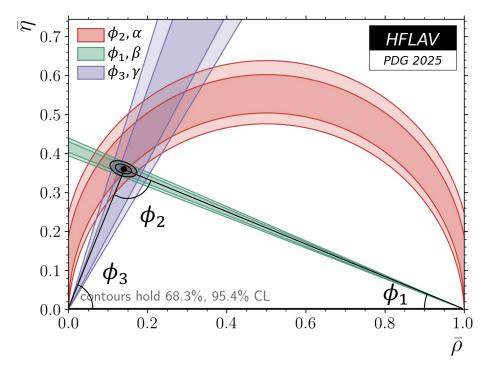
Measurements of unitarity triangle angles: experimental status and perspectives


Ryogo Okubo (INFN Trieste) for the Belle and Belle II collaborations with materials from the LHCb, CMS, and ATLAS experiments

CKM angles are probes of BSM physics

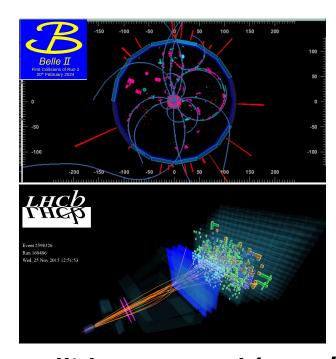
CPV phases in *b*-quark transitions

Angle	Definition	World average
$\phi_1 = \beta$	$\arg[-V_{cd}V_{cb}^*/V_{td}V_{tb}^*]$	$[22.63^{+0.45}_{-0.44}]^{\circ}$
$\phi_2 = \alpha$	$\arg[-V_{td}V_{tb}^*/V_{ud}V_{ub}^*]$	$[86.2^{+3.7}_{-3.0}]^{\circ}$
$\phi_3 = \gamma$	$\arg[-V_{ud}V_{ub}^*/V_{cd}V_{cb}^*]$	[65.9 ^{+2.7} _{-2.8}]°

From HFLAV. CKM fitter and UTfit report similar values

CKM angles provide constraints on BSM physics through unitarity tests

- ϕ_3 and sides: reliable SM references
- ϕ_1 (from tree-level decays), ϕ_2 , and Δm_d : can be shifted by potential BSM in $B^0 ar{B}^0$ mixing
- BSM in decay amplitudes can shift $\phi_1^{
 m eff}$ in loop-dominated decays from value observed in trees


The instruments

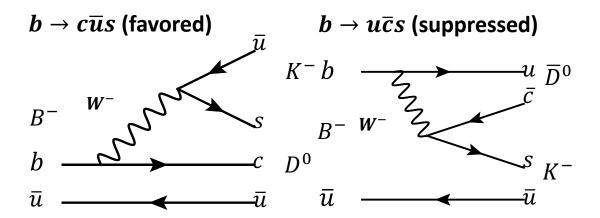
B factory experiments (Belle II)

- Coherent $B\overline{B}$ production at low background from e^+e^- collisions at 10.58 GeV
- Kinematically constrained environment for studying B, D, τ , ...
- Unique reach on decays with π^{0} 's

Hadron collider – forward (LHCb)

- High-statistics incoherent $b\overline{b}$ production from O(10) TeV pp collisions
- 1000x higher cross-sections for all kinds of flavored hadrons and large boost in forward region -
- Excellent vertexing, tracking, and PID detectors
- Large backgrounds

Hadron collider – central (CMS/ATLAS)

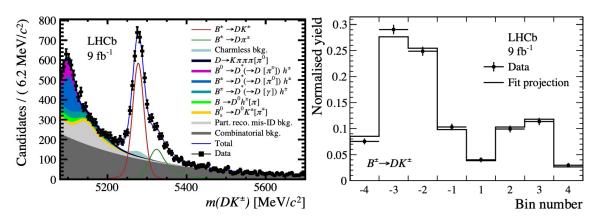

- **General-purpose** detectors that exploit **excellent tracking and muon detectors** for *B*-physics opportunities
- Higher collision frequency than LHCb,
 but also larger pile-up

