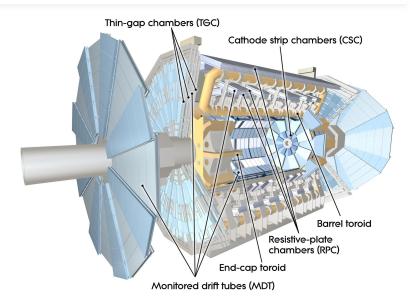
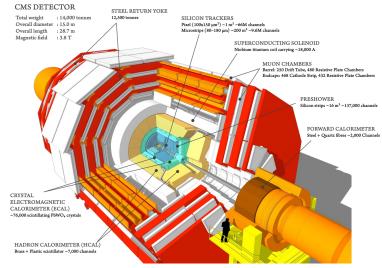

Status and prospects of rare decay searches at ATLAS and CMS

M. Buonsante [1] on behalf of the CMS and ATLAS Collaborations

Rare flavour decays

- Suppressed in the SM
 - Process involving FCNC transitions
 - e.g. $b \rightarrow sl^+l^-$
 - Violation of fundamental symmetries (LUV, LFV and LNV)
 - Not discussed in this contribution, see tomorrow's talk
 - Other rare decays
 - e.g. radiative multilepton decays of neutral mesons
- Sensitive to New Physics scenarios
 - Deviations in BF or angular distributions





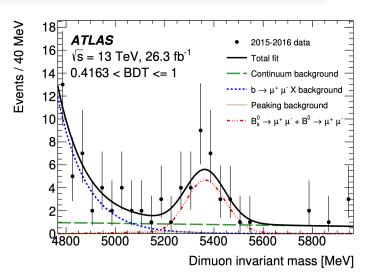
B Physics at ATLAS and CMS

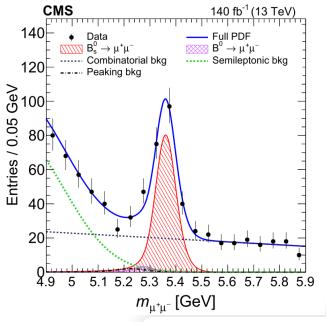
- Differences wrt B-factory (e^+e^-)
 - \triangle Abundant production of B_s^0 , B_c^+ and b baryons
 - ▼ More challenging event reconstruction in pp collisions
- Comparison with LHCb
 - Higher integrated luminosity
 - ▼ Trigger thresholds restrict low-p_T acceptance
 - \blacktriangledown Limited particle identification (PID) (no K/ π distinction)
- B Physics searches mainly relies on muon triggers!

Outline

- Process involving FCNC transitions
 - $B^0_{(s)} o \mu^+\mu^-$ decay and properties
 - CMS full Run2 analysis (<u>Phys. Lett. B 842 (2023) 137955</u>) & ATLAS partial Run2 analysis (<u>JHEP 04 (2019)</u>
 098 and <u>JHEP 09 (2023) 199</u>)
 - $D^0 \rightarrow \mu^+ \mu^-$ CMS Run3 (<u>CMS-PAS-BPH-23-008</u>)
 - Angular analysis of $B^0 \to K^{*0} \mu^+ \mu^-$ at CMS (Phys. Lett. B 864 (2025) 139406)
- Other rare decays
 - Observation of the $J/\psi \rightarrow \mu^+\mu^-\mu^+\mu^-$ decay (Phys. Rev. D 109, L111101)
 - First observation of the rare 4μ decay of the η meson (Phys. Rev. Lett. 131 (2023) 091903)
 - Observation of the $\Lambda_h^0 \to J/\psi \Xi^- K^+$ decay (Eur. Phys. J. C 84 (2024) 1062)
- Prospects for rest of Run3 and HL-LHC

$B_{(s)}^0 \rightarrow \mu^+ \mu^-$: BFs

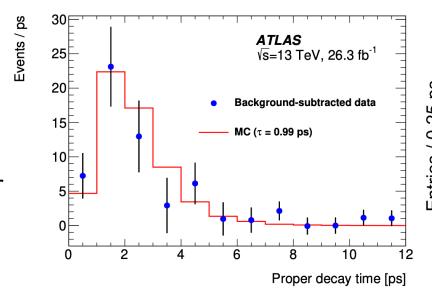

Motivations:

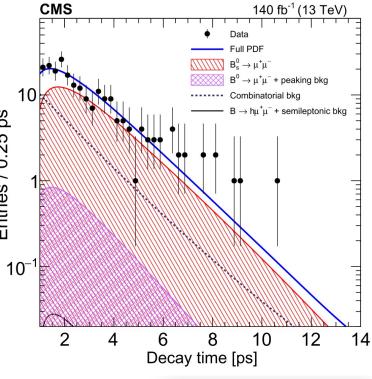

- Highly suppressed in the SM (Penguin and box diagrams, helicity suppressed)
- Clean final state, precise theoretical predictions
- Small deviations already observed $b \to sll$ processes (see $B^0 \to K^* \mu^+ \mu^-$)

Analysis strategy:

- pp collisions at 13 TeV
 - Partial Run 2 dataset for ATLAS (2015-2016)
 - Full Run 2 for CMS
- Similar strategy for both experiments
- Main background suppression via MVA techniques
 - \blacksquare Trained with data sidebands for CMS and $bb\to \mu\mu X$ MC for ATLAS
- BF measured as a function of $B^+ \to J/\psi K^+$

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \mathcal{B}(B^+ \to J/\psi K^+) \frac{N_{B_s^0 \to \mu^+ \mu^-}}{N_{B^+ \to J/\psi K^+}} \times \frac{\varepsilon_{B^+ \to J/\psi K^+}}{\varepsilon_{B_s^0 \to \mu^+ \mu^-}} \frac{f_u}{f_s}$$

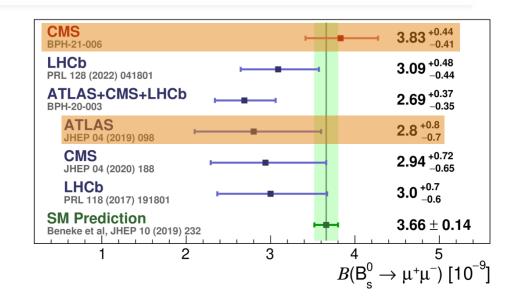

$B_s^0 o \mu^+ \mu^-$: effective lifetime

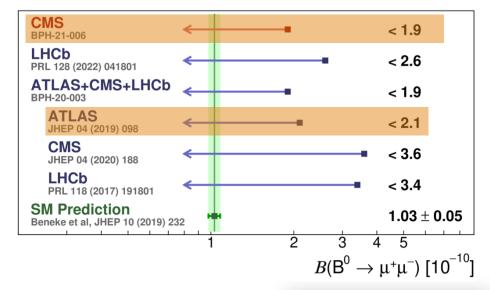

Motivations:

- In the SM only the heavy mass eigenstate of B_S^0 (B_{SH}^0) can decay in 2 muons
 - In new physics scenarios, like minimal supersymmetric SM extensions, also $B_{s\,
 m L}^0$ can contribute
 - $\tau_{B_{S\,H}^0} \tau_{B_{S\,L}^0} = 1.624 1.431 = 0.193 \ ps \rightarrow A \ B_{S\,L}^0$ should be observable
 - Complementary observable to BF (related to different set of effective operators)

Analysis strategy:

- Same datasets and similar selections as previous slide
- Lifetime estimation:
 - CMS: unbinned 3D ML fit to mass, lifetime and lifetime error
 - ATLAS: fit bkg-subtracted lifetime distribution with MC template

