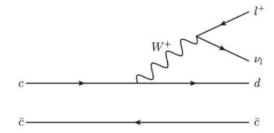
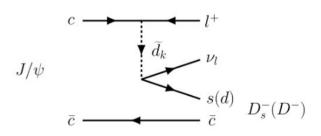


Status and prospects of rare decays at **EES**

G. Mezzadri (INFN-IHEP Joint Laboratory) & M. Destefanis (INFN Torino and UniTO)

on behalf of the **ESII** collaboration

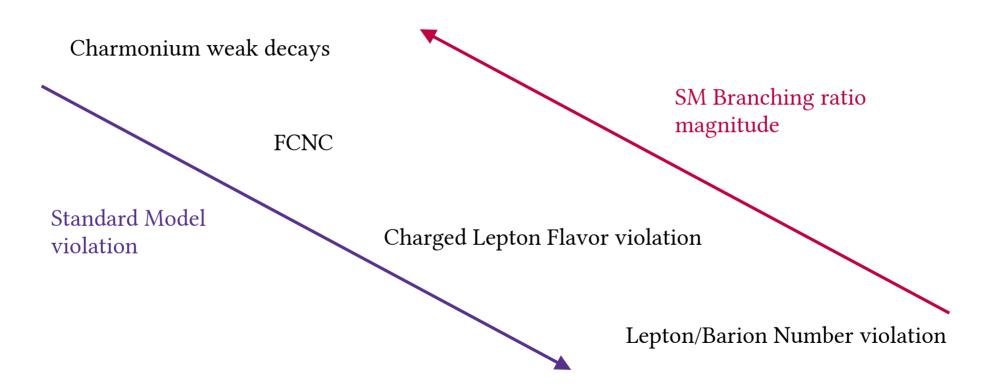

gmezzadr@fe.infn.it

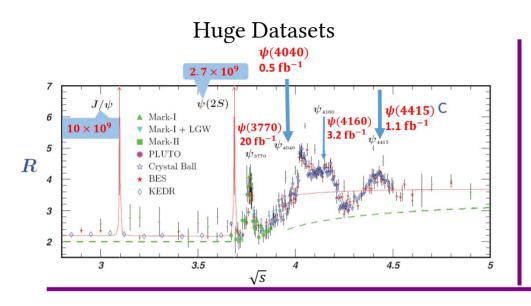

WIFAI 2025 – Bari - 13/11/2025

Why we do it?

- Rare decays are a portal towards:
 - Allowed SM processes

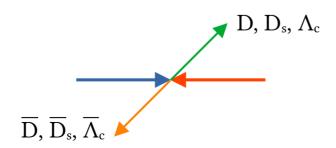
New phenomena beyond SM




A trip around October in Stockholm to test the recently bought tuxedo

What we do at BESIII?

How BESIII can be unique

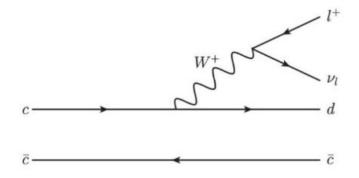


Clean environment

Double-tag analysis:

"Tag" the missing mass

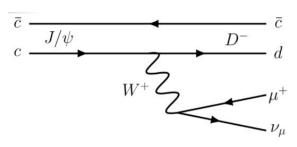
Blind analysis


Recent results

Charmonium weak and FCNC:

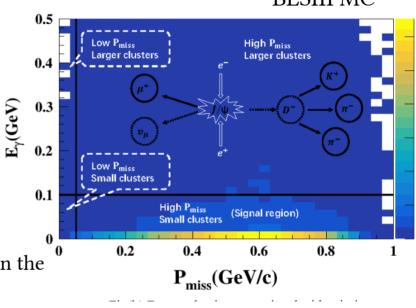
LNV/BNV/cLFV:

```
 2024: J/\psi -> D^{0}\pi^{0}, D^{0}\eta, D^{0}\rho^{0}, D^{-}\rho^{+}, D^{-}\pi^{+} \text{ (PRD 110, 032 020)} \\ 2025: J/\psi -> \phi\eta, \phi -> \pi^{+}\pi^{+}e^{-}e^{-} \text{ (LNV, CPC 49, 043 001)} \\ 2024: J/\psi -> D^{\mu}\nu_{\mu} \text{ (JHEP 01 126)} \\ 2025: J/\psi -> K^{+}K^{+}e^{-}e^{-} \text{ (LNV, arXiv:2507.06872v1, accepted by CPC)} \\ 2024: D_{s}^{+} -> h(h^{+}) e^{+}e^{-} \text{ (PRL 133, 121 801)} \\ 2025: J/\psi -> \psi\eta, \omega -> \pi^{+}\pi^{+}e^{-}e^{-} \text{ (LNV, CPC 49, 103 002)} \\ 2024: J/\psi -> \gamma D^{0} \text{ (PRD 110, 112 012)} \\ 2025: J/\psi -> D_{s}^{-}\rho^{+}, D_{s}^{-}\pi^{+} \text{ (arXiv:2506.09386v3, submitted to JHEP)} \\ 2025: J/\psi -> D_{s}^{+}h^{-}h^{0}e^{+}e^{+} \text{ (LNV, JHEP 01 109)} \\ 2025: J/\psi, \psi(3686) -> K_{s}K_{s} \text{ (CPV, PRD 112, 052 010)} \\ 2025: J/\psi -> D^{0}\mu^{+}\mu^{-} \text{ (JHEP04 061)} \\ 2025: J/\psi -> D^{0}\mu^{+}\mu^{-} \text{ (JHEP04 061)} \\ 2025: J/\psi -> D^{-}e^{-} \text{ (BNV and LNV, PRD 111, 112 010)} \\ 2025: J/\psi -> D^{-}e^{-} \text{ (BNV and LNV, PRD 111, 112 010)} \\ 2025: J/\psi -> D^{-}e^{-} \text{ (BNV and LNV, PRD 111, 112 010)} \\ 2025: J/\psi -> D^{-}e^{-} \text{ (BNV and LNV, PRD 111, 112 010)} \\ 2025: J/\psi -> D^{-}e^{-} \text{ (BNV and LNV, PRD 111, 112 010)} \\ 2025: J/\psi -> D^{-}e^{-} \text{ (BNV and LNV, PRD 111, 112 010)} \\ 2025: J/\psi -> D^{-}e^{-} \text{ (BNV and LNV, PRD 111, 112 010)} \\ 2025: J/\psi -> D^{-}e^{-} \text{ (BNV and LNV, PRD 111, 112 010)} \\ 2025: J/\psi -> D^{-}e^{-} \text{ (BNV and LNV, PRD 111, 112 010)} \\ 2025: J/\psi -> D^{-}e^{-} \text{ (BNV and LNV, PRD 111, 112 010)} \\ 2025: J/\psi -> D^{-}e^{-} \text{ (BNV and LNV, PRD 111, 112 010)} \\ 2025: J/\psi -> D^{-}e^{-} \text{ (BNV and LNV, PRD 111, 112 010)} \\ 2025: J/\psi -> D^{-}e^{-} \text{ (BNV and LNV, PRD 111, 112 010)} \\ 2025: J/\psi -> D^{-}e^{-} \text{ (BNV and LNV, PRD 111, 112 010)} \\ 2025: J/\psi -> D^{-}e^{-} \text{ (BNV and LNV, PRD 111, 112 010)} \\ 2025: J/\psi -> D^{-}e^{-} \text{ (BNV and LNV, PRD 111, 112 010)} \\ 2025: J/\psi -> D^{-}e^{-} \text{ (BNV and LNV, PRD 111, 112 010)} \\ 2025: J/\psi -> D^{-}e^{-} \text{ (BNV and LNV, PRD 111, 112 010)} \\ 2025: J/\psi -> D^{-}e^{-} \text{ (BNV and LNV, PRD 111, 112 010)} \\ 2025: J/\psi -> D^{-}e^{-} \text{ (BNV and LNV, PRD 111, 112 010)} \\ 2025: J/\psi ->
```