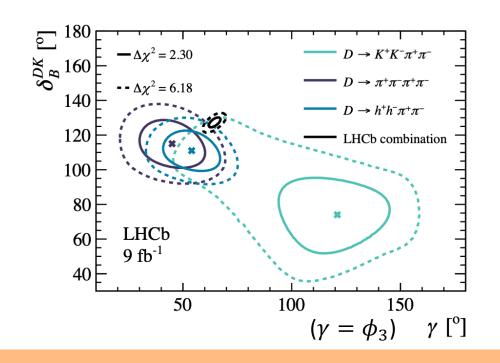
ϕ_3 - the SM reference

ϕ_3 - why and how

 $arg(-V_{ud}V_{ub}^*/V_{cd}V_{cb}^*)$ from CPV in interfering-tree $b\to u\bar c s$ and $b\to c\bar u s$ decay amplitudes

- Ratio of decay amplitudes determines ϕ_3
- A very reliable SM reference (10^{-7}) th. unc.)


Typical analysis


- Use $B_{(s)}^0 \to D_{(s)}K$ decays picking $D_{(s)}$ decays that maximize interference
- Extract signal from mass fits, and measure CPV from B vs $ar{B}$ yield differences
- Extract ϕ_3 from fit to CPV observables combined with external inputs (strong-phase differences, ratio between favored and suppressed decay amplitudes).
- Challenges: small signals with peaking backgrounds, multi-body D decay treatment.
- Combine results from different methods into coherent ϕ_3 determination

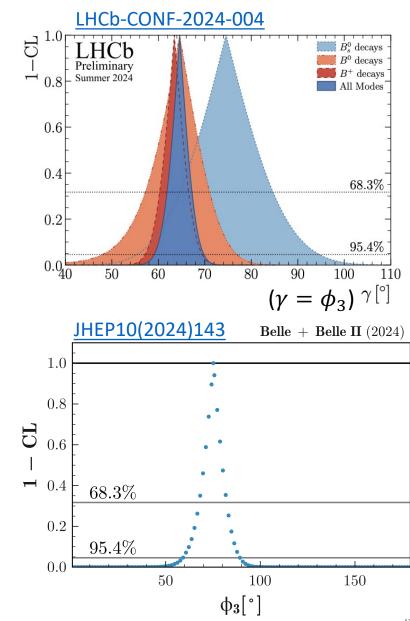
An example: $B^0 o D(o h'h'\pi^+\pi^-)h^\pm$ at LHCb 5

- Dataset: 2011-2012 (3 ${\rm fb}^{-1}$), 2015-2018(6 ${\rm fb}^{-1}$)
- Challenge: four-body D^+ decay, requiring a five-dimensional representation
- 2×4 binning scheme based on amplitude model, optimized for sensitivity to ϕ_3
- Charge and bin integrated signal extraction using $m(Dh^{\pm}) \rightarrow Extracted 13k$ decays
- Simultaneous CPV extraction from all bins
- $-\phi_3 = (52.6^{+8.5}_{-6.4})^{\circ}$: among the most precise determination

Another highlight: time-dependent CPV in $B_s^0 \rightarrow D_s K$: $\phi_3 = 81^{+12}_{-11}^{\circ}$ (JHEP03(2025)139) Improve ϕ_3 precision from B_s^0 side

ϕ_3 current status

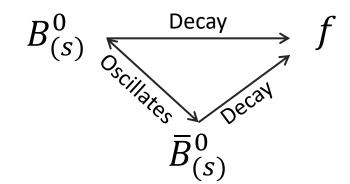
LHCb: $(64.6 \pm 2.8)^{\circ}$


- 2011-2012 (3 fb⁻¹) 2015-2018 (6 fb⁻¹)
- Combination of 19 channels from B^0, B^+, B_S^0 decays, along with charm mixing and CPV parameters
- Post 2024 summer results not included yet

Belle + Belle II : $(75.2 \pm 7.6)^{\circ}$

- Belle 711 fb $^{-1}$, Belle II 362 fb $^{-1}$
- Combination of 16 channels, B^+ modes only
- First Belle + Belle II combination

LHCb leads precision thanks to large samples


Comparison between Belle II and LHCb systematic uncertainties might be important in the long term

