHEP02(2015)184]
- Theoretically clean and complementary to exclusive searches
- Only measurement from ALEPH: $\mathcal{B} < 6.4 \times 10^{-4}$
- Only possible at e⁺e⁻ machines [EPJC 19,2130227(2001)]
- Sum-of-exclusive method: Reconstructed total of 30 exclusive final states:
 - \circ K + $i\pi$ with 0 < i < 4
 - $3K + i\pi$ with 0 < i < 1
- Multivariate analysis (BDT) for background suppression \rightarrow output (\mathscr{O})
- Calibrate simulations and obtain systematic uncertainties with
 - Off-resonance data
 - $B \to X_s J/\psi (\to \mu^+ \mu^-)$: BDT feature validation $\mathscr O$ and M_{bc}^{tag} sidebands

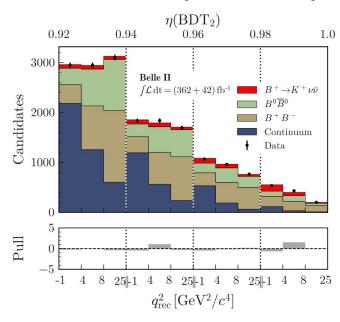

$$B \to X_s \nu \bar{\nu}$$

2D signal region \mathscr{O} x M_{Xs}^{reco} plane mapped into a 1D index in three regions enhanced in K, K*and $(Kn\pi)_{\text{non-resonant}}$ modes

			$\mathcal{B} \ [10^{-5}]$		
$M_{X_s} \left[\text{GeV}/c^2 \right]$	ϵ	$N_{ m sig}$	Central value	$\mathrm{UL}_{\mathrm{obs}}$	$\mathrm{UL}_{\mathrm{exp}}$
[0, 0.6] *	0.26%	$10^{+18}_{-17}{}^{+18}_{-16}$	$0.5^{+0.9}_{-0.8}{}^{+0.9}_{-0.8}$	2.5	2.4
[0.6, 1.0]	0.12%	$37^{+27}_{-25}{}^{+31}_{-26}$	$3.8^{+2.8}_{-2.6}^{+3.3}_{-2.7}$	10.1	7.3
$[1.0,m_B]$	0.06%	$33^{+44}_{-42}{}^{+63}_{-53}$	$7.3^{+9.6}_{-9.2}{}^{+13.8}_{-11.5}$	35.1	27.9

No signal at $\mathcal{B} = [1.2^{+0.9}_{-0.9}(\text{stat.})^{+1.4}_{-1.1}(\text{syst.})],$

yielding best upper limit 3.6×10^{-4} at 90% CL.

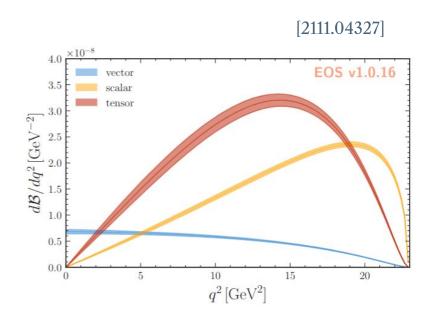

^{*}Compatible with the hadronically-tagged Belle II $B^+ \to K^+ \nu \, \bar{\nu}$