Charmonium weak decays

Everything is Standard Model, but small

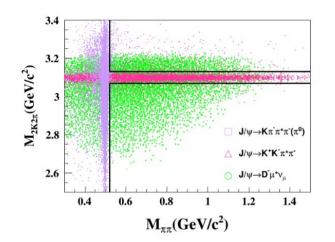
$J/\psi \longrightarrow D^{\text{-}}\mu^{\text{+}}\nu_{\mu}$

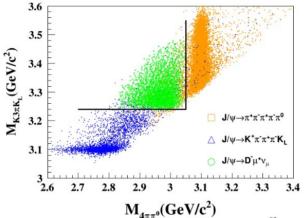

BESIII MC

Fig(a) The Feynman diagram of $J/\psi \to D^-\mu^+\nu_\mu$

Use the full J/ψ dataset

Search for missing momentum (neutrino) and low energy deposit in the calorimeter (muon)

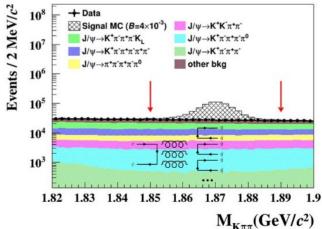


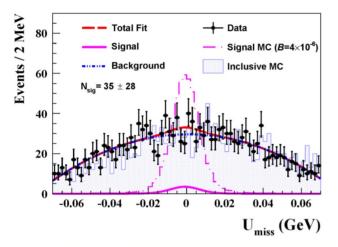

First search with the muons (electron UL 7.1x10⁻⁷@90% C.L. JHEP 06,157(2021))

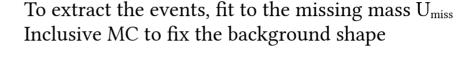
Model	BSW [1]	CCQM[2]	BSM[3]	CLFQM[4]	LQCD[5]
$\mathcal{B}(J/\psi\to D^-e^+\nu_e)(\times10^{-10})$	$6.0^{+0.8}_{-0.7}$	1.71	$2.03^{+0.29}_{-0.25}$	$6.10^{+0.11+0.10+0.14}_{-0.11-0.12-0.19}$	0.121
$\mathcal{B}(J/\psi\to D^-\mu^+\nu_\mu)(\times10^{-10})$	$5.8^{+0.8}_{-0.6}$	1.66	$1.98^{+0.28}_{-0.24}$	$5.78^{+0.11+0.11+0.16}_{-0.10-0.13-0.11}$	0.118

- [1] Adv. High Energy Phys. 2013 (2013) 706543
- [2] Phys. Rev. D 92 (2015) 074030
- [3] J. Phys. G 44 (2017) 045004
- [4] Eur. Phys. J. C 84, no.1, 65 (2024)
- [5] arXiv:2407.13568

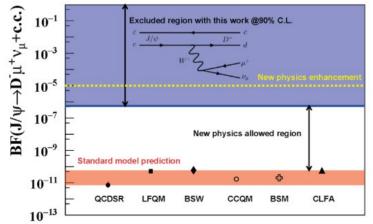
$J/\psi \longrightarrow D^{\text{-}}\mu^{\text{+}}\nu_{\mu}$




Main backgrounds comes J/ψ hadronic decay with many pions

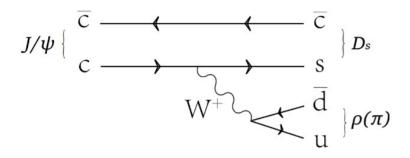

muon-pions misidentification since muon counter not efficient in the full range of signal muon momenta

Kinematic PID cut to suppress some of the backgrounds.


