

The LHCb U2 VELO: design, technologies and impact on physics

WIFAI 2025 Workshop Italiano sulla Fisica ad Alta Intensità

Michele Verdoglia on behalf of IGNITE Project & LHCb Cagliari groups

Overview

- Technological requirements for tracking in HI experiments;
- Benefits of the HL-LHC programme for LHCb with new technologies;
- Challenges of LHCb-Run 5: VELO UII (Timing VELO, TV);
- TimeSPOT & IGNITE projects;
- Other application: High Intensity Neutrino tagging;
- Conclusions.

Technological requirements for tracking in HI experiments

Next generation High Energy Physics experiments will starts the era of high intensity 4D-Tracking (**HI4DT**)

High rate of events \rightarrow Huge statistics but ...

...the new detectors will have to cope with extreme environments:

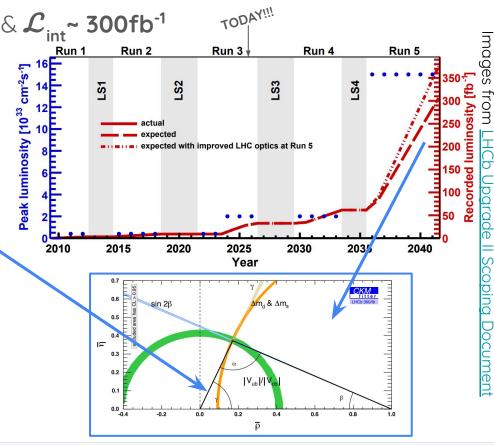
- TID > 1 Grad/ASIC:
- Fluence Φ > 1x10¹⁶ 1MeV n_{eq} /cm²;
- Pileup $\langle \mu \rangle \sim 200$ (or above):
- Data rate > 100 Gbps/ASIC.

orders of magnitude higher than current values !!!

Novel technological solutions are needed to match such requirements and enable High Intensity Physics.

INFN initiatives such as **TimeSPOT** (2018-2021) and **IGNITE** (2023-present) were born precisely with this aim in mind to offer a technological solution.

Benefits of the HL-LHC programme for LHCb with new technologies


Delivered luminosity \mathcal{L} ~ 1.5x10³⁴ cm⁻² s⁻¹ & \mathcal{L}_{int} ~ 300fb⁻¹

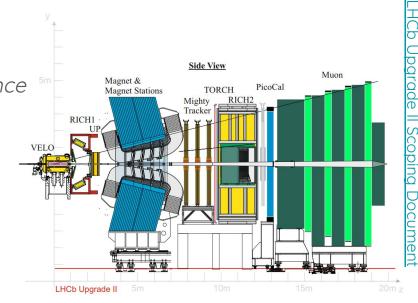
LHCb focuses on study b and c in the **forward direction**

HL-LHC discovery potential @ LHCb:

- Searches for CP-violating NP;
- Determination of the CKM angle γ
- Matter-antimatter asymmetry;
- Enhanced sensitivity to rare decays;
- Heavy ion and fixed-target physics;
- Hadron spectroscopy

And more ...

Challenges of LHCb-Run 5: VELO UII (Timing VELO, TV)

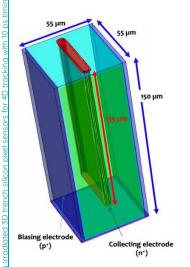


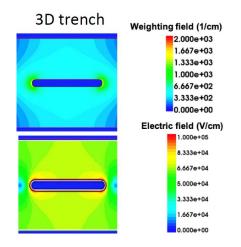
- Pile up $<\mu_{\text{RUN-5}}> \sim 40 (<\mu_{\text{RUN-3}}> \sim 5);$
- Maximum radiation Fluence $\Phi_{\text{RUN-5}} \sim 5 \times 10^{16} \, \text{1MeV n}_{\text{eq}} \, / \text{cm}^2 (\Phi_{\text{RUN-3}} \sim 5 \times 10^{14});$
- Data rate $DR_{RUN-5} > 100 \text{ MHz/mm}^2 (5 \times DR_{RUN-3});$
- Material budget < 0.8% X₀.

