Unlocking time-dependent *CP* violation without signal vertexing at *B* factories

Radek Žlebčík¹

Based on *Phys.Rev.D* 112 (2025) 3, 032011 by M. Dorigo¹, S. Raiz², D. Tonelli¹, R. Ž.¹

¹ INFN Trieste ² DESY

WIFAI 2025, Bari, November 11, 2025

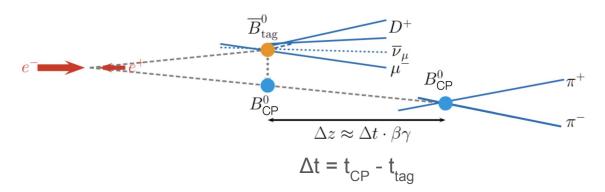
Mixing-induced CP violation in B^0 decays

Mixing-induced CP asymmetry S stems from interference between $B^0 \to B^0_{CP}$ amplitude and $B^0 \to \overline{B}^0 \to B^0_{CP}$ amplitudes, where in the second case B^0 meson first oscillated into \overline{B}^0 state.

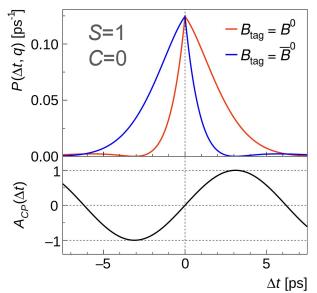
$$\Gammaig(B^0/ar{B}^0(t)\! o\! B^0_{CP}ig)\propto e^{-t/ au_B} \ ig[1+qig(S\sin(\Delta m_d t)-C\cos(\Delta m_d t)ig)ig]$$
 Mixing-induced Direct CP asymmetry

 $\alpha \equiv \arg\left(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right)$ $\beta \equiv \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right)$ $\gamma \equiv \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$ $\beta = \phi_1$ (1,0)

At e⁺e⁻ B factories time integrated measurements are only sensitive to direct CP asymmetry *C*


→ Need for time-dependent CPV analysis to measure S

CKM angle		Main channel	Time-dependent?
	β	$B^0 o J/\psi K_S$	Yes
	α	$B o\pi\pi,\; ho ho,\; ho\pi$	Yes
	γ	$B^\pm o DK^\pm$	No

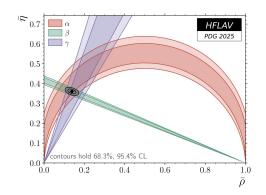

Time-dependent CPV analysis is crucial to determine CKM angles α and β .

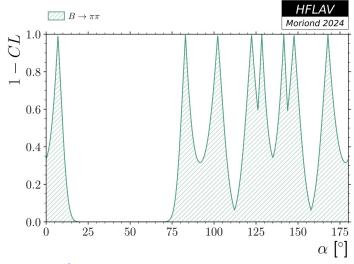
A classical time-dependent CPV measurement

- At e⁺e⁻ B factories with asymmetric beam energies (BaBar, Belle, Belle II), the time-dependent CPV is measured in e⁺e⁻ → Y(4S) → B⁰_{CP} B⁰_{tag}
- B mesons are produced nearly at the rest in CM frame and they are drifted in the direction of electron beam
- B^0_{CP} decays to CP eigenstate of interest
- B_{tag}^0 decays inclusively & its flavor (B^0 or \overline{B}^0) is determined by the flavor tagger

$$\mathcal{A}_{CP}(\Delta t) = \frac{\mathcal{P}(\Delta t, +1) - \mathcal{P}(\Delta t, -1)}{\mathcal{P}(\Delta t, +1) + \mathcal{P}(\Delta t, -1)}$$
$$= S \sin \Delta m \Delta t - C \cos \Delta m \Delta t$$

Some channels were out of scope...


