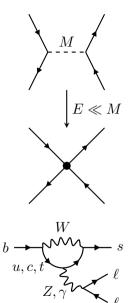
Theory Insights on New Physics from Rare Decays

Lukas Allwicher WIFAI 2025, Bari, 11.-14.11.2025

Rare decays as BSM probes

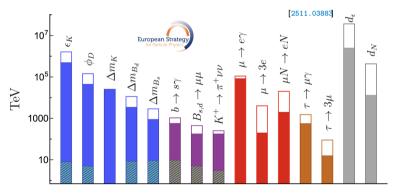
- Through indirect effects, precision measurements can give insights into scales much higher than the ones involved in the process
- Particularly powerful when the SM rate for a process is suppressed:
 - FCNCs (e.g. $b \rightarrow s\ell\ell$)
 - LFV (e.g $\mu
 ightarrow e \gamma$)
- > In recent years, also tests of universality
 - LFU ratios $(R_K, R_D, ...)$

$$\frac{1}{M^2} \leftrightarrow \frac{1}{16\pi^2} \frac{\varepsilon}{v^2}$$



Current status

- In the absence of any BSM signals, set bounds
- > Each observable mediated by a contact interaction $rac{1}{\Lambda^2}\mathcal{O}_{\mathsf{eff}}^{d=6} o \Lambda > \cdots$
- > European Strategy for Particle Physics '26

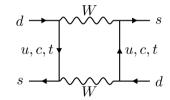


What is the scale of New Physics?

- \gt Depends on the assumptions! Doesn't have to be 10^6 TeV (\leftrightarrow anarchic flavour)
- > Take again $K \bar{K}$ mixing in the SM:

$$\frac{e^{i\phi}}{\Lambda^2} = \frac{(V_{td}V_{ts}^*)^2 G_F^2 m_t^2}{16\pi^2}$$

- \rightarrow much lower scale (m_W , m_t) through CKM suppression!
- > What if NP follows a similar structure/mechanism?
 - → flavour-changin contributions form NP may be suppressed as well



What is the flavour structure of TeV-scale NP?

The New Physics Flavour Puzzle

Exploring the UV systematically

Standard Model Effective Field Theory

- In presence of a mass-gap, somewhat model-independent approach

 → study classes of models
- Complement the SM with a tower of higher-dimensional operators, with SM fields and gauge symmetry

$$\mathcal{L}_{\mathsf{SMEFT}} = \mathcal{L}_{\mathsf{SM}} + rac{1}{\Lambda^2} \sum_i \mathcal{C}_i \mathcal{O}_i^{(6)} + \cdots$$

- Correct way of dealing with scale separations (RGE)
- Stop the expansion at d=6
- 59 operator structures, 2499 independent coefficients
- Most of the parameters come from flavour → flavour assumptions

Flavour assumptions: $U(2)^5$

• Yukawa terms break the $U(3)^5$ symmetry of the gauge sector:

$$U(3)^5 \xrightarrow{\mathcal{L}_{\text{Yukawa}}} U(1)_B \times U(1)_L^3$$

• However, light family Yukawas very small: approximate $U(2)^5$ symmetry

$$Y\simeq y_3 egin{pmatrix} 0&0&0\\0&0&0\\0&0&1 \end{pmatrix} \qquad U(2)^5=U(2)_q imes U(2)_\ell imes U(2)_u imes U(2)_d imes U(2)_e$$

e.g.

$$q_L^{i=1,2} \sim (\mathbf{2},\mathbf{1},\mathbf{1},\mathbf{1},\mathbf{1}) \qquad q_L^3 ext{ singlet}$$

Minimal breaking:

$$Y = y_3 \begin{pmatrix} \Delta & V \\ \hline 0 & 1 \end{pmatrix} \qquad \begin{array}{c} V \sim (\mathbf{2}, \mathbf{1}) & \Delta \sim (\mathbf{2}, \mathbf{\bar{2}}) \\ |V_q| = \mathcal{O}(y_t V_{ts}) & |\Delta| \sim y_{c,s,\mu} \end{array}$$

