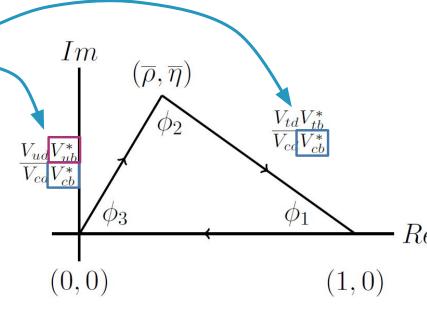
Measurements of Unitary Triangle sides: experimental status and perspectives

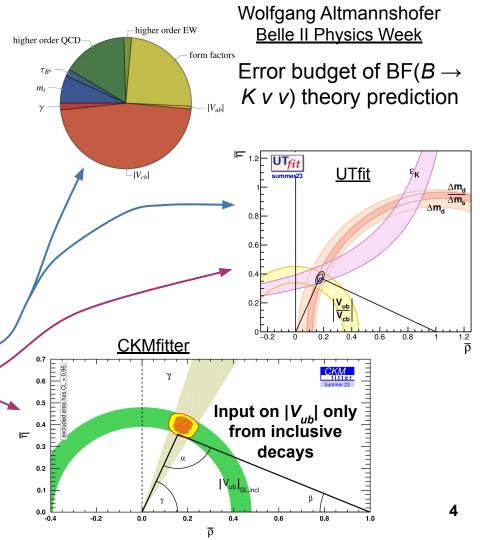
Tommy Martinov INFN, Trieste

On behalf of the Belle, Belle II and LHCb collaborations



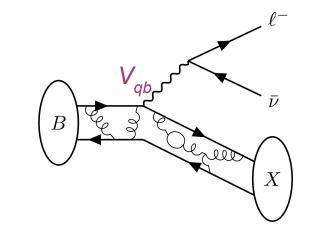
INTRODUCTION

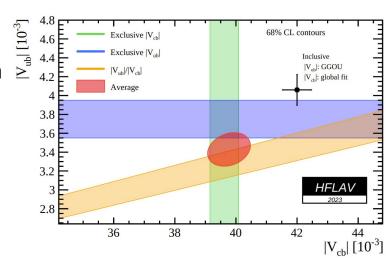
Unitarity triangle sides


- $\bar{\rho} + i\bar{\eta} = -(V_{ud}V_{ub}^*)/(V_{cd}V_{cb}^*)$
- Different parametrisations of the CKM matrix and unitarity triangle
- In the $\rho \eta$ plane, the two sides are defined as a function of 6 of the CKM matrix elements
- The CKM matrix is unitary by construction and therefore any deviation observed in tests of the UT would be a clear sign of non-SM physics
- How are the UT sides measured?
 - \circ $V_{ud} \rightarrow$ beta decays
 - \circ $V_{cd} \rightarrow$ charm decays
 - \circ $V_{td} \rightarrow$ rare penguin and box decays
 - \circ $V_{tb} \rightarrow \text{top quark decays}$
 - \circ V_{ub} and $V_{cb} \rightarrow$ semileptonic B decays

$|V_{ub}|$ and $|V_{cb}|$

- Measured in tree-level decays
 - → useful to anchor the UT and increase the sensitivity of unitarity tests to deviations in loop-dominated observables
- The precision of UT tests is limited by the uncertainty on $|V_{ub}|$ and $|V_{cb}|$ and inconsistencies between different measurements


$|V_{ub}|$ and $|V_{cb}|$ measurements


- Usually measured using semileptonic B decays
 - Via exclusive decays

■
$$B \rightarrow \pi I V, B \rightarrow D I V ...$$

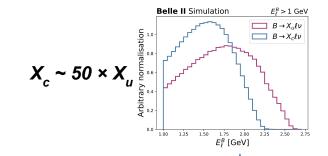
 Or via inclusive decays where no explicit requirements are applied on the hadronic system

• The two methods yield values which **differ by** $\sim 3\sigma$ for both $|V_{ub}|$ and $|V_{cb}|$