Probing BSM using $B_{(s)}^0$ mixing

The idea

Decay rate difference between $B_{(s)}^0$ and $\bar{B}_{(s)}^0$ oscillates with time due to interference between direct decay and decay following mixing

$$\frac{\Gamma(\bar{B}_{(s)}^{0} \to f) - \Gamma(B_{(s)}^{0} \to f)}{\Gamma(\bar{B}_{(s)}^{0} \to f) + \Gamma(B_{(s)}^{0} \to f)} = \frac{\mathbf{B^{0}} - C\cos\Delta m_{d}\Delta t + S\sin\Delta m_{d}\Delta t \quad C = 0, \quad \mathbf{S} = \sin2\phi_{1}}{\mathbf{B_{s}^{0}} \frac{S\sin(\Delta m_{s}t) - C\cos(\Delta m_{s}t)}{\cosh(\Delta\Gamma_{s}t/2) + A^{\Delta\Gamma}\sinh(\Delta\Gamma_{s}t/2)}, \quad S = \eta_{f}\sin\phi_{s}}$$

 Δm and $\Delta \Gamma$: mass and width differences between B mass eigenstates

Key observable is mixing-induced CP violation asymmetry 5:

- → Departure from indirect determination based on global unitarity fit may indicate BSM
- \rightarrow Differences between S measured in different decays may indicate BSM

Essential ingredients for time-dependent CPV

Flavor tagging: need to know the flavor at a certain time to understand if there was oscillation **Belle II**

- Quantum entangled $Bar{B}$ helps flavor tagging

GNN-based algorithm using all charged particles in rest-of-event PhysRevD.110.012001

- Effective tagging efficiency $(37.40 \pm 0.56)\%$

LHCb/ATLAS/CMS

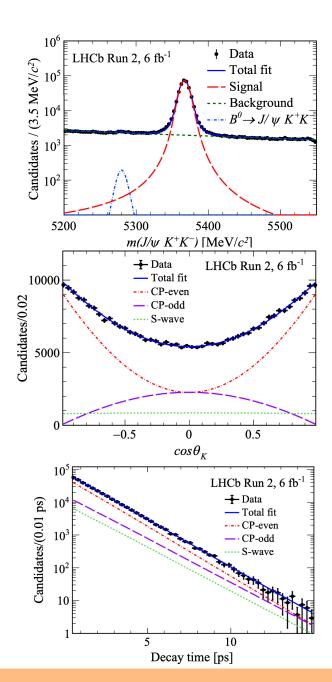
- Use μ , e, K, π and photons (LHCb), or μ , e, and b-jets (ATLAS/CMS) from b quark pair-produced with signal (opposite side), or charge correlations between fragmentation products and signal (same side)
- Effective tagging efficiency 6% at LHCb/CMS and 2% at ATLAS depending on the decays
- Reaching 7.2 7.8% with recent Deep Sets inclusive algorithm (arXiv:2508.20180)

Decay-time measurement: Need to measure time precisely to sample the modulation

Belle II

 $\sigma(z)$ 20 µm with $\beta \gamma = 0.28$ boost implies $\sigma(\Delta t) \approx 1$ ps

Hadron collider


Relevant vertex resolution 20 μm with Belle II, but much larger boost achieves $\sigma(t) \approx 50~fs$ at LHCb. Similar resolution (80 - 100 fs) in CMS/ATLAS

Mixing phase golden channels

$\phi_S: B_S^0 \to \psi K^+ K^-$ at LHCb

- -2015-2018 dataset (6 fb⁻¹)
- $J/\psi(\to \mu^+\mu^-, e^+e^-)K^+K^-, \psi(2S)(\to \mu^+\mu^-)K^+K^-$ at $m(KK) \approx m(\phi)$
- Signal extraction from ${\it B}$ invariant mass
 - → 350k decays in total
- Challenges: separation of CP-even and CP-odd decays
- Fit to angular variables to separate ${\it CP}$ -even, ${\it CP}$ -odd, and S-wave

```
\phi_s = -0.039 \pm 0.022 \pm 0.006 rad \Delta\Gamma_s = 0.845 \pm 0.0044 \pm 0.0024~ps^{-1} LHCb combination: \phi_s = -0.031 \pm 0.018 rad Most precise in the world
```