The U(2)-symmetric SMEFT

- 2499 independent parameters at d=6
- exact U(2): 124 CPC + 23 CPV

[Faroughy, Isidori, Wilsch, Yamamoto 2005.05366]

	$U(2)^5$ [terms summed up to different orders]													
Operators	Exa	act	0(1	$^{/1})$	0(1	$^{/2})$	O(V)	$^1,\Delta^1)$	O(V)	$^2, \Delta^1)$	O(V	$^2,\Delta^1V^1)$	O(V	$^3,\Delta^1V^1)$
Class 1–4	9	6	9	6	9	6	9	6	9	6	9	6	9	6
$\psi^2 H^3$	3	3	6	6	6	6	9	9	9	9	12	12	12	12
$\psi^2 X H$	8	8	16	16	16	16	24	24	24	24	32	32	32	32
$\psi^2 H^2 D$	15	1	19	5	23	5	19	5	23	5	28	10	28	10
$(\bar{L}L)(\bar{L}L)$	23	-	40	17	67	24	40	17	67	24	67	24	74	31
$(\bar{R}R)(\bar{R}R)$	29	-	29	-	29	-	29	-	29	-	53	24	53	24
$(\bar{L}L)(\bar{R}R)$	32	-	48	16	64	16	53	21	69	21	90	42	90	42
$(\bar{L}R)(\bar{R}L)$	1	1	3	3	4	4	5	5	6	6	10	10	10	10
$(\bar{L}R)(\bar{L}R)$	4	4	12	12	16	16	24	24	28	28	48	48	48	48
total:	124	23	182	81	234	93	212	111	264	123	349	208	356	215

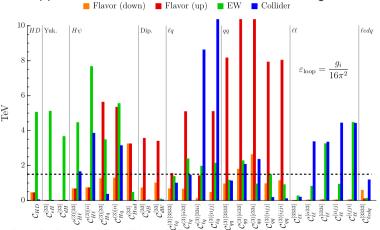
Table 6: Number of independent operators in the SMEFT assuming a minimally broken $U(2)^5$ symmetry, including breaking terms up to $\mathcal{O}(V^3, \Delta^1 V^1)$. Notations as in Table 1.

How low can the NP scale be?

consider collider, electroweak and flavour observables

SMEFT fits to U(2) operators

- > From 10^6 to ~ 10 TeV through $U(2)^5$
- > $U(2) \neq$ third-gen. new physics: light families unsuppressed \rightarrow bounds from flavour-conserving transitions

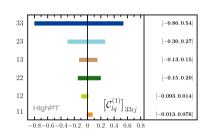


Third-generation New Physics?

[LA, Faroughy, Jaffredo, Sumensari, Wilsch 2207.10714]

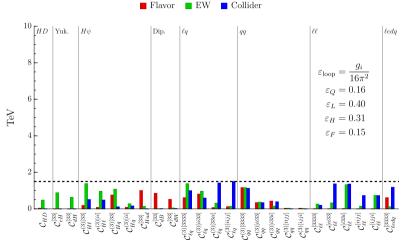
- > Even with U(2) symmetry, direct bounds from colliders are in the 10 TeV range
- Take e.g. Drell-Yan, light quarks in the initial state are much more constrained
- ➤ What if NP couples mainly to the third generation?
 → assume some dynamical suppression mechanism exists, shielding the light fields from heavy new physics
- > In the EFT, introduce suppression factors, e.g. $q_i \rightarrow \varepsilon_Q q_i$ for each light quark field

 $pp \to \tau \tau$



Third-generation hypothesis

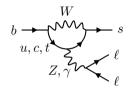
- > Suppress operators with light fermion indices
- $> \Lambda_{NP}$ still compatible with \sim TeV under non-tuned conditions



FCNCs as BSM probes

A case study

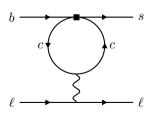
➤ FCNCs are Loop + GIM suppressed in the SM
→ sensitive to high scales of NP



Here, focus on di-neutrino modes $d_i \rightarrow d_i \nu \bar{\nu}$:

$$\rightarrow K \rightarrow \pi \nu \bar{\nu}, B \rightarrow K^{(*)} \nu \bar{\nu}$$