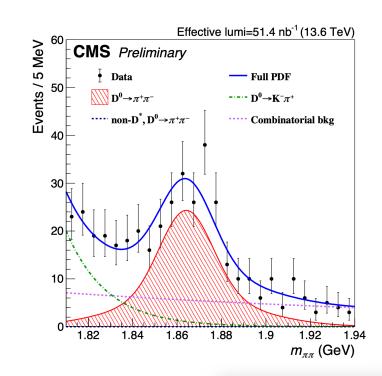




$B_s^0 o \mu^+ \mu^-$: Results

- $B_s^0 o \mu^+\mu^-$ BF:
 - Similar precision for CMS and LHCb using full Run2 searches
 - ATLAS full Run2 still underway
 - Full LHC combination once ATLAS will be published
- $B^0 \rightarrow \mu^+ \mu^-$ BF:
 - No sensitivity yet, only ULs
 - CMS has current best ULs (excluding combination)
 - Improvement expected with Run3 data
- $B_s^0 \to \mu^+ \mu^-$ effective lifetime:
 - ATLAS: $\tau_{\mu\mu}^{obs} = 0.99^{+0.42}_{-0.07} (stat.) \pm 0.17 (syst.) ps$
 - CMS: $\tau = 1.83^{+0.23}_{-0.20}(stat) \pm 0.04 (syst) ps$
 - Compatible with SM expected $\tau_{B_{SH}^0} =$ 1.624 ±0.009 ps

Search for $D^0 o \mu^+ \mu^-$


Motivations:

- Rare charmed hadrons decays involves $c \to u$ transitions
- More challenging theoretical computations due to long-distance contributions
 - Expected BF for $D^0 \rightarrow \mu^+\mu^- = \mathcal{O}(3\times10^{-13})$
 - Various physics models R-parity violating supersymmetry, and extra fermions or gauge bosons, predict enhancements in this decay rate

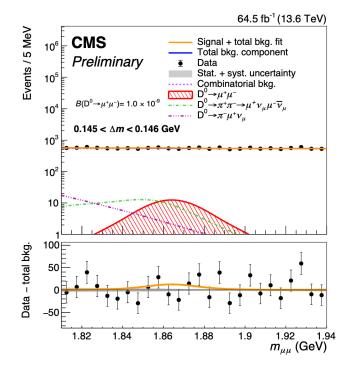
Analysis strategy:

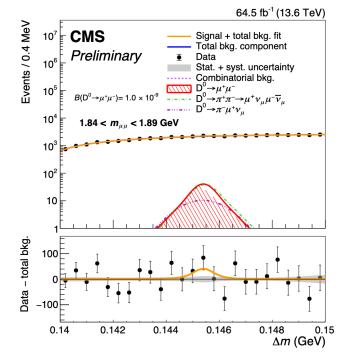
- pp collisions at 13.6 TeV (64.5 /fb) (CMS 2022-2023 Run3 dataset)
 collected via new inclusive dimuon trigger
- Looking for D^0 produced from $D^{*+} \to D^0 \pi^+$ to reduce combinatorial background
- Normalization relies on $D^0 o \pi^+\pi^-$ channel
 - Collected via zero bias trigger

$$\mathcal{B}(D^0 \to \mu^+ \mu^-) = \mathcal{B}(D^0 \to \pi^+ \pi^-) \frac{N_{D^0 \to \mu^+ \mu^-}}{N_{D^0 \to \pi^+ \pi^-}} \frac{\varepsilon_{D^0 \to \pi^+ \pi^-}}{\varepsilon_{D^0 \to \mu^+ \mu^-}}$$

Search for $D^0 o \mu^+ \mu^-$

Analysis strategy:


- Variables of interest $m(D^0)$ and $\Delta m = m(D^{*+}) m(D^0)$
- Background rejected via pre-selections and a custom MVA discriminator trained with right side bands of the Δm distribution as background proxy and simulations for signal

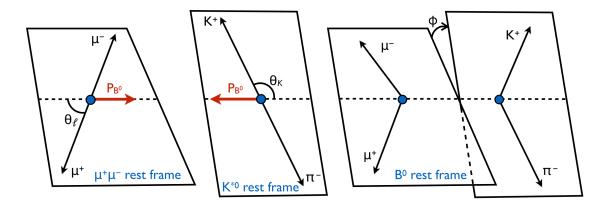

Results:

- No significant excess is observed
- Limits on the BF are extracted via 2D unbinned maximum likelihood fit of $m(D^0)$ and Δm

$$\mathcal{B}(D^0 \to \mu^+ \mu^-) < 2.6 \times 10^{-9} \otimes 95\% \text{ C.L.}$$

Best limit up to date thanks to the use of the new Run 3 di-muon trigger




Motivations:

- Compared to simpler modes, such as $B_s^0 \to \mu^+\mu^-$, provides access to a larger set of observables
 - High sensitivity to deviations from SM expectations
- Tensions with the SM have arisen from recent results (e.g. LHCb)

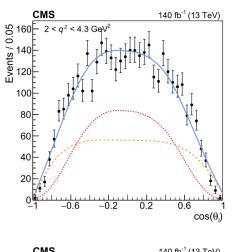
Analysis strategy:

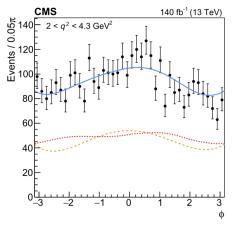
- pp collisions at 13 TeV (140 /fb) (Full CMS Run2 dataset) collected via dimuon + track triggers
- Decay rate expressed in terms of angular variables, invariant mass and a set of observables $(P_i^{(\prime)})$ related to the Wilson coefficients [as in <u>JEP 01</u> (2013) 048

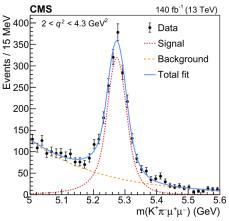
LHCb Run 1 + 2016

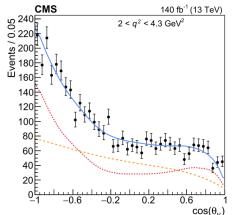
SM from DHMV

angular variables

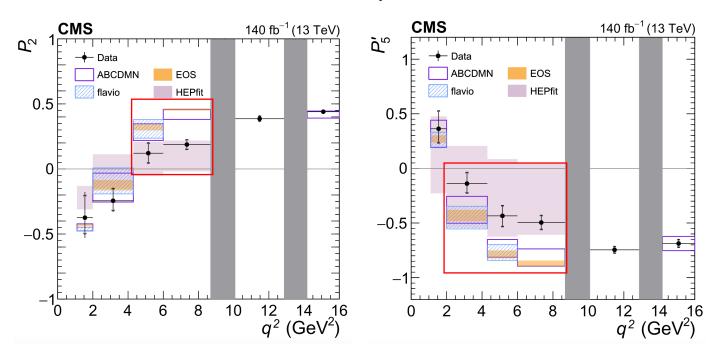


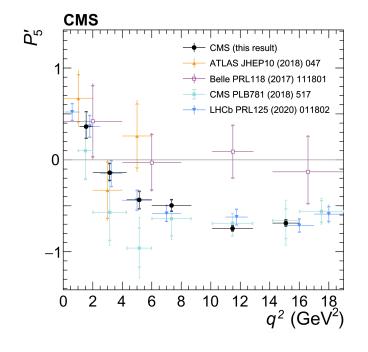



Results:


Simultaneously fit the mass and angular variables distributions for different in 6 different q^2 bins

	-	-	
	$1.1 < q^2 < 2 \mathrm{GeV}^2$	$2 < q^2 < 4.3 \text{GeV}^2$	$4.3 < q^2 < 6 \mathrm{GeV}^2$
$F_{ m L}$	$0.709^{\ +0.073}_{\ -0.054}\pm 0.021$	$0.810^{+0.036}_{-0.030}\pm0.016$	$0.714^{~+0.032}_{~-0.030} \pm 0.012$
P_1	$0.09 \begin{array}{c} +0.23 \\ -0.20 \end{array} \pm 0.04$	$-0.29 ^{+0.19}_{-0.21} \pm 0.05$	$-0.30~^{+0.15}_{-0.17}~\pm0.04$
P_2	$-0.37 ^{+0.17}_{-0.13} \pm 0.10$	$-0.244^{+0.094}_{-0.077}\pm0.039$	$0.121 \ ^{+0.080}_{-0.076} \ \pm 0.030$
P_3	$-0.05 ^{+0.21}_{-0.22} \pm 0.04$	$-0.19 ^{+0.20}_{-0.22} \pm 0.09$	$-0.03 \pm 0.14 \pm 0.08$
P_4'	$-0.44 \begin{array}{c} +0.29 \\ -0.32 \end{array} \pm 0.11$	$-0.43 ^{~+0.16}_{~-0.19} \pm 0.08$	$-0.72~^{+0.15}_{-0.16}~\pm0.07$
P_5'	$0.36 \begin{array}{c} +0.17 \\ -0.13 \end{array} \pm 0.03$	$-0.14 ^{~+0.10}_{~-0.09} \pm 0.04$	$-0.44 \pm 0.10 \pm 0.03$
P_6'	$0.000^{~+0.094}_{~-0.097} \pm 0.021$	$0.108^{+0.075}_{-0.071}\pm0.018$	$0.129 ^{~+0.074}_{~-0.071} \pm 0.011$
P_8'	$0.16 \pm 0.37 \pm 0.11$	$0.73 ^{~+0.18}_{~-0.19} \pm 0.06$	$-0.01 \pm 0.22 \pm 0.04$