$\phi_s: B_s^0 \to J/\psi \phi$ at CMS

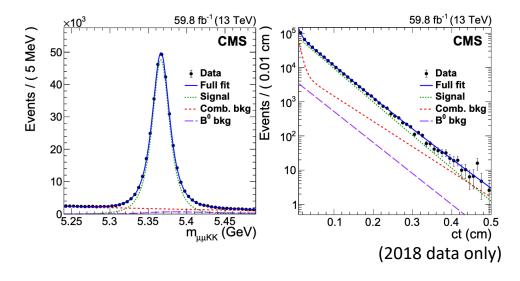
- 2017 2018 dataset: 96.5 fb^{-1}
- $J/\psi(\to \mu^+\mu^-)K^+K^-$
- Challenge: flavor tagging without PID
- Signal extraction from $m(B_S) \rightarrow 28k$ decays
- Angular and decay-time analysis similar to LHCb

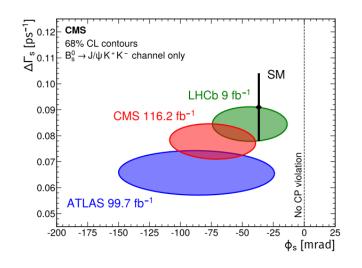
Improved flavor tagging

- Addition of same-side, use of jet charge, and NN
- New dedicated trigger for opposite side muon

→ Tagging efficiency:
$$(5.59 \pm 0.02)\%$$

$$\phi_s = -0.073 \pm 0.023 \pm 0.007$$
 rad

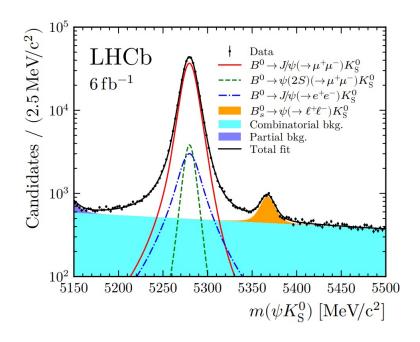

$$\Delta\Gamma_{\rm s}=0.114\pm0.014\pm0.007~{\rm ps^{-1}}$$

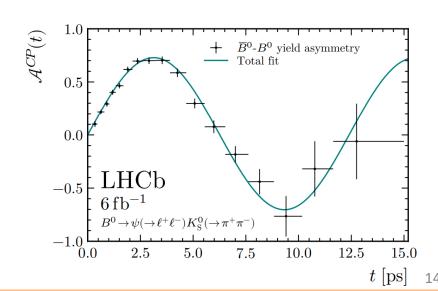

(2x better than previous analysis with the same dataset

(arXiv:2007.02434)

Combination with the 8 TeV analysis: (-0.074 ± 0.023) mrad

 \rightarrow First evidence for CPV (3.2 σ significance)





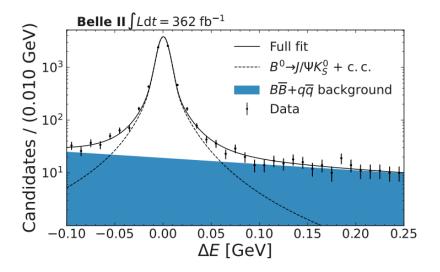
$\phi_1 \colon B^0 \to \psi K_s^0$ at LHCb

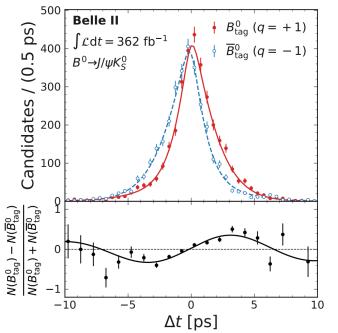
- -2017 2018 dataset: 6 fb⁻¹
- $J/\psi(\rightarrow \mu\mu, ee)K_s^0$ and $\psi(\rightarrow \mu\mu)K_s^0$
- Challenges: calibration of flavor tagging and resolution
- Signal extraction from B^0 mass \rightarrow Large signal of 373k decays
- Major systematic uncertainties: $\Delta\Gamma_d \text{ uncertainty and flavor tagger parameters calibrated}$ through $B^0 \to I/\psi K^{*0}$

$$S = +0.717 \pm 0.013 \pm 0.008$$

 $C = +0.008 \pm 0.012 \pm 0.003$
World's best result.