- Not affected by theoretical uncertainties e.g. from charm loops
- Very rare decays, experimentally challenging
- > Currently, only probes with third-gen. leptons (ν_{τ})

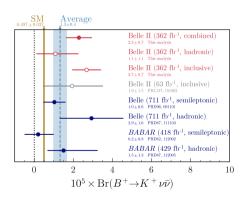


Experimental status in $d_i \rightarrow d_j \nu \bar{\nu}$

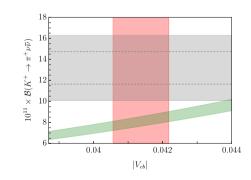
$$B \to K \nu \bar{\nu}$$

 $K o\pi
uar
u$

> Belle-II 2023



> NA62 2024



Our SMEFT description of $d_i \rightarrow d_i \nu \bar{\nu}$

[1903.10954]

Start with third-generation indices only: rank-one hypothesis

$$\begin{split} Q^{\pm}_{\ell q} &= (\bar{q}_L^3 \gamma^\mu q_L^3) (\bar{\ell}_L^3 \gamma_\mu \ell_L^3) \pm (\bar{q}_L^3 \gamma^\mu \sigma^a q_L^3) (\bar{\ell}_L^3 \gamma_\mu \sigma^a \ell_L^3) \\ Q_S &= (\bar{\ell}_L^3 \tau_R) (\bar{b}_R q_L^3) \\ \text{LH quarks: down alignment} & Q^+_{lq} : d_i \to d_j \tau \tau \\ Q^-_{lq} : d_i \to d_j \nu_\tau \bar{\nu}_\tau \end{split}$$

Third generation LH guarks: down alignment

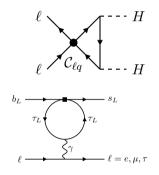
$$q_L^3 = \begin{pmatrix} V_{ub}u_L + V_{cb}c_L + V_{tb}t_L \\ b_L \end{pmatrix}$$

 $> U(2)_a$ -breaking spurion

$$\tilde{V} = -\varepsilon V_{ts} \begin{pmatrix} \kappa V_{td} / V_{ts} \\ 1 \end{pmatrix}$$

- > Replace $q_I^3 \rightarrow q_I^3 + V_i q_I^i$
- > System described by 5 parameters: C_S , $C_{\ell a}^+$, $C_{\ell a}^-$, ε , κ

Correlated observables



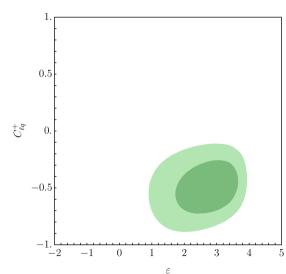
	C_S	$C_{\ell q}^+$	$C_{\ell q}^-$	ε	κ	Exp. indication
$\sigma(pp \to \ell\ell)$	✓	✓	✓			bounds on \mathcal{A}_{NP}
EWPO		✓	✓			bounds on \mathcal{A}_{NP}
R_D , R_{D^*}	✓	✓	✓	√		$\mathcal{A}_{NP}/\mathcal{A}_{SM}>0$
$\mathcal{B}(B \to K^{(*)} \mu \bar{\mu})$		✓		✓		$\mathcal{A}_{NP}/\mathcal{A}_{SM} < 0$
$\mathcal{B}(B \to K \nu \bar{\nu})$			✓	√		$ \mathcal{A}_{SM} + \mathcal{A}_{NP} ^2 > \mathcal{A}_{SM} ^2$
$\mathcal{B}(K \to \pi \nu \bar{\nu})$			√	✓	✓	$ \mathcal{A}_{SM} + \mathcal{A}_{NP} ^2 > \mathcal{A}_{SM} ^2$

Results: $C_{\ell a}^+$ - ε

- > Global fit without di-neutrino modes (don't affect $C_{\ell a}^+$)
- > LHC Drell-Yan + EWPO provide constraints on $C_{\ell a}^{\pm}$ and C_S
- C_S compatible with zero (LHC constraints strong)
- > Non-zero $C_{\ell q^+}$ and ε driven by $R_{D^{(*)}}$:

$$\begin{split} \frac{R_{D^{(*)}}}{R_{D^{(*)}}^{\text{SM}}} &\approx 1 + 2 \text{Re}\left(C_{V_L}\right) \\ &\approx 1 - v^2 \left(1 + \varepsilon\right) \left(C_{\ell q}^+ - C_{\ell q}^-\right) \end{split}$$