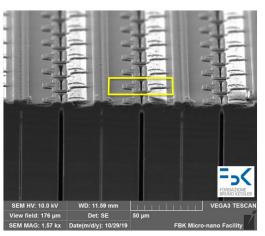
Requirements to maintain current detector performance and enable the HI program under these conditions:

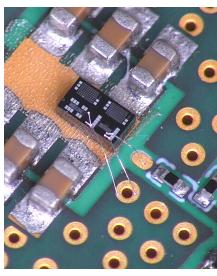
- Spatial resolution $\sigma_x \sim 10 \ \mu m$;
- Temporal resolution σ_{\cdot} <50 ps/hit (sensor+FE).

Pileup can only be solved with 4D tracking;




TimeSPOT & IGNITE projects: Current status

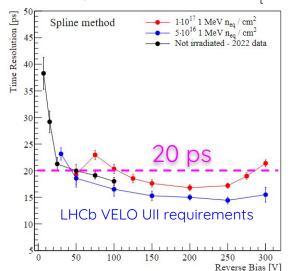

Designed to provide excellent timing performances and be radiation tolerant.


CAD design of a TimeSPOT 3D-Trench silicon Pixel, pitch 55µm

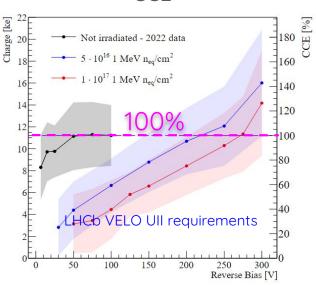
Weighting field and velocity map, from design and TCAD simulation it is possible to see uniformity and speed

FBK-TimeSPOT batch production

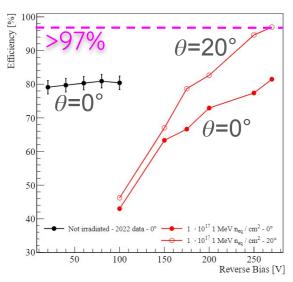
TimeSPOT test structure irradiated @ $5x10^{17}$ 1MeV n_{eq}/cm^2 , wirebonded to the custom frontend electronics



TimeSPOT: performances @ Fluence $\Phi = 1x10^{17} 1 \text{MeV n}_{eq} / \text{cm}^2$



Temporal resolution σ_{\star}

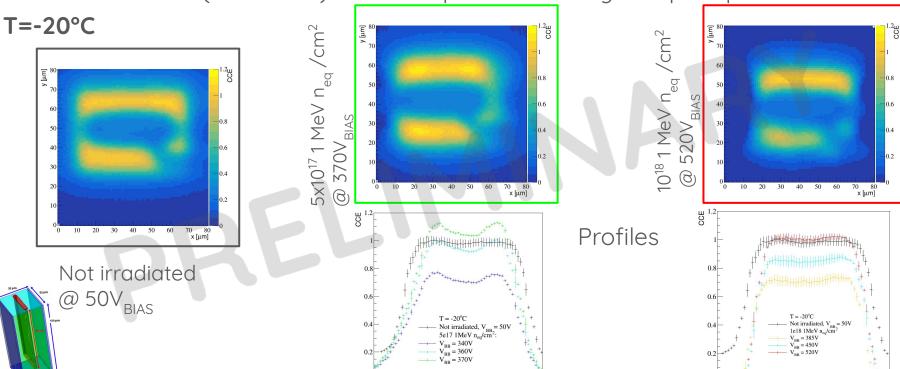

Time resolution (calculated with ARC method) less than 20 ps.

CCE

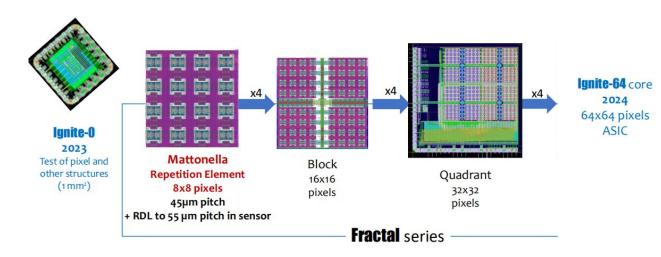
Charge collection can be restored by acting on the reverse voltage. Observation of charge "multiplication" effects.

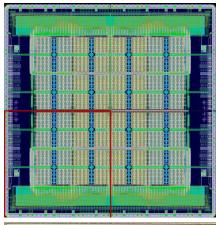
Detection efficiency

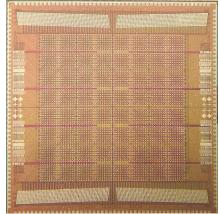
Efficiency as a function of applied reverse bias voltage and tilt angle.



