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CKM angles are probes of BSM physics
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CKM angles provide constraints on BSM physics through unitarity tests
- ¢p3 and sides: reliable SM references
- ¢, (from tree-level decays), ¢,, and Amy: can be shifted by potential BSM in B°B° mixing

- BSM in decay amplitudes can shift qbeff in loop-dominated decays from value observed in trees



The instruments

B factory experiments (Belle 11)
production at
from ete ™ collisions at 10.58 GeV
- Kinematically constrained environment for
studying B, D, 7, ...

- Unique reach on decays with

Hadron collider — forward (LHCb) Hadron collider — central (CMS/ATLAS)
production from - General-purpose detectors that
0(10) TeV pp collisions exploit
- 1000x higher cross-sections for for B-physics opportunities
s and large boost in forward region - Higher collision frequency than LHCb,
- Excellent vertexing, tracking, and PID detectors but also larger pile-up

- Large backgrounds



¢; - the SM reference



¢ 3 - why and how
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Typical analysis
- Use B(OS) — D K decays picking D5y decays that maximize interference

- Extract signal from mass fits, and measure CPV from B vs B yield differences
- Extract ¢p3 from fit to CPV observables combined with external inputs (strong-phase
differences, ratio between favored and suppressed decay amplitudes).
- Challenges: small signals with peaking backgrounds, multi-body D decay treatment.
from different methods into coherent ¢; determination
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An example: B® - D(— h'h'mtm~)h* at LHCb

- Dataset: 2011-2012 (3 fb~1), 2015-2018(6 fb~1)
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¢ 3 current status

LHCb-CONF-2024-004

LHCb: S ITHG R EEe
~ 2011-2012 (3 fb~1) 2015-2018 (6 fb~1) Tosprent o MOBR S m
- Combination of 19 channels from BY, B*, BY decays,
along with charm mixing and CPV parameters -
- Post 2024 summer results not includedyet b /&8
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Probing BSM using B(S) mixing



The idea

Decay rate difference between B&) and E?S) oscillates with time due B?s) Decay  , f
to %
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Am and AI': mass and width differences between B mass eigenstates

Key observable is mixing-induced CP violation asymmetry
— Departure from indirect determination based on global unitarity fit may indicate BSM

— Differences between S measured in different decays may indicate BSM



Essential ingredients for time-dependent CPV

Flavor tagging: need to know the flavor at a certain time to understand if there was oscillation

Belle Il

- Quantum entangled BB helps flavor tagging

GNN-based algorithm using all in rest-of-event PhysRevD.110.012001

- Effective tagging efficiency

LHCb/ATLAS/CMS

- Use u, e, K, mand photons (LHCb), or u, e, and b-jets (ATLAS/CMS) from b quark pair-produced with signal
( ), or charge correlations between fragmentation products and signal ( )

- Effective tagging efficiency at LHCb/CMS and 2% at ATLAS depending on the decays

- Reaching with recent Deep Sets inclusive algorithm (arXiv:2508.20180)

Decay-time measurement: Need to measure time precisely to sample the modulation
Belle Il

0(z) 20 um with By = 0.28 boost implies a(At) = 1 ps

Hadron collider

Relevant vertex resolution 20 um with Belle Il, but much larger boost achieves at LHCb.
Similar resolution (80 — 100 fs ) in CMS/ATLAS


https://doi.org/10.1103/PhysRevD.110.012001
https://arxiv.org/abs/2508.20180

Mixing phase golden channels
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¢.:BY > PKtK~ at LHCb
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https://doi.org/10.1103/PhysRevLett.132.051802

¢S: Bg - ]/1I)¢ at CMS arXiv:2412.19952

%10° 59.8 fb™! (13 Te V) 59.8 b (13 TeV)

- 2017 - 2018 dataset: 96.5 fb™! 5 F i ems—;
~ J/p(o T KK
- Challenge: flavor tagging without PID g 15 1° \;‘;:.L‘I‘jij;...\.‘_.‘é:,":g"“:
- Signal extraction from m(Bs)—> 28k decays 20 | 1100

- Angular and decay-time analysis similar to LHCb A N o H
Improved flavor tagging O 070z 03 o o
- Addition of same-side, use of jet charge, and NN (2018 data only
- New dedicated trigger for opposite side muon

- Tagging efficiency: (5.59 + 0.02)% o T T
¢, =-0.073+0.023 +0.007 rad E”’ N

AT, =0.114 4+ 0.014 + 0.007 ps~?

(2x better than previous analysis with the same dataset

(arXiv:2007.02434 ) _1
Combination with the 8 TeV analysis: (—0.074 + 0.023) mrad G AT WO |

- First evidence for CPV (3.20 significance)


https://arxiv.org/abs/2412.19952
https://arxiv.org/abs/2007.02434
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¢.: B? - PK? at LHCb

10 e
- 2017 — 2018 dataset: 6 fb~1 % LHCb e
- J/9(> up, ee)K? and Y(= K 2 al [\ S
- Challenges: calibration of flavor tagging and resolution z i
- Signal extraction from B® mass 35 ol
—Large signal of S
- Major systematic uncertainties: b
Al'; uncertainty and flavor tagger parameters calibrated m($Kg) [MeV/c?]
through BY - J /Y K*°
%g R [ e
= 0.5

- LHCb
[ 6fb !
[ B = y(= LMK (—7tn)

S [y ) S N R [P B

0.0 2.5 5.0 7.5 10.0 12.5 15.0
t [ps]

—0.5



https://doi.org/10.1103/PhysRevLett.132.051802

¢.: B’ - J/YK? at Belle Il

- 2019-2022 dataset: 362 fb~1

- Data-driven At resolution and flavor tagging calibration

- Signal extraction from AE - 6.4k decays

- New flavor tagging algorithm

- 30% fractional improvement in effective tagging efficiency

Candidates / (0.010 GeV)

First results:
S=+40.724+ 0.035+ 0.009
C=-0.035+0.026 +0.029

Aim for precision competitive with LHCb
with future larger datasets

PhysRevD.110.012001

Belle Il [Ldt =362 fb~!