$\phi_1: B^0 \to J/\psi K_S^0$ at Belle II

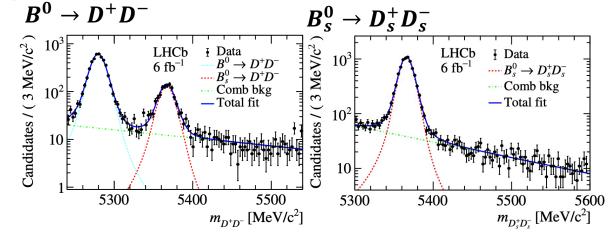

- 2019-2022 dataset: 362 fb^{-1}
- Data-driven Δt resolution and flavor tagging calibration
- Signal extraction from $\Delta E \rightarrow 6.4$ k decays
- New flavor tagging algorithm
- 30% fractional improvement in effective tagging efficiency

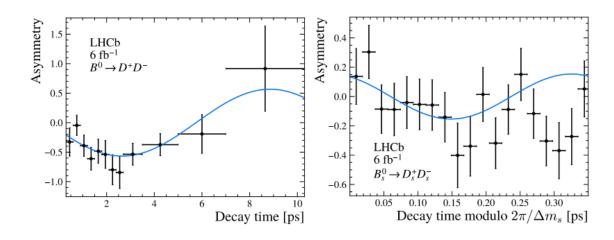

First results:

$$S = +0.724 \pm 0.035 \pm 0.009$$

$$C = -0.035 \pm 0.026 \pm 0.029$$

Aim for precision competitive with LHCb with future larger datasets





Combined measurement of both mixing phases at LHCb

JHEP01(2025)061

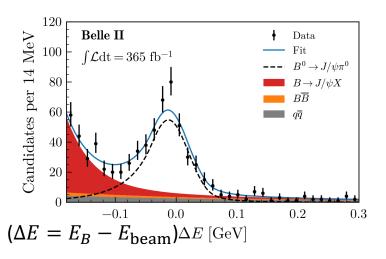
- Use $B^0 \to D^+D^-$ for ϕ_1 combined with $B_S^0 \to D_S^+D_S^-$ for ϕ_S which are dominated by trees
- CPV parameters in B^0 and B^0_s constrain each other loops through U-spin symmetry
- 2015-2018 dataset: 6 fb⁻¹
- Challenge: systematic error from peaking backgrounds
 → Reduced by improved selection
- Fit to mass for signal extraction via sPlot. \rightarrow 5.7k B^0 decays, 13k B_s^0 decays
- Decay-time fit as in $B_s^0 \to J/\psi KK$
- Combine with Run1 results, $S_{D^+D^-} = -0.549 \pm 0.085 \pm 0.015$ $C_{D^+D^-} = +0.162 \pm 0.088 \pm 0.009$ $\phi_s = -0.086 \pm 0.106 \pm 0.028$ rad Most precise $B_{(s)} \rightarrow D_{(s)}D_{(s)}$ result.

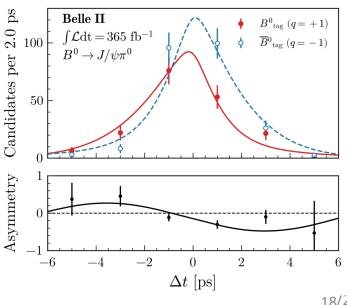
Beyond trees

$\phi_1: B^0 \to J/\psi \pi^0$

- Loop contribution can bias S of $J/\psi K_S^0$
- In preparation for future precision measurements, start considering loop pollution
- 2019-2022 dataset: 365 fb⁻¹
- Signal extraction from ΔE and $m(J/\psi)$. \rightarrow 392 decays
- Challenges: low branching fractions, π^0 background \rightarrow Improved $ee \rightarrow q \bar{q}$ suppression with MVA, π^0 selection
- Similar analysis as $I/\psi K_s^0$

$$S = -0.88 \pm 0.17 \pm 0.03$$

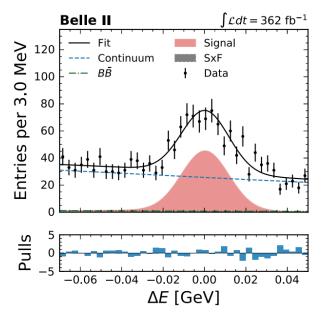

$$C = +0.13 \pm 0.12 \pm 0.03$$

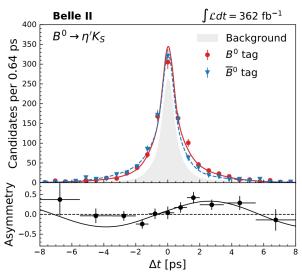

$$\mathcal{B} = (2.02 \pm 0.12 \pm 0.10) \times 10^{-5}$$

Most precise in the world.