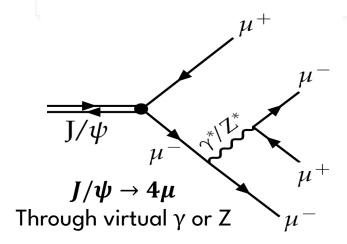




Results:

- Simultaneously fit the mass and angular variables distributions for different in 6 different q^2 bins
- Main discrepancies observed in P_2 and P_5'
- Result still limited statistically

 Discrepancies in P'₅ consistent with previous results:



Observation of the $J/\psi ightarrow \mu^+\mu^-\mu^+\mu^-$ decay

Motivations:

- Predicted by the Standard Model (SM) with decay fraction (BR): $\mathcal{B}(J/Psi \rightarrow 4\mu) = (9.74 \pm 0.05) \times 10^{-7}$ [PhysRevD.104.094023]
- Sensitive to the presence of new physics [s10052-020-08816-9]

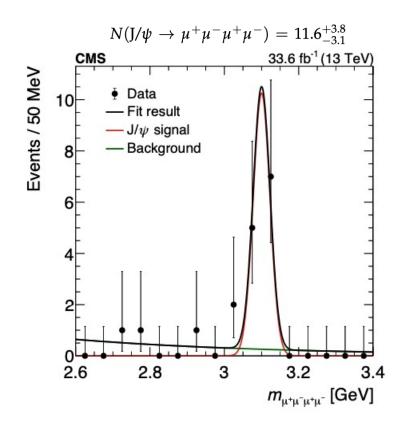
Analysis strategy:

- pp collisions at 13 TeV (33.6 /fb) (2018 B Parking: high rate (~3 kHz), delayed processing)
- Offline selections based on common vertex, vertex probability and on the kinematics of the J/ ψ
- The BR of $J/\psi \to 4\mu$ is determined in terms of that of $J/\psi \to 2\mu$:

$$\frac{\mathcal{B}_{J/\psi\to 4\mu}}{\mathcal{B}_{J/\psi\to 2\mu}} = \frac{N_{J/\psi\to 4\mu}}{N_{J/\psi\to 2\mu}} / \frac{\varepsilon_{J/\psi\to 4\mu}}{\varepsilon_{J/\psi\to 2\mu}}$$

 $\mathcal{B}(J/\psi \to 2\mu) = (5.961 \pm 0.033) \times 10^{-2}$ [PDG]

Obtained from MC



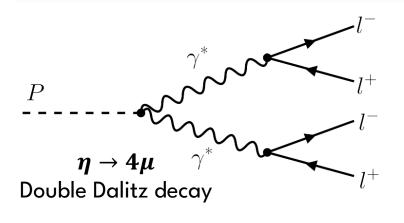
Observation of the $J/\psi o \mu^+\mu^-\mu^+\mu^-$ decay

Results:

- A peak in the spectrum of the invariant mass of the 4 muons is observed
 - Statistical significance > 7σ

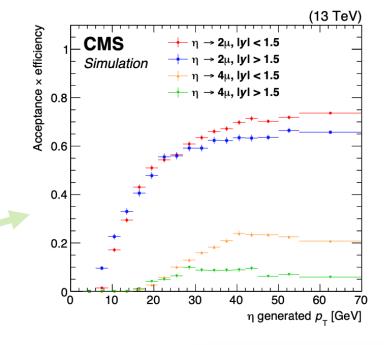
$$\frac{\mathcal{B}_{J/\psi \to 4\mu}}{\mathcal{B}_{J/\psi \to 2\mu}} = (16.9^{+5.5}_{-4.6}(\text{stat}) \pm 0.6(\text{syst})) \times 10^{-6}$$

$$\mathcal{B}(J/\psi \to 4\mu) = (10.1^{+3.3}_{-2.7}(\text{stat}) \pm 0.4(\text{syst})) \times 10^{-7}$$