- S from $B^0 \to \pi^0 \pi^0$ (i.e. 4-photon state) sensitive to CKM angle α is the standard example
- Missing S measurement in $B^0 \rightarrow \pi^0 \pi^0$ leads to 8-fold ambiguity in the α measurement from $B \rightarrow \pi$


The physics of B factories (2014)

 $B \to \pi\pi$ system is complicated by the need to measure time-dependent CP asymmetry of the all-neutral final state decay of B^0 mesons to $\pi^0\pi^0$. This is not possible at the present level of statistics, although high luminosity super flavor factory may be able to constrain the decay vertex of the $B^0 \to \pi^0\pi^0$ candidate using Dalitz decays of one or both π^0 mesons, or events where one or more photons convert in the detector material. The situation is further exac-

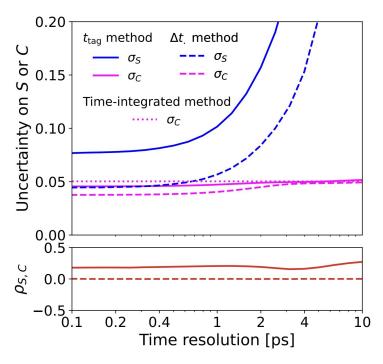
Belle II physics book (2018)

 $B^0 \to \pi^0 \pi^0$. At present, there is not enough data to perform a time-dependent CP-analysis of the decay mode $B \to \pi^0 \pi^0$. Neutral pions decay to about (98.823 \pm 0.034)% [88] into two photons, and, without external photon conversion $\gamma \to e^+ e^-$, they do not provide information to reconstruct the vertex of the B^0 . Also the fraction of useful Dalitz decays

Getting signal B_{CP} vertex from "rare" $\pi^0 \rightarrow e^+e^- \gamma$ or from $\gamma \rightarrow e^+e^-$ conversion requires high luminosity and it is not feasible with current luminosity of B factories.

Let's do it without signal B_{CP} vertex!

The time-dependent flavour asymmetry appears even when measuring a single time, e.g. t_{tag} , instead of $\Delta t = t_{CP} - t_{tag}$


$$\mathcal{P}(t_{\rm tag},t_{CP},q) = \frac{e^{-\frac{t_{CP} + t_{\rm tag}}{\tau}}}{2\tau^2} \left(1 + q\left[S\sin\Delta m(t_{CP} - t_{\rm tag})\right]\right) - C\cos\Delta m(t_{CP} - t_{\rm tag})\right] \int_{\mathbb{R}^3} \int_{0.2}^{\mathbb{R}^3} \left(0.3 - C\cos\Delta m(t_{\rm tag})\right) \int_{\mathbb{R}^3} \int_{0.2}^{\mathbb{R}^3} \int_{-\mathbb{R}^3} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3}$$

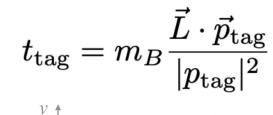
What t_{tag} resolution is needed for measuring S?

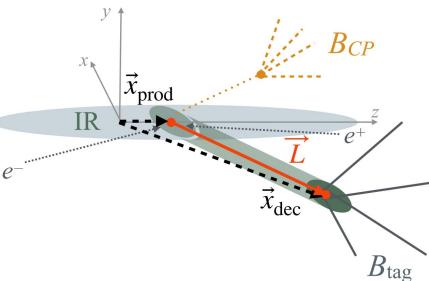
Relation between the time resolution and S & C precision

- Even with perfect time resolution, the usage of only one decay time, instead Δt leads to 70% worse precision of S, due to:
 - Smaller amplitude of oscillations
 - Maximal flavor asymmetry appearing at higher t_{tag}, where fewer mesons are undecayed
- A sharp increase of S uncertainty for time resolution ~1 ps for both methods
- The t_{tag} method has 20% correlation between S
 & C while correlation in Δt method is negligible

For 1000 events with perfect flavor tagging

Can we measure t_{tag} with useful resolution (≈1 ps)?