Another interesting mode: $B^0 \rightarrow J/\psi\omega$ (PhysRevD.111.032012)

- Also useful to understand $J/\psi K_s^0$ loops
- Demonstrate possibility of CPV measurement in this channel





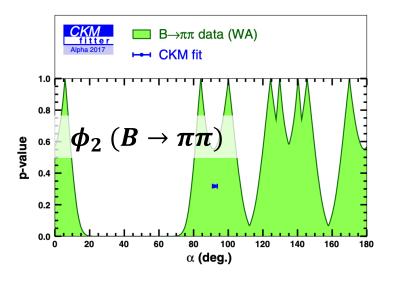
Loops as probes for BSM: $B^0 \to \eta' K_S$

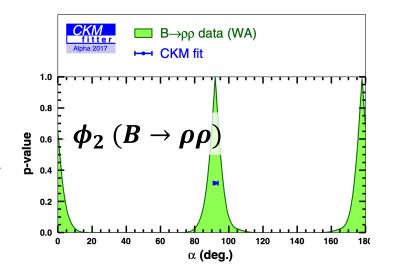
- One of the few remaining golden channels
- Decay dominated by loops: if S differs from ψK_S^0 , strong indication of BSM in loops $(|S(\psi K_S) S(\eta' K_S^0)| < 0.01)_{\text{(PLB, 620, 143)}}$
- 2019-2022 dataset: 362 fb⁻¹
- Used $\eta' \to \eta (\to \gamma \gamma) \pi \pi$ and $\eta' \to \rho^0 (\to \pi \pi) \gamma$ (unique to Belle II)
- Challenges: γ reconstruction, large-background
- Signal extraction from B invariant mass using beam energy, energy difference between measured and beam, and $ee \to qq$ suppression BDT output
 - \rightarrow 829 decays
- $C = -0.19 \pm 0.08 \pm 0.03$
- $S = +0.67 \pm 0.10 \pm 0.03$
 - \leftrightarrow S from trees = 0.710 \pm 0.011 (world average)

Comparable precision with Belle and BaBar

 ϕ_2 : the phase unique to Belle II

ϕ_2 : why and how

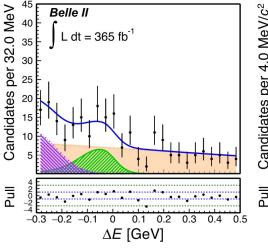

- $S = \sin(2\phi_2)$ from $b \to u$ tree amplitude $(B^0 \to \pi^+\pi^-, \rho^+\rho^-)$
- 5%-30% loops shift S and C.
- Recover with isospin analysis of $B \rightarrow h^+h^-$, h^+h^0 , h^0h^0

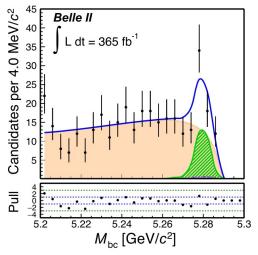

ho ho vs $\pi\pi$

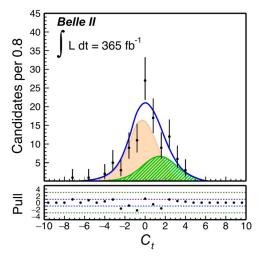
- Uncertainty from loop smaller in $\rho\rho$ due to 10x smaller loop in $\rho\rho$
- $\rho\rho$ is spin-0 \rightarrow spin-1 spin-1 decay. Angular analysis needed to separate longitudinal state
- ϕ_2 from $\pi\pi$ less precise due to multiple solutions because $S(\pi^0\pi^0)$ is missing, as we cannot measure $\pi^0 \to \gamma\gamma$ vertex
- New promising method to measure $S(\pi^0\pi^0) \rightarrow$ see Radek's talk