$J/\psi \longrightarrow D^{\text{-}}\mu^{\text{+}}\nu_{\mu}$

Extracted upper limits

$$\mathcal{B}(J/\psi \to D^-\mu^+\nu_\mu) < 5.6 \times 10^{-7}$$
 @90% C.L.



No NP now Still large space to search for NP

More data not enough to get anywhere close to SM prediction: smarter techniques?

ArXiv: 2506.09368

$J/\psi \rightarrow D_s \pi/D_s \rho$

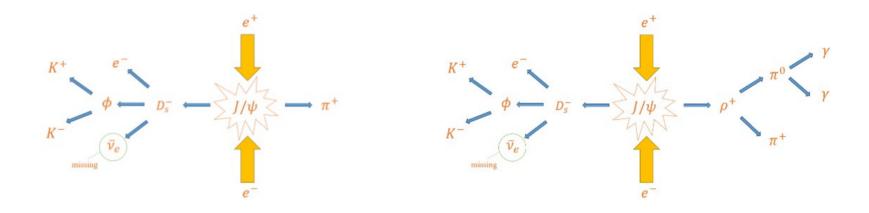
Fig(a) The Feynman diagram of $J/\psi \to D_s^- \pi^+$ and $J/\psi \to D_s^- \rho^+$ in SM.

Fig(b) The Feynman diagram of $J/\psi \to D_s^- \pi^+$ and $J/\psi \to D_s^- \rho^+$ in NP Model.

Similarly scheme as the previous analysis, but hadronic weak decay

Model	QCDSR [2]	BSW [3]	CLFQM (2008) [4]	CLFQM (2024) [5]
$\mathcal{B}(J/\psi\to D_s^-\rho^+)(\times10^{-10})$	$12.6^{+7.6}_{-6.0}$	$51.1^{+7.6}_{-6.0}$	28+0	$29.5^{+0.6+1.1+1.5}_{-0.5-1.4-1.9}$
$\mathcal{B}(J/\psi\to D_s^-\pi^+)(\times10^{-10})$	$2.0^{+4.0}_{-0.2}$	$7.41^{+0.13}_{-0.23}$	$2.5^{+0.0}_{-0.1}$	$3.64^{+0.06+0.34+0.78}_{-0.06-0.38-0.96}$

^[2] Eur. Phys. J.C 55, 607-613 (2008)

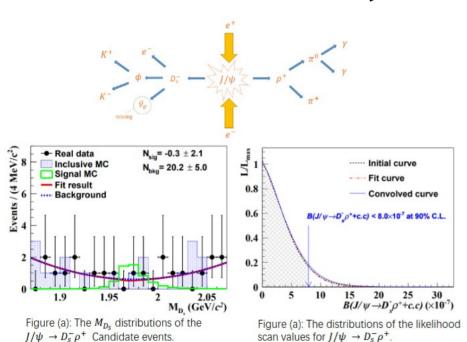

^[3] High Energy Phys. 2013, 706543 (2013)

^[4] Phys. Rev. D 78, 074012 (2008)

^[5] Eur. Phys. J.C 84, no.1, 65 (2024)

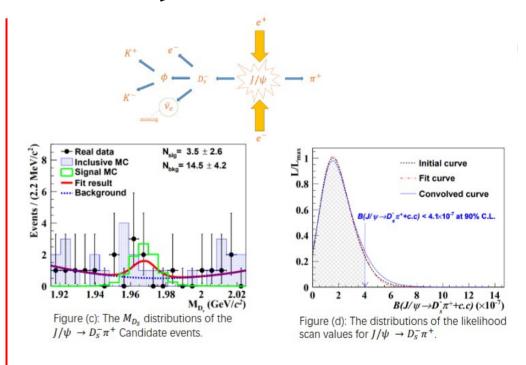
ArXiv: 2506.09368

$$J/\psi \longrightarrow D_s \pi/D_s \rho$$


Ds hadronic decay has detection efficiency too low

Use the semileptonic $D_s \rightarrow \Phi ev$ and reconstruct the D_s through missing mass