N(BZ,,) — N(BY,,)

— Full fit

B%-J/WK? + c.c.

mmm BB+qq background
{ Data

-0.10 —0.05 0.00 0.05 0.10 0.15 020 025
AE [GeV]
" gelien ' '
B dete— 362 fo=t P B g=+1)
in 49 ' Bo /_Ko £\t Bagla=-1 ]
. - /
S JIWKs %\
— 300} ¥ \
0 /oy
q) 1 \‘
© 200 Aoy
i) 4 \
= y W
C 100 J ¢
8 D/%¢ \¢\0~ ¢
=y '
SN s 4
= : t
S !
= -1t , , , 1
-10 =5 0 5 10
At [ps] 15/27
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Combined measurement of both mixing phases at LHCb

- Use B > D*D~ for

combined withBY - D& D; for

which are dominated by trees

- CPV parameters in BY and B? constrain each other
loops through U-spin symmetry

- 2015-2018 dataset: 6 fb~1

- Challenge: systematic error from peaking backgrounds
— Reduced by improved selection

- Fit to mass for signal extraction via sPlot.
- 5.7k B? decays, 13k B decays
- Decay-time fit as in B - J/WKK

- Combine with Run1 results,
Sp+p- = —0.549 £ 0.085 + 0.015
Cp+p- = +0.162 + 0.088 + 0.009
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Beyond trees



PhysRevD.111.012011

¢1:B° - J/yYn’

Loop contribution can bias S of J /WK
In preparation for future precision measurements, start

considering loop pollution
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- 2019-2022 dataset: 365 fb! . \
- Signal extraction from AE and m(J /). - 392 decays 0 : s bbbt
- Challenges: low branching fractions, (AE = Ep — Epeam)BlGeV]
- Improved ee — qg suppression with MVA, ° selection
- Similar analysis as J /WK
wf Jebowwn R
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Another interesting mode: B® — J /1w (PhysRevD.111.032012)
- Also useful to understand J /Y K2 loops
- Demonstrate possibility of CPV measurement in this channel

Asymmetry Candidates per 2.0 ps



https://doi.org/10.1103/PhysRevD.111.012011
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PhysRevD.110.112002

Loops as probes for BSM: B? - n'K

- One of the few remaining golden channels BelleM Jra=302 7
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— 829 decays g 7T | oockaround
2300- i B tag
< S from trees = 0.710 + 0.011 (world average) § s}
i



https://doi.org/10.1016/j.physletb.2005.06.045
https://doi.org/10.1103/PhysRevD.110.112002

¢,: the phase unique to Belle Il



¢,: why and how

fromb — u amplitude (B® - ntn~,p*p7)
- 5%-30% and C.
- Recover with isospin analysis of B - h*h~, hth°% h°h°

ppP VS TTTT

due to 10x smaller loop in pp

- pp is spin-0 — spin-1 spin-1 decay. needed to
separate longitudinal state
- ¢, from 1 less precise due to
, as we cannot measure ¥ — yy vertex

- New promising method to measure S(m°mr%)-> see Radek’s talk
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https://agenda.infn.it/event/43895/contributions/273788/

0.0 PRD 111, LO71102 (2025)

B? > On

¥ - yy has a lot of backgrounds.
- 2019-2022 dataset: 365 fb~! o Juacoee o Juacamn ’
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PRD 111, L071102 (2025)

Results and constraint on ¢,
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PRD 111, 092001 (2025)

B® - p*p~
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¢, impact

B — pp world average
¢2 = (915t§451_ °

from Belle II!
Dominated by S of p*p~ and p°p°.

1-CL
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° ° ° arXiv:2503.24346
Perspectives for coming five years 2rXiv:1808.10567
Bellell [ £Ldt =5—10ab™? LHCb, ATLAS, CMS Run 3
¢ | --- 0.023 rad = rad in LHCb, CMS
Similar precision at ATLAS
- Stringent SM test by comparison of the value from SM
¢3|7.6°> 3° 2.8° > (LHCb)
- LHCb leading precision.
¢4 | 1.5° - 0.46° 0.54° - (LHCb)

-> LHCb leading precision, Belle Il may reach similar level on ¢4

eff
1

o(S(n'Ks)) = 0.10 -
o(S(pKs)) = 0.26 —

- by comparing from Belle Il and from LHCb +Belle I
¢, | 4.5°>
- Further improvement by

This might be for UT test after other parameters become precise
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https://arxiv.org/abs/1808.10567

Summary

¢ is a reliable SM reference
- LHCb leads precision due to large samples

¢4 is mixing-induced phase that provides one of the most stringent constraint to BSM in mixing
- J/WPK2 measured precisely LHCb, Belle Il may reach similar level in the future
- LHCb and CMS highlight: ¢, measurement for BB mixing

¢, is the most imprecise angle, may soon limit power of unitarity fits

0

- Require " reconstruction making it unique to Belle Il

- New measurements for 77 and p*p~ improves the world average by 10%!