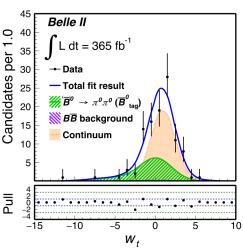
B ightarrow ho ho more precise, but more complicated

Eur. Phys. J. C 77, 574 (2017)




$B^0 ightarrow \pi^0 \pi^0$

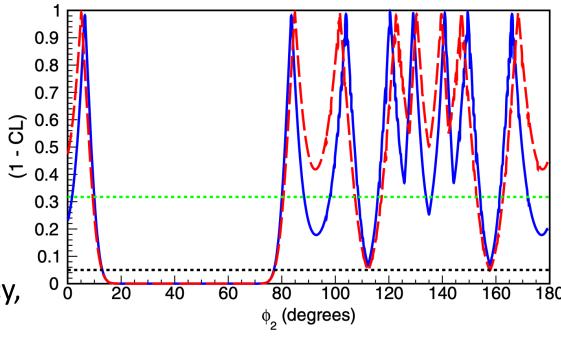

 $\pi^0 \rightarrow \gamma \gamma$ has a lot of backgrounds.


Only Belle II can measure this

- 2019-2022 dataset: 365 fb⁻¹
- Large ee → qq backgrounds is the main challenge
 → Suppress it by data-driven BDT
- Signal extraction from B^0 mass, energy difference from beam energy, wrong tagging flavor probability, and continuum suppression
 - \rightarrow 125 decays
- Photon selection, energy calibration validated using $B^+ \to K^+ \pi^0$ and $B^0 \to \overline{D}{}^0 (\to K^+ \pi^- \pi^0) \pi^0$ decays

Results and constraint on ϕ_2

	$\mathcal{B}(\times 10^{-6})$	<i>C</i>	$N_{\Upsilon(4S)}$
Belle II	$1.25 \pm 0.20 \pm 0.11$	$-0.03 \pm 0.30 \pm 0.04$	387×10^{6}
Belle	$1.31 \pm 0.19 \pm 0.19$	$-0.14 \pm 0.36 \pm 0.10$	772×10^{6}
BABAR	$1.83 \pm 0.21 \pm 0.13$	$-0.43 \pm 0.26 \pm 0.05$	383.6×10^6

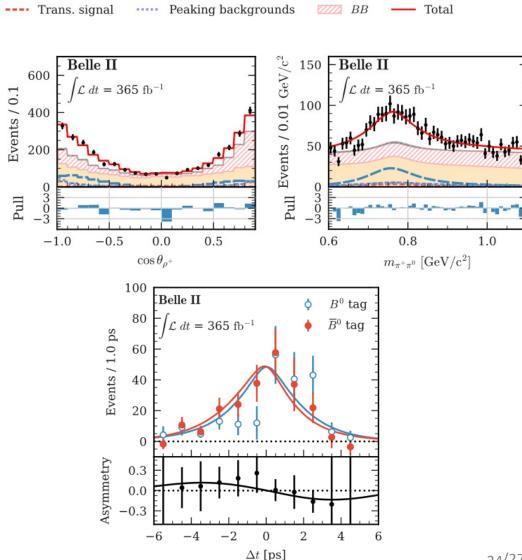

World-leading or nearly so, despite 50% smaller sample size

30% fractional improvement on 1-sigma ϕ_2 range

Systematic uncertainties dominated by π^0 efficiency, based on $D^{*-}\to \overline D^0(K^+\pi^-\pi^0)\pi^-$

→will improve soon

w/o Belle II $B^0 o \pi^0 \pi^0$ w/ Belle II $B^0 o \pi^0 \pi^0$



$$B^0 o
ho^+
ho^-$$

- 2019-2022 dataset: 365 fb^{-1}
- Large backgrounds due to large ρ width and piononly final state \rightarrow Neural network-based qqsuppression (TabNet)
- Soft π^0 background in $\rho \to \pi \pi^0$ (Unique to Belle II) \to Fake photon suppression using cluster shapes
- 6D signal extraction by ΔE , $m_{\pi\pi}$ (signal vs BG), continuum suppression output (signal vs qq), and $\cos\theta$ (polarization)
 - \rightarrow 436 decays
- CPV extraction from decay-time difference