Use of EMC energy, track momentum and PID to improve e/π identification


ArXiv: 2506.09368

$J/\psi \rightarrow D_s \pi/D_s \rho$

 $B(J/\psi \rightarrow D_s \rho) < 8.0 \times 10^{-7} @ 90\% C.L.$

1 order of magnitude improvement



 $B(J/\psi \to D_s \pi) < 4.1 \times 10^{-7} @ 90\% C.L.$

3 orders of magnitude improvement

Charmonium FCNC

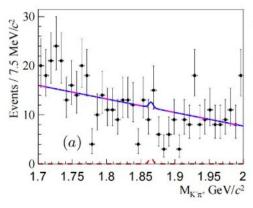
$$J/\psi \longrightarrow D^0 \gamma$$

Three D decay mode:

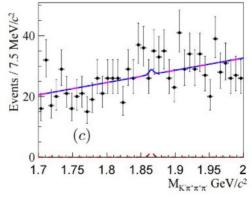
- D \longrightarrow K $^{\text{-}}\pi^{\text{+}}$
- D \longrightarrow K $^{\text{-}}\pi^{\text{+}}\pi^{0}$
 - D \rightarrow K⁻ $\pi^+\pi^+\pi^-$

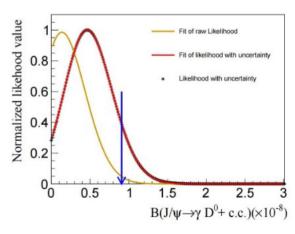
Decay less suppressed wrt (J/ $\psi \rightarrow$ Dl+l-) since only one vertex

$$\begin{split} & \text{BR}(J/\psi \to \bar{D}^0 e^+ e^-) = 1.14^{+0.71}_{-0.35} \times 10^{-13}, \quad \text{BR}(J/\psi \to \bar{D}^0 \mu^+ \mu^-) = 1.08^{+0.67}_{-0.33} \times 10^{-13}, \\ & \text{BR}(J/\psi \to \bar{D}^{*0} e^+ e^-) = 6.30^{+3.61}_{-2.30} \times 10^{-13}, \quad \text{BR}(J/\psi \to \bar{D}^{*0} \mu^+ \mu^-) = 5.94^{+3.36}_{-2.15} \times 10^{-13}, \end{split}$$

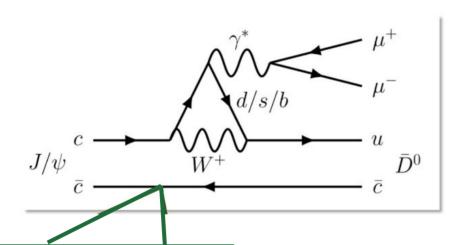

Theoretical prediction from J.Phys.G 36 (2009) 105 002 based on QCD sum rules

$$J/\psi \longrightarrow D^0 \gamma$$

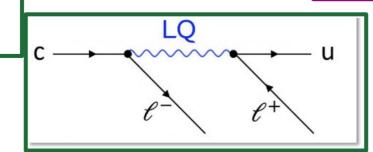

D⁰ invariant mass is used for signal extraction

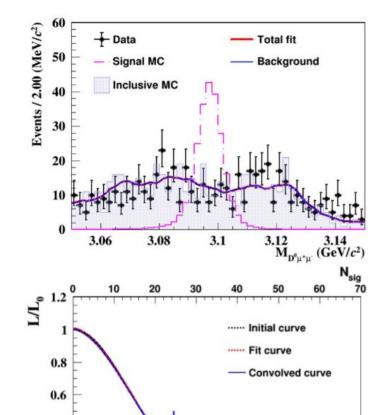

First ever measurement of this final state. No signal observed

B(J/ $\psi \rightarrow D^0 \gamma$) < 9.1 x 10-8 @ 90% C.L.