> Suppress $|\varepsilon| > 3$ with theoretical likelihood

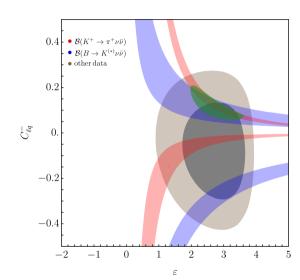


Results: $C_{\ell a}^-$ - ε

- > Grey: Global fit without di-neutrino modes, $\kappa=1$
- > $C_{\ell a}^-$ largely unconstrained
- > Good compatibility with di-neutrino modes for $\kappa=1$

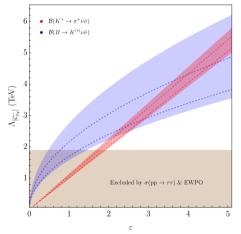
$$\begin{split} |C_{\tau,bs}^{\text{SM}}| &\to \left| C_{\tau,bs}^{\text{SM}} - \varepsilon \frac{\pi v^2}{\alpha} C_{\ell q}^- \right| \,, \\ |C_{\tau,sd}^{\text{SM}}| &\to \left| C_{\tau,sd}^{\text{SM}} + \kappa \varepsilon^2 \frac{\pi v^2}{\alpha} C_{\ell q}^- \right| \,. \end{split}$$

> Select $C_{\ell q}^- > 0$

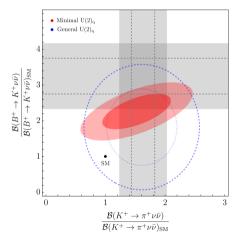


Future prospects

 \rightarrow Measure ε with dineutrino modes



> Minimal vs. non-minimal $U(2)_q$ breaking



Flavour prospects at FCC-ee

Table 6: Yields of heavy-flavoured particles produced at FCC-ee for 6×10^{12} Z decays [190].

Particle species	B^0	B^{+}	$\mathrm{B_{s}^{0}}$	Λ_{b}	$\mathrm{B_{c}^{+}}$	$c\overline{c}$	$\tau^-\tau^+$
Yield ($\times 10^9$)	370	370	90	80	2	720	200

- $> \sim 30$ more than Belle-II projections
- igwedge Access to B_s and B_c not produced at b factories
- Great advantage due to clean environment and boosted final states

Attribute	$\Upsilon(4S)$	pp	\mathbf{Z}
All hadron species		√	√
High boost		✓	✓
Enormous production cross-section		✓	(√)
Negligible trigger losses	✓		✓
High geometrical acceptance	✓		✓
Low backgrounds	✓		✓
Flavour-tagging power	✓		✓
Initial-energy constraint	✓		(√)

[Kamenik et al. '25]

Projections for flavour observables

[LA, Isidori, Pešut 2503.17019]