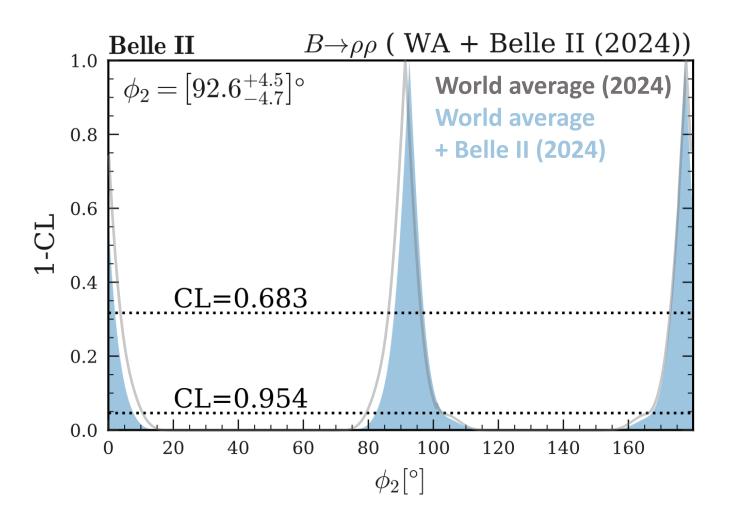
$$S = -0.26 \pm 0.19 \pm 0.08$$

 $C = -0.02 \pm 0.12^{+0.06}_{-0.05}$

Comparable precision to previous experiments.

Data

ϕ_2 impact


B
ightarrow
ho
ho world average

$$\phi_2 = (91.5^{+4.5}_{-5.4})^{\circ}$$

+ Belle II $\rho^+\rho^-$ results

$$\rightarrow \phi_2 = (92.6^{+4.5}_{-4.7})^{\circ}$$

10% improvement from Belle II! Dominated by S of $\rho^+\rho^-$ and $\rho^0\rho^0$.

Perspectives for coming five years

	Belle II $\int \mathcal{L} dt = 5 - 10 \text{ ab}^{-1}$	LHCb, ATLAS, CMS Run 3	
ϕ_s		0.023 rad →0.008 rad in LHCb, CMS Similar precision at ATLAS	
	→Unique to LHC. Stringent SM test by comparison of the value from SM		
ϕ_3	$7.6^{\circ} \rightarrow 3^{\circ}$	$2.8^{\circ} \rightarrow 0.8^{\circ}$ (LHCb)	
	→ LHCb leading precision.		
ϕ_1	$1.5^{\circ} \rightarrow 0.46^{\circ}$	$0.54^{\circ} \rightarrow 0.22^{\circ}$ (LHCb)	
	→ LHCb leading precision, Belle II may rea	ach similar level on $oldsymbol{\phi_1}$	
$\phi_1^{ m eff}$	$\sigma(S(\eta'K_S)) = 0.10 \rightarrow 0.029$ $\sigma(S(\phi K_S)) = 0.26 \rightarrow 0.048$		
	$ ightharpoonup$ Stringent SM test by comparing $\phi_1^{ m eff}$ from Belle II and ϕ_1 from LHCb +Belle II		
ϕ_2	4.5°→2°		
	$ ightarrow$ Unique to Belle II. Further improvement by $S(\pi^0\pi^0)$ with new technique. This might be crucial for UT test after other parameters become precise		

Summary

CKM angles are probes of BSM physics.

 ϕ_3 is a reliable SM reference

- LHCb leads precision due to large samples

 ϕ_1 is mixing-induced phase that provides one of the most stringent constraint to BSM in mixing

- $J/\psi K_S^0$ measured precisely LHCb, Belle II may reach similar level in the future
- LHCb and CMS highlight: $\phi_{\scriptscriptstyle S}$ measurement for $B_{\scriptscriptstyle S}^{\,0} \bar{B}_{\scriptscriptstyle S}^{\,0}$ mixing

 ϕ_2 is the most imprecise angle, may soon limit power of unitarity fits

- Require π^0 reconstruction making it unique to Belle II
- New measurements for $\pi^0\pi^0$ and $\rho^+\rho^-$ improves the world average by 10%!