- Compatible with the expected value of the SM:
 - $\mathcal{B}(I/\psi \to 4\mu) = (9.74 \pm 0.05) \times 10^{-7}$

Observation of the rare 4μ decay of the η meson

Motivations:

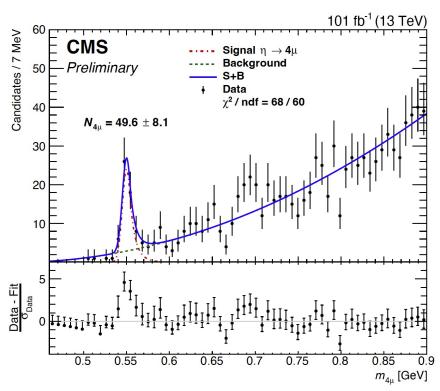

- Double-Dalitz decay used as test of the SM
 - Sensitive to new physics [Rep. Prog. Phys. 86 016201]
 - Contribute to light-by-light hadronic component of the muon anomalous magnetic moment

Analysis strategy:

- pp collisions at 13 TeV (~101/fb) (Run2 high rate «Scouting **stream**», save only a part of the info per event)
- The BR of $\eta \to 4\mu$ is determined in terms of that of $\eta \to 2\mu$:

$$\mathcal{B}_{4\mu} = \frac{N_{4\mu}}{\mathcal{B}_{2\mu}} = \frac{N_{4\mu}}{\sum_{i,j} N_{2\mu}^{i,j} \frac{A_{4\mu}^{i,j}}{A_{2\mu}^{i,j}}},$$

Acceptance and efficiency for $\eta \longrightarrow 4\mu$ and $\eta \rightarrow 2\mu$ measured in simulations for p_T and pseudorapidity bins



10⁻⁶ [PDG]

Observation of the rare 4μ decay of the η meson

Results:

- A peak in the spectrum of the invariant mass of the 4 muons is observed
 - Statistical significance $> 5\sigma$

$$\frac{\mathcal{B}_{4\mu}}{\mathcal{B}_{2\mu}} = (0.9 \pm 0.1(\text{stat}) \pm 0.1(\text{syst})) \times 10^{-3}$$

$$\mathcal{B}(\eta \to 4\mu) = (5.0 \pm 0.8(\text{stat}) \pm 0.7(\text{syst}) \pm 0.7(\mathcal{B}_{2\mu})) \times 10^{-9}$$

Compatible with the expected value of the SM:

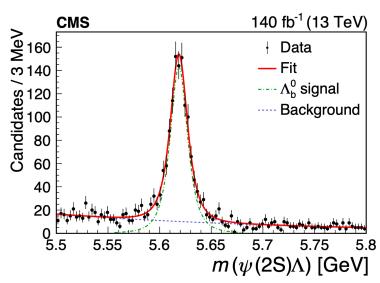
$$\mathcal{B}(\eta \to 4\mu) = (3.98 \pm 0.15) \times 10^{-9}$$

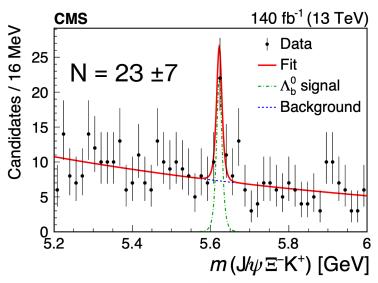
[Chinese Phys. C 42 (2018) 023109]

Observation of the $\Lambda_b^0 o J/\psi \; \Xi^- K^+$ decay

Motivations:

- lacktriangle Recent discovery of pentaquark-like structures in J/ ψp and J/ $\psi \Lambda^0$
- Study of heavier baryons in the decay products, like Ξ⁻ could unveil the existence of doubly or triply strange pentaquarks