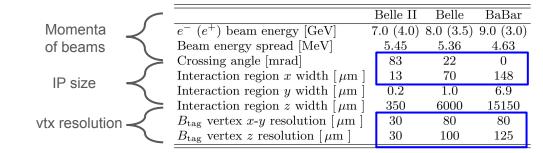

Measurement of t_{tag}

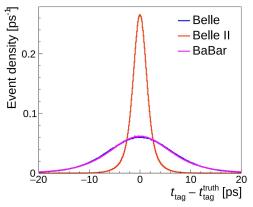

The t_{tag} measurement at B factories exploits:

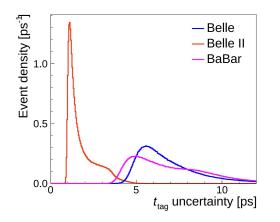
- The spatial distribution of the B_{tag} production point
 ("beam spot" measured in ee→µµ)
- B_{tag} decay point (=vertex)
- The knowledge of the B_{tag} momentum which is calculated from the B_{sig} momentum using momentum conservation

Vertex fit with beam spot and B_{taq} momentum constraint:

$$\chi^2 = (\vec{x}_{ ext{prod}} - \vec{x}_{ ext{IR}})^T V_{ ext{IR}}^{-1} (\vec{x}_{ ext{prod}} - \vec{x}_{ ext{IR}}) + (\vec{x}_{ ext{dec}} - \vec{x}_{B_{ ext{tag}}})^T V_{B_{ ext{tag}}}^{-1} (\vec{x}_{ ext{dec}} - \vec{x}_{B_{ ext{tag}}})$$
 $\vec{x}_{ ext{dec}} = \vec{x}_{ ext{prod}} + \frac{t_{ ext{tag}}}{m_B} \vec{p}_{ ext{tag}}$

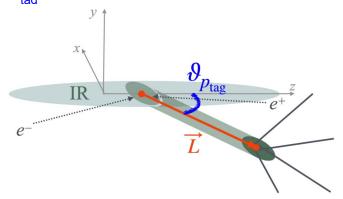


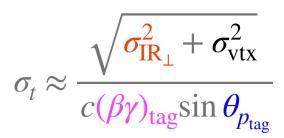


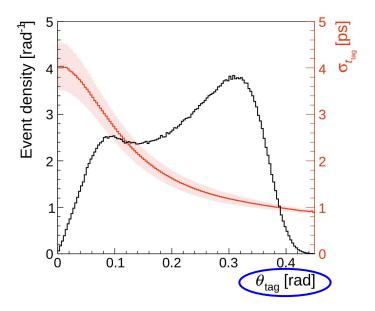

Determination of both t_{tag} and its uncertainty, exploiting all information we have

Expected t_{tag} resolution at B factories

- ullet The t_{taq} resolution depends on the
 - beam spot size
 - beam momenta (direction & energies)
 - B_{tag} vertex resolution
- We implemented a toy model which incorporates all these ingredients for Belle, Belle II and Babar


Belle II has reasonable (1.5 ps) t_{tag} resolution, while Belle/Babar resolution of 6 ps hinders any S measurement


Why Belle II performs so much better?


The limiting factor is the determination of the $B_{\rm tag}$ production point (geometrically it is an intersection of two tubes)

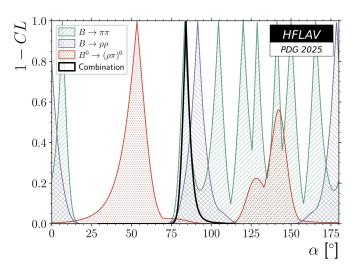
Belle II is superior in

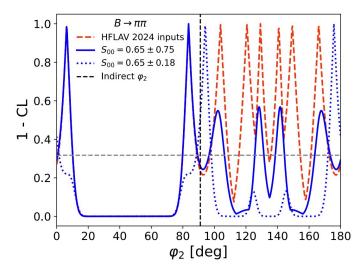
- Transverse size of interaction area (IP tube)
 (13um vs 70um)
- B_{tag} vertex resolution (B_{tag} tube)
 (30um vs 80um)
- Angular separation between the IP tube and B_{tag} tube