$oxed{V_{ub}}$ and $oxed{V_{cb}}$ measurements $\frac{d\Gamma}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{192\pi^3 m_R^3} \lambda^{3/2} (q^2) |f_+(q^2)|^2$

 $\lambda(q^2) = (m_B^2 + m_\pi^2 - q^2)^2 - 4m_B^2 m_\pi^2$ ${\cal B} \to \pi \, I \, V$

Semileptonic decays

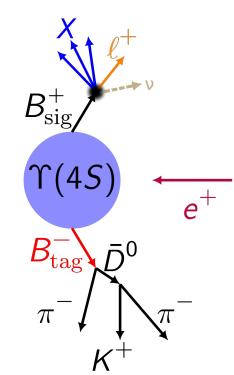

3 main kinematical variables

- $E_{i}^{(B)}$: lepton energy (in B meson rest-frame)
- $M_{\mathbf{x}}$: mass of hadronic system
- **q**²: momentum transfer

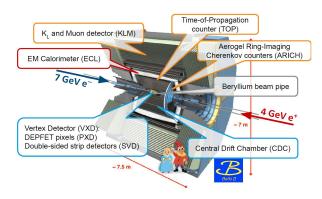
$$q = p_1 + p_y$$

- Resonant decays are described via form factors
 - Functions which encapsulate the non-perturbative dynamics of the transition
- Inclusive decays
 - Described by Heavy Quark Expansion (HQE) \rightarrow expansion in powers of α_s and $1/m_h$
 - $B \to X_c / v \to \text{use HQE to extract non-perturbative parameters and } |V_{ch}|$
 - $B \to X_{ll} / v \to \text{apply kinematic selections to suppress large } B \to X_{ll} / v \text{ background, HQE breaks}$ down and decay rate prediction relies on specific calculations, combine resonant + non-resonant contribution

 $|V_{ub}| = \sqrt{\frac{\Delta \mathcal{B}(B \to X_u \ell \nu)}{\tau_B \Delta \tilde{\Gamma}(B \to X_u \ell \nu)}}$



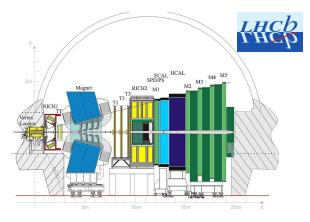
$|V_{ub}|$ and $|V_{cb}|$ measurements


Challenges

- We measure branching fractions of semileptonic decays but a theory input is needed to obtain $|V_{ub}|$ and $|V_{cb}|$
 - Exclusive decays: form factor parameters
 - Inclusive decays: decay rate prediction via HQE
 - → theory and experiment must work hand-in-hand to improve our understanding
- Experimental challenges of semileptonic decays
 - Presence of neutrino ⇒ missing momentum
 - Inclusive hadronic system → need to reconstruct kinematic properties of a hadronic object without explicit requirements on its composition
 - B-factories: possibility to "tag" (i.e. reconstruct) non-signal B in its hadronic or semileptonic decay chains to constrain the event kinematics and derive properties of signal side particles

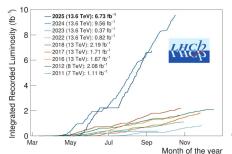
Experimental apparatus

SuperKEKB: asymmetric-energy $e^+e^- \rightarrow Y(4S) \rightarrow B\overline{B}$


~4π spatial coverage

Well known initial state

Tag non-signal B


⇒ Measurements with missing energy and inclusive systems

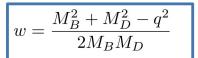
Run 1 luminosity: 365.37 ± 1.70 fb⁻¹

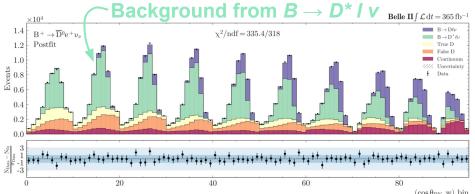
LHC: *pp* collider at various centre-of-mass energies Access to a wide variety of *b* hadrons → unique opportunity to study baryon decays Very good performance of muon reconstruction