Observable	SM	Current value [14]	Pre-FCC projection	FCC-ee expected
$ g_{ au}/g_{\mu} $	1	1.0009 ± 0.0014	_	±0.0001 [15]
$ g_{ au}/g_{e} $	1	1.0027 ± 0.0014	_	±0.0001 [15]
corr.		0.51		
$B(\tau \rightarrow \mu \bar{\mu} \mu)$	0	$< 2.1 \times 10^{-8}$	$< 0.37 \times 10^{-8} [*] [16]$	$< 1.5 \times 10^{-11} $ [*] [15]
R_D	0.298 ± 0.004	0.342 ± 0.026 [17]	±3.0% [16]	
R_{D^*}	0.254 ± 0.005	0.287 ± 0.012 [17]	±1.8% [16]	
corr.		-0.39		
$\mathcal{B}(B_c \to \tau \bar{\nu})$	$(1.95 \pm 0.09) \times 10^{-2}$	< 0.3 (68%C.L.)	_	±1.6% [8]
$\mathcal{B}(B \to K \nu \bar{\nu})$	$(4.44 \pm 0.30) \times 10^{-6}$	$(1.3 \pm 0.4) \times 10^{-5}$	±14% [16]	±3% [7]
$\mathcal{B}(B \to K^* \nu \bar{\nu})$	$(9.8 \pm 1.4) \times 10^{-6}$	$< 1.2 \times 10^{-5} \ (68\% {\rm C.L.})$	±33% [16]	±3% [7]
$\mathcal{B}(B \to K \tau \bar{\tau})$	$(1.42 \pm 0.14) \times 10^{-7}$	$< 1.5 \times 10^{-3} \ (68\% C.L.)$	$< 2.7 \times 10^{-4}$	±20% [**] [18]
$\mathcal{B}(B \to K^* \tau \bar{\tau})$	$(1.64 \pm 0.06) \times 10^{-7}$	$< 2.1 \times 10^{-3} \ (68\% {\rm C.L.})$	$< 6.5 \times 10^{-4} \ [*] \ [16]$	±20% [**] [18]
$\mathcal{B}(B_s \to \tau \bar{\tau})$	$(7.45 \pm 0.26) \times 10^{-7}$	$< 3.4 \times 10^{-3} \ (68\% {\rm C.L.})$	$< 4.0 \times 10^{-4} \ [*] \ [16]$	±10% [**] [18]
$\Delta M_{B_s}/\Delta M_{B_s}^{ m SM}$	1	$\pm 7.6\%$	±3.3% [19]	±1.5% [19]
$\mathcal{B}(B \to K \tau \bar{\mu})$	0		$< 1.0 \times 10^{-6} \ [*] \ [20]$	
$\mathcal{B}(B_s \to \tau \bar{\mu})$	0		$< 1.0 \times 10^{-6} \ [*] \ [20]$	

Subset of observables, relevant for our example study
 [**] = under the assumption of an enhanced rate due to NP

Third-gen. semileptonics: future prospects

SMEFT analysis

Only third-gen. flavour indices:

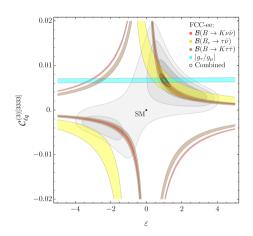
$$\mathcal{L} \supset -\frac{2}{v^2} (\bar{\ell}_L^3 \sigma^I \gamma_\mu \ell_L^3) (\bar{q}_L^3 \sigma^I \gamma^\mu q_L^3)$$

• Flavour-violating effects via $U(2)_q$ breaking spurion

$$\tilde{V} = -\varepsilon V_{ts} \begin{pmatrix} V_{td}/V_{ts} \\ 1 \end{pmatrix} \qquad \varepsilon \sim \mathcal{O}(1)$$

- $q_L^3 \rightarrow q_L^3 + \tilde{V}_i q_L^i$
- Assume a signal compatible with current measurements (grey region), and project for FCC-ee expected errors

ILA, Isidori, Pešut 2503, 17019



Summary

- > FCNCs are very sensitive probes of New Physics
- > Studied $d_i o d_j \nu \bar{\nu}$ in the context of NP coupled dominantly to the third generation
- > Compatible with a U(2)-type scaling of the coefficients in the EFT and with other observables (flavour + EWPO + collider)
- > In the future, use these modes to probe the nature of U(2) breaking in the quark sector

Thank you!

Backup

- q_L^3 is somewhere in-between down-aligned and up-aligned
- ε_F to parametrise the amount of down-alignment:

$$\begin{pmatrix} t_L \\ V_{td}d_L + V_{ts}s_L + V_{tb}b_L \end{pmatrix} = q_t \qquad q_3$$

$$V_{cb} \qquad q_b = \begin{pmatrix} V_{ub}^*u_L + V_{cb}^*c_L + V_{tb}^*t_L \\ b_L \end{pmatrix}$$

 $\theta \sim V_{cb} \varepsilon_E$

$$q_3 = \left[(1 - \varepsilon_F) \delta_{3r} + \varepsilon_F V_{3r} \right] q_r^{(d)} \approx q_b + \varepsilon_F (V_{ts} q_s + V_{td} q_d)$$