$J/\psi \longrightarrow D^0 \mu^+ \mu^-$


NP may enter to


mediate the FCNC

Three D decay mode:

- D \rightarrow K $^{-}\pi^{+}$
- D \rightarrow K $^{-}\pi^{+}\pi^{0}$
- D \rightarrow K $^{-}\pi^{+}\pi^{+}\pi^{-}$

 $\mathrm{BR}(J/\psi \to \bar{D}^0 \mu^+ \mu^-) = 1.08^{+0.67}_{-0.33} \times 10^{-13},$ $\mathrm{BR}(J/\psi \to \bar{D}^{*0} \mu^+ \mu^-) = 5.94^{+3.36}_{-2.15} \times 10^{-13},$

1.5

2.5

 $B(J/\psi \rightarrow D^{\theta}\mu^{+}\mu^{-}) (\times 10^{-7})$

0.4

0.2

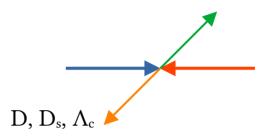
0.5

$$J/\psi \,\longrightarrow\, D^0 \mu^+ \mu^-$$

Main backgrounds are due to π/μ and π/K misidentification (low momentum signal muon) (e.g. background $J/\psi \rightarrow 5\pi$)

Use invariant mass combination to identify the signal region

 J/ψ invariant mass used for signal extraction


First ever measurement of this decay. No signal observed

B(J/
$$\psi$$
 → D⁰μμ) < 1.1 x 10-7 @ 90% C.L.

$D_s \rightarrow h(h') e^+e^-$

Using the D_s sample between 4.128-4.226 GeV (7.33 fb⁻¹)

Single tag analysis (only one side of the decay is reconstructed)

Short distance contribution suppressed by GIM mechanism Opportunity to observe long distance contribution that can be as large as 10⁻⁵

At BESIII, yield of D_s*D_s ~ 6x10⁶

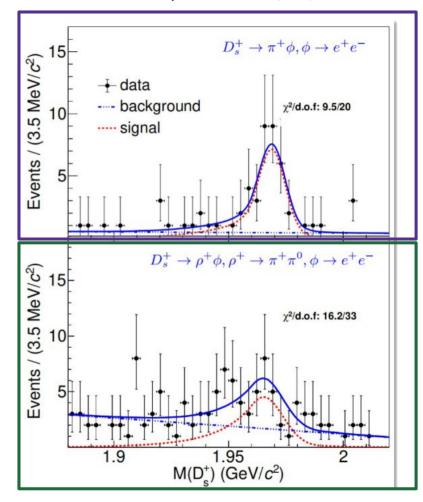
•
$$D_s^+ \to \pi^+ \pi^0 e^+ e^-$$

•
$$D_s^+ \rightarrow K^+ \pi^0 e^+ e^-$$

•
$$D_s^+ \rightarrow K_S \pi^+ e^+ e^-$$

•
$$D_s^+ o \pi^+ \phi$$
, $\phi o e^+ e^-$

•
$$D_s^+ o
ho^+ \phi$$
, $\phi o e^+ e^-$


$D_s \longrightarrow h(h') e^+e^-$

Branching fraction is calculated as:

$$B(D_s^+ \to h(h')e^+e^-) = \frac{N_{sig,fit}}{2 \times N_{D_s^{*\pm}D_s^{\mp}} \times \epsilon \times B_{inter}}$$

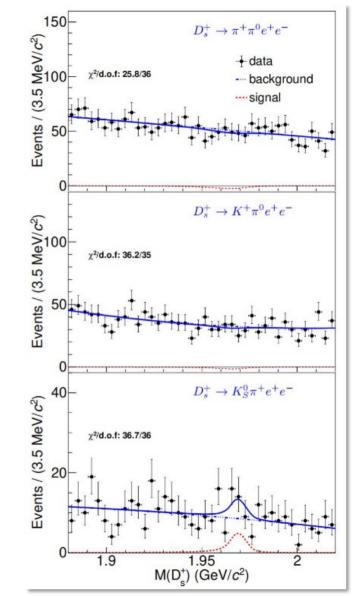
First evidence of $D_s \rightarrow \Phi \rho$, $\Phi \rightarrow e^+e^ B(D_s \rightarrow \Phi \rho) \times B(\Phi \rightarrow e^+e) = (2.44^{+0.62}_{-0.67} \pm 0.16) \times 10^{-5}$, 4.4 σ significance