Cold-TCT infrared (λ =1030nm) laser setup used to study sub-pixel performances

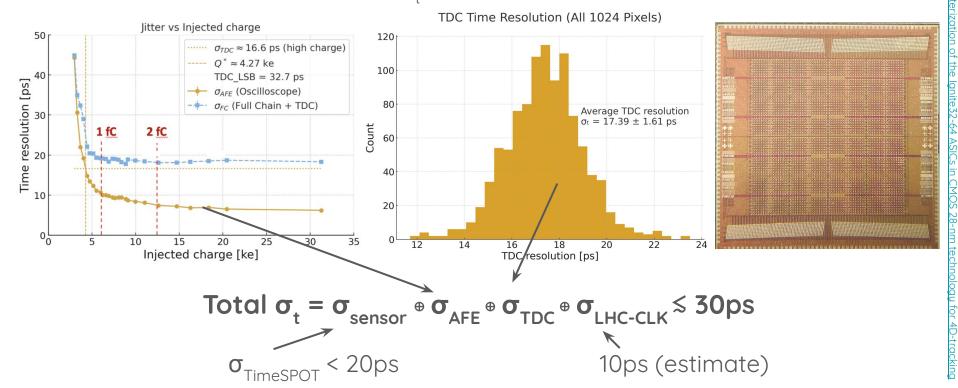



IGNITE Application specific integrated circuit



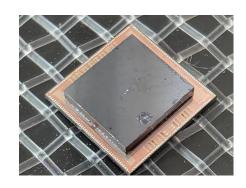
Idea of Fractal Design to build the Large Area ASICs:

- 28 nm CMOS;
- Pixel pitch 55 µm.
- TID > 1 Grad;
 - Ultra-fast timing < 50 ps.

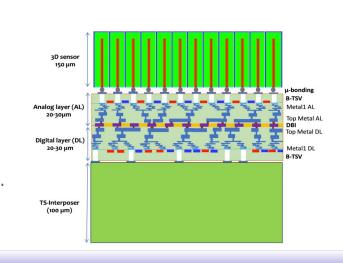


IGNITE: Some Results

Temporal resolution performances σ_{t}^{FE} ~ 20 ps (without sensor) @ 1fC.



IGNITE: Next developments steps


ignite.

- 2025-2026 Tests with sensors will start very soon:
 - o ⁹⁰Sr source;
 - TCT Laser studies;
 - o and Test Beam (4D-telescope tests in Apr.2026);

- 2026 Engineering Run:
 - 320x256 pixels ASIC (IGNITE-ER);
 - \circ 45 µm pitch.

Late 2026 - Validate Vertical Integration technique.

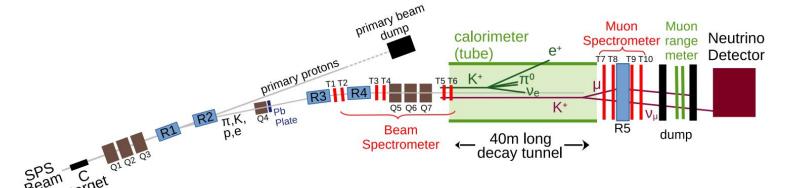
Other application: High Intensity Neutrino tagging

NuSCOPE is an international proto-collaboration aimed at building the first monitored and tagged neutrino beam at CERN SPS.

Physics reach potential:

- Determination of $v_{\mu}/v_{\rm e}$ cross-sections in the 1-10 GeV range with 1% accuracy (to solve systematic limitation in DUNE and HK);
- PNMS parameter determination and search for leptonic CP-Violation.

SPS can provide p⁺ of 400 GeV/c colliding on a graphite target producing:


- 4D tracking is necessary
- $K^+/\pi^+ \rightarrow \mu^+ \nu_{\mu}$ (Two-body decay !!!) $K^+ \rightarrow \pi^0 e^+ \nu_{\mu}$ for accurate measurement of $v_{\rm u}/v_{\rm e}$ flux

Neutrino tagging: Tracking technology requirements

The technological requirements for 4D-tracking (temporal correlation between decay products and detected $v_{\mu}/v_{\rm e}$) are very similar to those needed for the LHCb TV:

- Radiation tolerance Fluence Φ ~ 1x10¹⁶ 1MeV n_{eq} /cm²;
- Temporal resolution σ_{\downarrow} < 40 ps;
- Data rate ~ 20 MHz/mm²;
- Material budget $< 1\% X_0$.