=
$$\left[(1 - \varepsilon_F) (V^{\dagger})_{3r} + \varepsilon_F \delta_{3r} \right] q_r^{(u)} \approx \varepsilon_F q_t + (1 - \varepsilon_F) (V_{cb}^* q_c + V_{ub}^* q_u)$$

SM predictions: impact of $|V_{cb}|$

$$O^{\nu}_{\ell,ij} = (\bar{d}^i{}_L\gamma_{\mu}d^j_L)(\bar{\nu}^{\ell}_L\gamma^{\mu}\nu^{\ell}_L)$$

- > At $\mu = m_{b,s}$: $\mathcal{L}_{\mathsf{eff}} = \frac{4G_{\mathsf{F}}}{\sqrt{2}} \frac{\alpha}{2\pi} \sum_{\ell=e,\mu,\tau} \left[\lambda_{sd}^t C_{\ell,sd}^{\mathsf{SM}} \ O_{\ell,sd}^{\nu} + \lambda_{bs}^t C_{\ell,bs}^{\mathsf{SM}} \ O_{\ell,bs}^{\nu} \right] + \mathsf{h.c.}$
- > Leading uncertainty from *V_{cb}*:

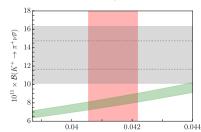
$$\lambda_{sd}^t = V_{ts}V_{td}^* = \lambda |V_{cb}|^2 \left[(\bar{\rho} - 1) \left(1 - \frac{\lambda^2}{2} \right) + i\bar{\eta} \left(1 + \frac{\lambda^2}{2} \right) \right]$$

Take average between inclusive and exclusive, inflating errors [Finauri+Gambino '24] [Bordone+Juttner '24]

First measurement by NA62 in 2024!

$$|V_{cb}|_{\mathsf{incl+excl}} = (41.37 \pm 0.81) \times 10^{-3}$$
 $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})^{\mathsf{SM}} = (8.09 \pm 0.63) \times 10^{-11}$ > $b \to s \nu \bar{\nu}$: Bečirević et al. 2301.06990

$$\mathcal{B}(B^+ \to K^+ \nu \bar{\nu})/|\lambda_{bs}^t|^2 = (2.87 \pm 0.10) \times 10^{-3}$$



Simplified models

$$U_1 \sim (\mathbf{3}, \mathbf{1}, 2/3)$$

$$\mathcal{L}_{U_1}\supset rac{g}{\sqrt{2}}(ar{q}_L^3+ ilde{V}_i^*ar{q}_L^i)
ota\!\!/_1\ell_L^3+\mathsf{h.c.}$$

> At tree-level:

$$C_{\ell q}^+ \neq 0 \qquad C_{\ell q}^- = 0$$

- > Loop-level $C_{\ell q}^-$ explains $|C_{\ell q}^+| \gg |C_{\ell q}^-|$
- > Good compatibilty with data

$Z' \sim ({\bf 1},{\bf 1},0)$

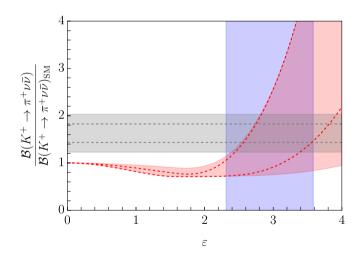
$$J_{Z'}^{\mu} = Q_q(\bar{q}_L^3 + \tilde{V}_i^* \bar{q}_L^i) \gamma^{\mu} (q_L^3 + \tilde{V}_i q_L^i) + Q_{\tau} \bar{\ell}_L^3 \gamma^{\mu} \ell_L^3$$

$$C_{\ell q}^{-} = C_{\ell q}^{+} = -\frac{g^2}{M_{Z'}^2} Q_q Q_{\tau}$$

$$C_{qq}^{(1)[3333]} = -\frac{g^2}{2M_{Z'}^2}Q_q^2$$

- > *B*_s mixing constraints
- > Requires $|Q_{\tau}/Q_q| \gtrsim 30$

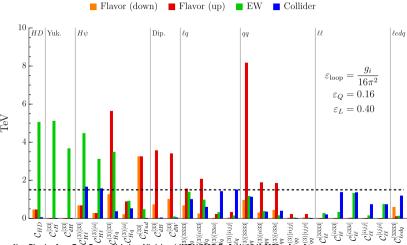
$K \to \pi \nu \bar{\nu} \ \mathbf{V.} \ \varepsilon$