Analysis strategy:


- pp collisions at 13 TeV (140 /fb) (Full CMS Run2 dataset)
- Challenging reconstruction due to 3-vertex cascade decay
- Similar to previous analysis, measure $\Lambda_b^0 \to J/\psi \; \Xi^- K^+$ BF relative to $\Lambda_b^0 \to \psi(2s)\Lambda$ via:

$$\frac{\mathcal{B}(\Lambda_b^0 \to J/\psi \Xi^- K^+)}{\mathcal{B}(\Lambda_b^0 \to \psi(2S)\Lambda)} = \frac{N(\Lambda_b^0 \to J/\psi \Xi^- K^+)}{N(\Lambda_b^0 \to \psi(2S)\Lambda)} \frac{\epsilon_{\psi(2S)\Lambda}}{\epsilon_{J/\psi \Xi^- K^+}} \frac{\mathcal{B}(\psi(2S) \to J/\psi \pi^+ \pi^-)}{\mathcal{B}(\Xi^- \to \Lambda \pi^-)}$$

 $[3.38 \pm 1.02 \text{ (stat)} \pm 0.61 \text{ (syst)} \pm 0.03 \text{ (}\mathcal{B})]\%$

Summary and perspectives

Great progress in reconstructing di-muon signatures at CMS and ATLAS

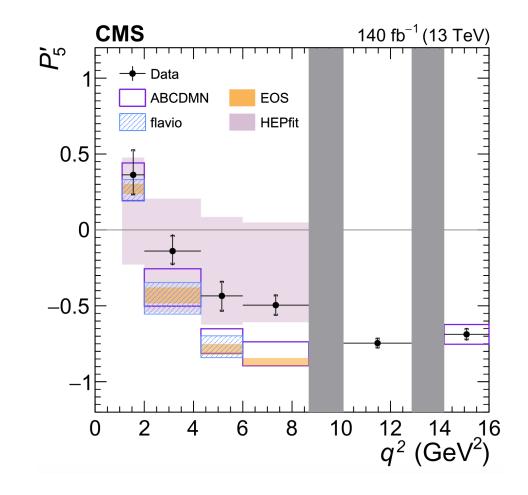
- Performance now almost comparable to dedicated experiments such as **LHCb**
- Most of the current results are based on **Run 2 datasets**
- Run 3 dedicated trigger strategies are already expanding the physics reach
 - CMS: the new **Run 3 di-muon trigger** shows impressive performance in rare decays (like $D^0 o \mu \mu$)

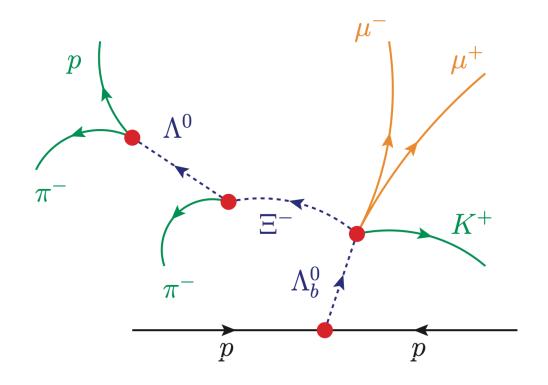
Prospects for the future

- Searches for $\eta o \mu \mu ee$ and $B^0_{(s)} o 4\mu$ are expected to be **published next year** by CMS
- Full Run 3 analyses of the rare decay channels discussed here $(B/D \to \mu^+ \mu^-)$ will be performed by both CMS and ATLAS, further improving **limits and precision**
- The **Phase-2 tracker upgrades** will improve **mass resolution by a factor ~1.5** in both experiments, boosting sensitivity to rare processes

Thanks for your attention!

Backup





Eur. Phys. J. C 80, 456 (2020)

- The predictions calculated with the HEPfit software package adopt a conservative estimation of non-local hadronic matrix elements and their uncertainties, to account for a possible large impact from charm-loop penguin diagrams.
- The HEPfit predictions, given the large uncertainties, are compatible with the measurements.

Observation of the $\Lambda_b^0 \to J/\psi \; \Xi^- K^+$ decay