TimeSPOT Sensors: legacy and future projects

	LHCb VELO UII	NuSCOPE	TimeSPOT
Fluence Φ [1MeV n_{eq} /cm ²]	5x10 ¹⁶	1x10 ¹⁶	>1x10 ¹⁷ TimeSP
Temporal res. $\sigma_t[ps]$	<50	Arecision Experiments	< 20

3D sensors are the favourite option for the LHCb VELO UII.

Next developments steps:

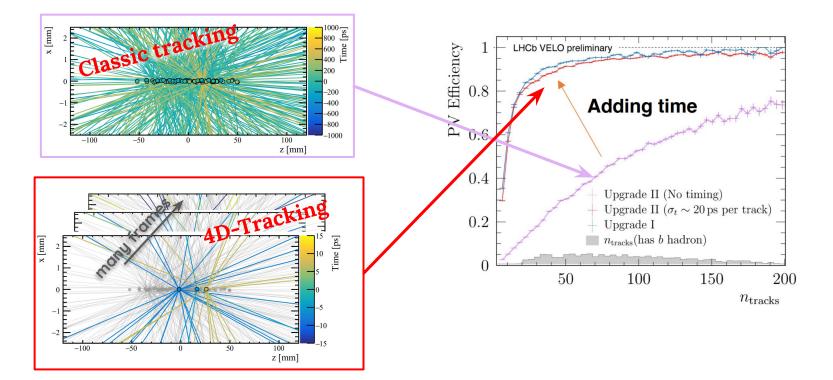
- Validate irradiated sensor @ Fluence Φ = 10¹⁸ 1MeV n_{eq}/cm^2 at a test beam;
- Improve the fabrication yield and produce large matrices (>64x64 pixels);
- Explore column-like geometries (improve yield);
- Explore stitching techniques, to produce very large matrices (of importance for NuSCOPE).

Conclusions

- Enable HI experiments require new technologies:
 - 4D tracking;
 - High radiation tolerance.
- INFN TimeSPOT & IGNITE projects:
 - Aim to provide a technological solution;
 - Timespot sensors met already the requirements;
 - o IGNITE ASIC preliminary results very promising.

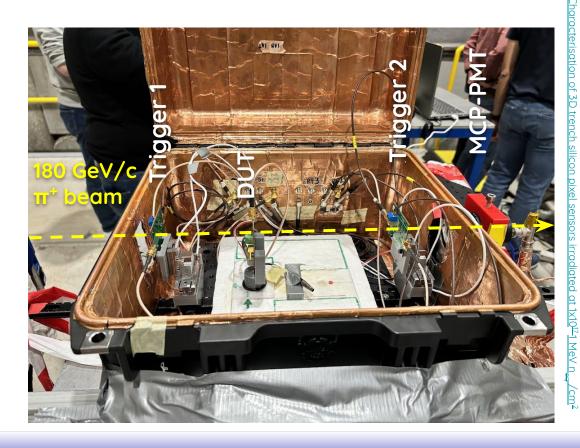
Expected Total
$$\sigma_{t} = \sigma_{sensor} \circ \sigma_{AFE} \circ \sigma_{TDC} \circ \sigma_{LHC\text{-}CLK} \lesssim 30ps$$

- Next developments steps:
 - IGNITE: Study of 64x64 pixel matrices (Lab and Test-Beam);
 - o IGNITE: Validate the Vertical Integration;

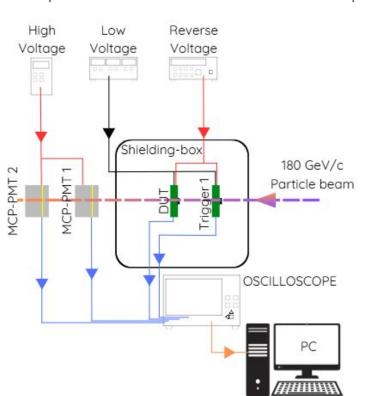


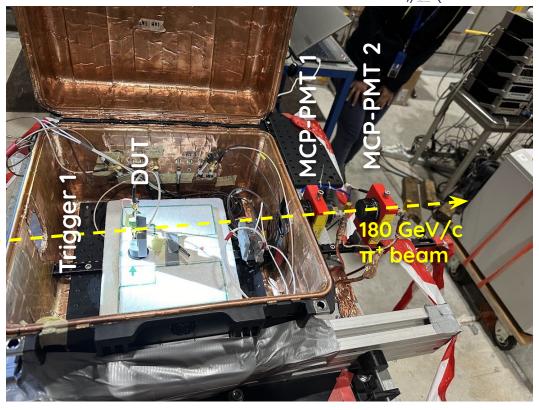
BACKUP SLIDES

VeLo UII: WHY 4D TRACKING?