Collider

Suppressing the light families

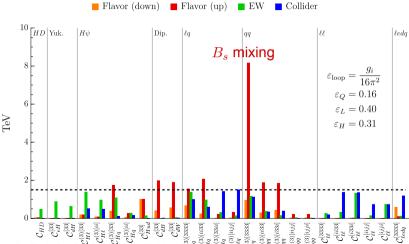
- $> \varepsilon_O(\varepsilon_L)$ for each light quark (lepton) field
- Operators with Higgs fields still give strong bounds (EWPO)



Page 28

Suppressing Higgs couplings

- $> \varepsilon_H$ for each Higgs field
- > Some flavour bounds still large (in the up-aligned case)

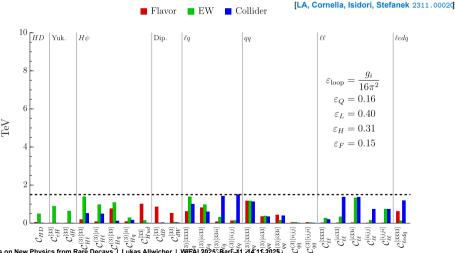


Flavour alignment

$$q_3 = \left[(1 - \varepsilon_F) \delta_{3r} + \varepsilon_F V_{3r} \right] q_r^{(d)} \approx q_b + \varepsilon_F (V_{ts} q_s + V_{td} q_d)$$

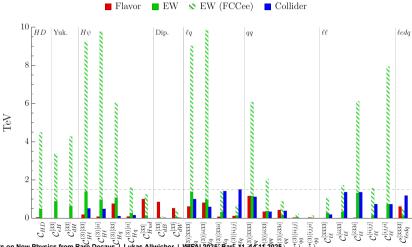
=
$$\left[(1 - \varepsilon_F) (V^{\dagger})_{3r} + \varepsilon_F \delta_{3r} \right] q_r^{(u)} \approx \varepsilon_F q_t + (1 - \varepsilon_F) (V_{cb}^* q_c + V_{ub}^* q_u)$$

15% down-alignment needed to pass B_s mixing constraint



Projections for FCC-ee (Z-pole)

- $> 5 \times 10^{12}$ Z bosons at FCC
- Precision in EWPO improved by up to 2 orders of magnitude



U(2) symmetry and SMEFT

- > Flavour assumptions (symmetries) help addressing the NP flavour problem
- > In the (SM)EFT, organising principle and reduction of number of free parameters
- > Inspired by the Yukawa couplings in the SM, start with a $U(2)^5$ symmetry

$$Y \simeq y_3 \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \hline 0 & 0 & 1 \end{pmatrix} \qquad U(2)^5 = U(2)_q \times U(2)_\ell \times U(2)_u \times U(2)_d \times U(2)_e$$
[Barbieri, Isidori, Lodone, Straub, 1105, 2296]

• E.g. in SMEFT: \mathcal{C}_{He}

$$\begin{split} \mathcal{L}_{\mathsf{SMEFT}} \supset [\mathcal{C}_{He}]_{ij} (H^\dagger i \overleftrightarrow{D}_\mu H) (\bar{e}_i \gamma^\mu e_j) \\ & \xrightarrow{U(2)^5} \mathcal{C}_{He}^{[33]} (H^\dagger i \overleftrightarrow{D}_\mu H) (\bar{e}_3 \gamma^\mu e_3) + \mathcal{C}_{He}^{[ii]} (H^\dagger i \overleftrightarrow{D}_\mu H) \sum_{-}^2 (\bar{e}_i \gamma^\mu e_i) \end{split}$$

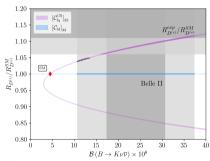
- Protection from flavour-violating effects
- > Need to break U(2): spurions