Feasibility of S measurement for $B^0 \to \pi^0 \pi^0$ at Belle II

- Real-world scenario, where the $B^0 \to \pi^0 \pi^0$ yield, background yield and the shapes of the fitted spectra are taken from existing time-independent Belle II measurement (0.36 ab⁻¹, 125±20 signal decays) Phys. Rev. D 111 (2025) 7, L071102
- Identical fitting strategy is followed as in existing Belle II analysis, but t_{tag} and $\sigma(t_{tag})$ variables are added to the maximum likelihood fit

Sample size	$t_{ m tag}$	Δt	
$[ab^{-1}]$	$\sigma_{S_{00}}$ $\sigma_{C_{00}}$	$\sigma_{S_{00}}$	Δt method based
0.36	$0.75 \mid 0.27$	-	on π ⁰ →e ⁺ e⁻ γ
5.0	$0.18 \mid 0.07$	- /	(projection from
50.0	$0.06 \mid 0.02$	0.28	Belle II physics book)


The t_{tag} method has 4 times smaller uncertainty than existing Δt method.


$$\mathcal{P}_s(t_{\text{tag}}, \sigma_{t_{\text{tag}}}; q, w) = \frac{e^{-t'_{\text{tag}}/\tau}}{2\tau} \left(1 + q(1 - 2w) \left[S' \sin \Delta m(t'_{\text{tag}} - \hat{t}) - C' \cos \Delta m(t'_{\text{tag}} - \hat{t}) \right] \right) \otimes \mathcal{R}_{\sigma_{t_{\text{tag}}}}(t_{\text{tag}} - t'_{\text{tag}})$$

Impact on α

- The CKM angle α is obtained from branching fractions BRs and *CP* asymmetries (*S* and *C*) in all isospin combinations of $B \rightarrow \pi\pi$ (Gronau-London method) (α can be also determined from $B^0 \rightarrow (\rho\pi)^0$ and $B \rightarrow \rho\rho$)
- So far only $S_{\pi^+\pi^-}$ was measured, which leads to 8-fold ambiguity in α determined from $B{\to}\pi\pi$ modes

Current Belle II dataset $S_{00} = 0.65 \pm 0.75$

5 ab⁻¹ Belle II dataset $S_{00} = 0.65 \pm 0.18$

The S_{00} measurement has substantial impact on α determination even with current Belle II data set.

Conclusion

- The t_{tag} method unlocks time-dependent *CP* violation measurement even when B_{CP} vertex is not available
- Unique to Belle II
- The method probed for $B^0 \to \pi^0 \pi^0$ decay
 - → 4 times better precision than existing approach
 - → Possibility of measuring S even with current Belle II dataset with sizable impact on α determination
- Method is also considered for processes like $B^0 \to K_{S,L} \ \pi^0, \ B^0 \to \gamma \gamma \ \text{or} \ B^0 \to K_S \ v \ v$

Idea pioneered by Andrew Foland

- The single-time time-dependent CPV measurement was first proposed by A. Foland from CLEO in <u>1999</u> and we rediscovered it 26 years later
- The main motivation was possible $t_{\it CP}$ -based sin 2 β measurement in $B^0 \rightarrow J/\psi \ K_S$ at CLEO
- Possibility for t_{tag} -based measurement of α in $B^0 \rightarrow \pi^0 \pi^0$ was also mentioned although this channel had not been discovered yet

PHYSICAL REVIEW D, VOLUME 60, 111301

Measurement of *CP* violation at the $\Upsilon(4S)$ without time ordering or Δt

Andrew D. Foland Cornell University, Ithaca, New York 14853 (Received 17 June 1999; published 8 November 1999)

I derive the expressions for the CP-violating asymmetry arising from interference between mixed and direct decays in the Y(4S) system, for the case in which only one of the B decay times is observed, integrating over the decay time of the other B. I observe that neither the difference of the decay times Δt , nor even their time ordering, need be detected. A technique for measurement of the CP-violating weak decay parameter $\sin 2\beta$ is described which exploits this observation. [S0556-2821(99)50521-3]

Likely due to non applicability for Belle & BaBar the method was mostly forgotten.