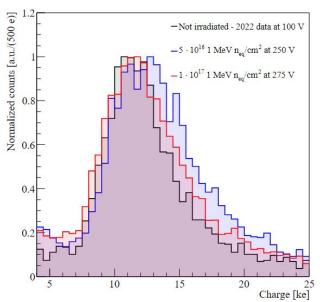

TimeSPOT: Test Beam setup

Efficiency setup

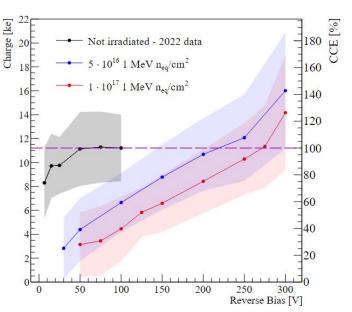



TimeSPOT: Test Beam setup

Temporal resolution % CCE setup



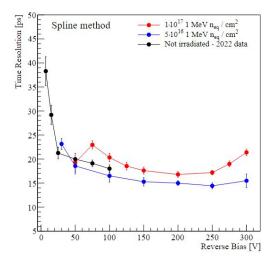
TimeSPOT: Test Beam details



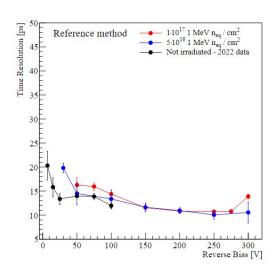
CCE

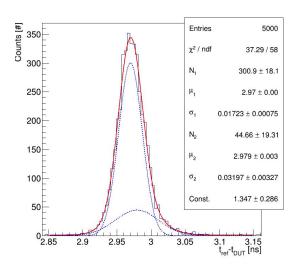
Amplitude distribution in electrons.
3 fluences are compared at different bias voltage.

Dots are the Landau distribution MPV, the shaded areas represents the corresponding FWHM.



TimeSPOT: Test Beam details

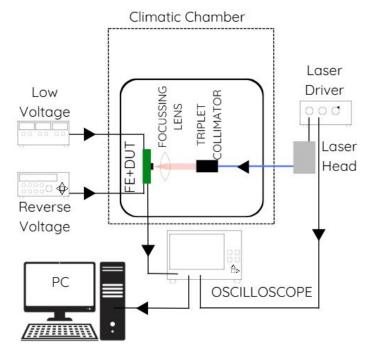



Temporal resolution

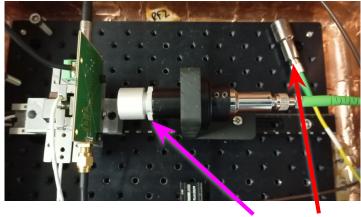
ARC method

CFD method

To A distribution, fast and "peripheral" contributions can be separated.



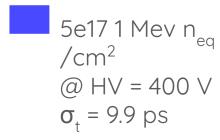
TimeSPOT: Cold-TCT setup

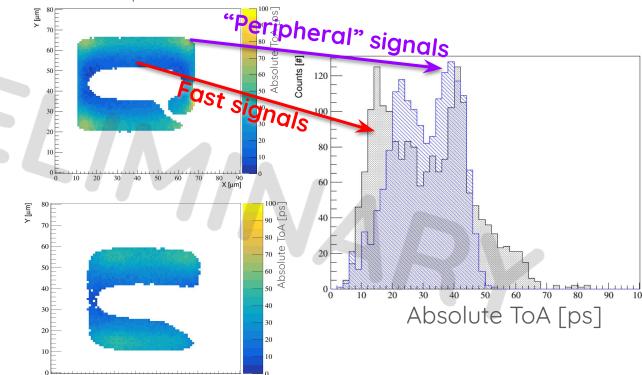


Climatic Chamber

Motion and optical systems (1030 and 650 nm lasers available)




TimeSPOT: Cold-TCT setup



Temporal resolution of a 5e17 1 Mev n_{ea} /cm² irradiated sensor