- ightharpoonup Excess in $B \to K \nu \bar{\nu}$
- > Assume it's due to heavy New Physics $(\Lambda \gg v) \rightarrow$ SMEFT

$$\mathcal{L}_{\mathsf{SMEFT}} = \mathcal{L}_{\mathsf{SM}} + rac{1}{\Lambda^2} \mathcal{C}_i \mathcal{O}_i + \cdots$$

$$[\mathcal{O}_{lq}^{(3)}]_{23ii} \supset (\bar{s}_L \gamma_\mu b_L)(\bar{\nu}_i \gamma^\mu \nu_i)$$

- > What is the neutrino flavour?
- \rightarrow In SMEFT, $\ell_{L\,i}=(\nu_L \quad e_L)_i^{\mathsf{T}}$
- > Needs to be $\nu_{ au}$ to avoid constraints from e.g. $B_s o \mu \mu,\, R_K$
- > $SU(2)_L$ -connection with $b \to c \tau \nu$
- > Get scale $\Lambda \simeq \text{TeV}/\sqrt{V_{ch}}$



DESY. | Theory Insights on New Physics from Rare Decays | Lukas Allwicher | WIFAI 2025, Bari, 11.-14.11.2025

Flavour assumptions: Minimal Flavour Violation

- Only breaking of $U(3)^5$ symmetry comes from SM Yukawas [Isidori, Straub 1202.0464]
- e.g. $q_L \sim (3, 1, 1, 1, 1)$ under

$$U(3)^5 \equiv U(3)_q \times U(3)_\ell \times U(3)_u \times U(3)_d \times U(3)_e$$

- $Y_{u} \sim (3, 1, \bar{3}, 1, 1)$
- Yukawas promoted to spurions keeping track of $U(3)^5$ breaking

$$\bar{q}_L^i \gamma^\mu q_L^j (a\delta_{ij} + b[Y_u Y_u^\dagger]_{ij} + \ldots)$$

Good to suppress flavour-changing processes:

$$\lambda_{\mathsf{FC}} pprox (Y_u Y_u^\dagger)_{\mathsf{FC}} \sim \begin{pmatrix} 0 & \lambda^5 & \lambda^3 \\ \lambda^5 & 0 & \lambda^2 \\ \lambda^3 & \lambda^2 & 0 \end{pmatrix}$$

- But: leading term is flavour-conserving and universal
 - \rightarrow collider searches push the scale to $\Lambda \gtrsim 10 \text{ TeV}$

From U(2) to third-gen. NP

- > In models with NP coupled to the third generation, a U(2) symmetry acting on the light families arises naturally as an accidental symmetry
- > From an EFT perspective, use U(2) as a proxy to third-gen. NP

 $\mathsf{Exact}\ U(2)^5$

$$\bar{q}_L^3 \gamma_\mu q_L^3 + \epsilon \bar{q}_L^i \gamma_\mu q_L^i$$

good way of suppressing the light families

Minimally broken $U(2)^5$

$$\bar{q}_L^i V_q^i \gamma_\mu q^3 \qquad V_q \sim \mathcal{O} \begin{pmatrix} V_{td} \\ V_{ts} \end{pmatrix}$$

flavour violating couplings

Comment: b→ d

> Two parameters govern the breaking of $U(2)_q$: ε , κ

 $|C_{\tau,bs}^{\rm SM}| \rightarrow \left| C_{\tau,bs}^{\rm SM} - \varepsilon \frac{\pi v^2}{\alpha} C_{\ell q}^{-} \right| \,, \label{eq:constraint}$

With FCNCs, constrained by two modes:
b → s s → d

 $|C_{\tau,sd}^{\rm SM}| \rightarrow \left| C_{\tau,sd}^{\rm SM} + \kappa \varepsilon^2 \frac{\pi v^2}{\alpha} C_{\ell q}^- \right| \, . \label{eq:constraint}$

- > Adding $b \to d$: $|C_{ au,bd}^{\rm SM}| \to \left|C_{ au,bd}^{\rm SM} \kappa \varepsilon \frac{\pi v^2}{\alpha} C_{\ell q}^-\right|$
- ullet Independent (orthogonal) probe of the $U(2)_q$ pattern