Belle II Preliminary

Reinterpreting $B^+ \rightarrow K^+ v \bar{v}$

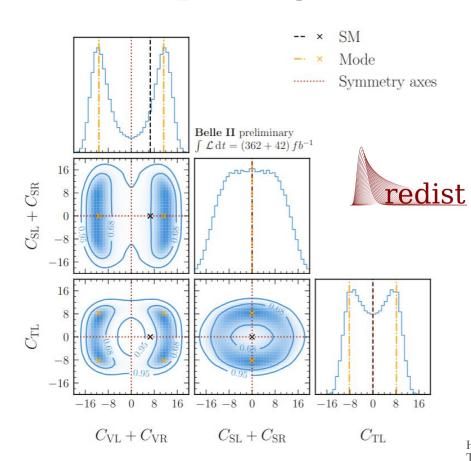
- ➤ Belle II has reported "Evidence for $B^+ \to K^+ v \bar{v}$ decays"
- \triangleright Combining Inclusive Tag Analysis with Hadronic Tag Analysis exceeds SM prediction by 2.7σ .
- Measured using SM signal templates.
- > What BSM models does this favor?
- Reweighting must take into account experimental acceptance and efficiencies.
- Re-simulating event-by-event is expensive and non-reproducible.
- Re-weight the number density of expected events after selection for the cross section $\sigma(q^2)$.

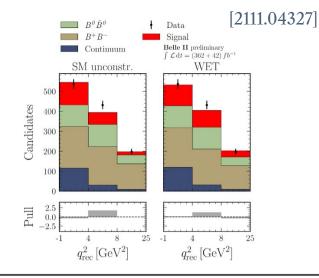
[PRD 109.112006]


Reinterpreting $B^+ \rightarrow K^+ v \bar{v}$

First demonstration of the feasibility using Weak Effective Theory using 6 dimensional operators.

WET = low energy EFT including NP above the electroweak scale


$$\frac{d\mathcal{B}}{dq^2} = \alpha(q^2) \left| C_{\text{VL}} + C_{\text{VR}} \right|^2$$
$$+\beta(q^2) \left| C_{\text{SL}} + C_{\text{SR}} \right|^2$$
$$+\gamma(q^2) \left| C_{\text{TL}} \right|^2$$


SM contains only vector contribution.

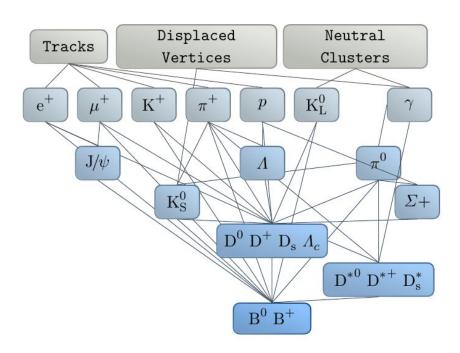
Belle II Preliminary

Reinterpreting $B^+ \rightarrow K^+ v \bar{v}$

Parameters	Mode	68% HDI	95% HDI
$ C_{\mathrm{VL}} + C_{\mathrm{VR}} $	11.3	[7.82, 14.6]	[1.86, 16.2]
$ C_{\mathrm{SL}} + C_{\mathrm{SR}} $	0.00	[0.00, 9.58]	[0.00, 15.4]
$ C_{\mathrm{TL}} $	8.21	[2.29, 9.62]	[0.00, 11.2]

WET is favored over SM with large $|C_{VL} + C_{VR}|$ and non-zero $|C_{TL}|$.

Highest Density credible Intervals (HDI): The smallest possible credible interval at a given probability level.


Summary

- Rare $b \rightarrow s\ell\ell$ and $b \rightarrow sv\bar{v}$ decays are powerful probes for physics beyond SM.
- Belle II is accumulating high-quality data and leveraging the potential of combining it with Belle data
 - suitable environment to study missing energy modes.
 - healthy complementarity with LHCb
- Many ongoing analyses to search rare decays and exploring techniques beyond hadronic B-tagging.

Backup

Hadronic B-tagging tool at Belle & Belle II

called Full Event Interpretation (FEI)

Designed for Belle II software, now used with Belle data also.

For each decay, BDTs trained on MC.

B⁺-tagging uses 36 decays. But only 11 of them, essentially B \rightarrow D^(*) m π^{\pm} n π^{0} , gives >80% of the efficiency.

Total efficiency < 1%.

But, large data-MC discrepancy over the years

Calibration factors used as normalization to account for it

- ⇒ large source of systematics
- ⇒ And also poor performance?