Observation of $D_s \to \Phi \pi$, $\Phi \to e^+e^ B(D_s \to \Phi \pi) \times B(\Phi \to e^+e) = (1.17^{+0.23}_{-0.21} \pm 0.3) \times 10^{-5}$, 8.7 σ significance in accordance with CLEO

Phys.Rev.Lett. 133 (2024) 12, 121 801

$$D_s \longrightarrow h(h') e^+e^-$$

The $D_s \to \pi^+\pi^0 e^+e^-$ includes the LD contribution $D_s \to \Phi \rho$. By excluding it, extracted the upper limit for the pure SD process for the first time


 $B(D_s \to \pi^+ \pi^0 e^+ e^-) < 7.0 \text{ x } 10^{-5} \text{ @ } 90\% \text{ C.L.}$

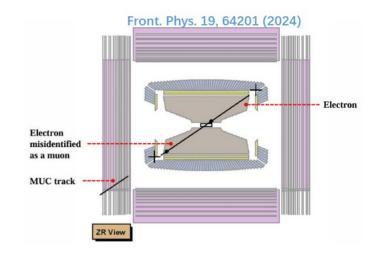
For the $D_s \to K_s \pi^+ e^+ e^-$ and $D_s \to K^+ \pi^0 e^+ e^-$ processes, the LD $\Phi \to e^+ e^-$ process is insignificant, only SD with BF of the 10^{-8} order

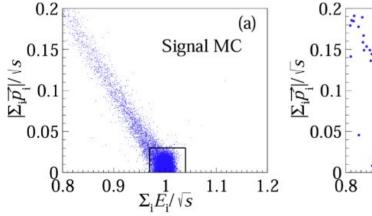
Extracted first limits

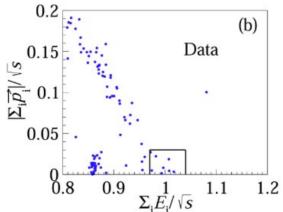
 $B(D_s \to K^+ \pi^0 e^+ e^-) < 7.1 \times 10^{-5} @ 90\% C.L^-$

 $B(D_s \to K_s \pi^+ e^+ e^-) < 8.1 \times 10^{-5} @ 90\% \text{ C.L.}$

Bonus Track: cLFV @ BESIII


$\psi(2S) \rightarrow e\mu$


Search for cLFV in $\psi(2S)$ decays usign the full 2.7B dataset


Signal box:

- $|\Sigma \vec{p}|/\sqrt{s} \le 0.03$
- $0.97 \le E_{vis}/\sqrt{s} \le 1.04$

No missing momentum or energy

Maximum likelihood estimator for the BR extraction

 $B(psi(2S) \rightarrow eu) < 1.4 \times 10-8 @ 90\% C.L.$ First measurement

Summary and prospect

- BESIII has unique datasets to search for rare decays of charmed particles
- Using the 10B J/ ψ , stringent constraints on charmonium weak decay and search for new physics
- Unique place to search for J/ψ FCNC
- Clean environment can help in studying Ds mesons LD contribution (since SD too small)

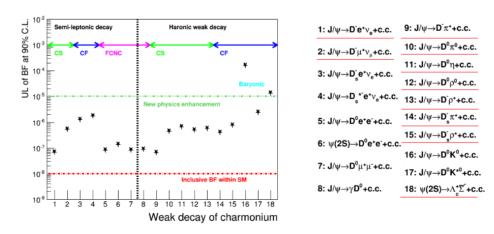


Figure: The summary of charmonium weak decay