Luminosity as of now

EXCLUSIVE MEASUREMENTS

$B \rightarrow D I v$ measurement at Belle II

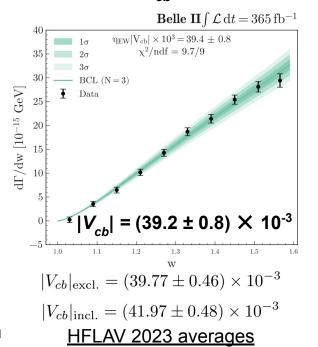

Exclusive $|V_{ch}|$ measurement


- Most commonly extracted from $B \rightarrow D^* I v$ decays because of the larger branching fraction
- Studying $B \rightarrow D I v$ has several advantages
 - Avoid reconstruction of low momentum pion from *D** $\rightarrow D \pi$ decays which represents the leading systematic uncertainty in $B \rightarrow D^* I v$ measurements
 - More precise lattice QCD predictions of form factor parameters
- Belle II 2025: <u>arXiv:2506.15256</u> (accepted by PRD)
- Measurement performed using B^0 and B^+ decays without explicitly reconstructing the partner B **meson** from the $Y(4S) \rightarrow B\overline{B}$ decay
- The signal is extracted from a 2D fit of $\cos \theta_{RV}$ and w

$$B \rightarrow D\ell\nu$$

$$B \rightarrow D^*\ell\nu$$
True D
False D
Continuum
Uncertainty
Data

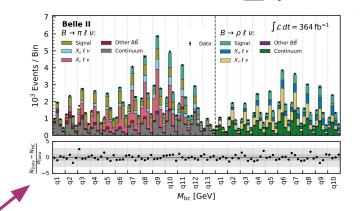
$$\cos heta_{BY} = rac{Y = DI}{2E_B^* E_Y^* - M_B^2 - M_Y^2}{2|p_B^*||p_Y^*|}$$

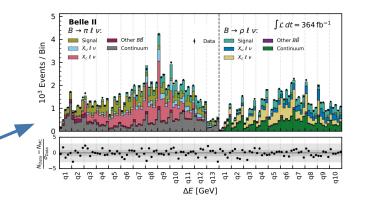


B → D I v measurement at Belle II Results

- The differential decay rate $\Delta\Gamma/\Delta w$ in 10 w bins is obtained from the same fit
- The obtained values of $\Delta\Gamma/\Delta w$ are fitted to the differential rate expressed using the Bourrely, Caprini, Lellouch (BCL) form factor parametrisation with a χ^2 fit with lattice QCD constraints \rightarrow extraction of $|V_{ch}|$ and BCL form factor parameters

2.1% relative uncertainty \rightarrow Significant improvement of $|V_{cb}|$ precision from $B \rightarrow D I v$ decays and most precise fully exclusive measurement ever


$B \rightarrow \pi/\rho I v$ measurement at Belle II


Exclusive $|V_{ub}|$ measurement

- Most precise determination of $|V_{ub}|$ using exclusive decays is obtained from $B \to \pi I v$ decays
- Simultaneous study of B → π l v and B → ρ l v performed at Belle II with untagged strategy [arXiv:2407.17403, accepted by PRD]
- Signal extracted from 2D fit of M_{bc} and △E
- Signal extracted in bins of q²

$$M_{bc} = \sqrt{E_{\text{beam}}^{*2} - |\vec{p}_B^*|^2}$$

$$\Delta E = E_B^* - E_{\text{beam}}^*$$

Other BB

Other BB

Continuum

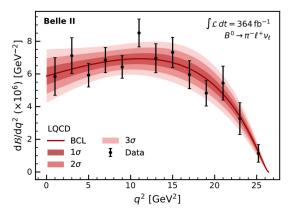
Signa $X_{ii} \ell \nu$

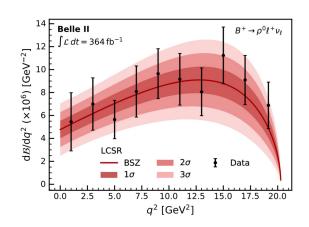
Xclv

Xclv

arXiv:2407.17403

$B \rightarrow \pi/\rho I v$ measurement at Belle II

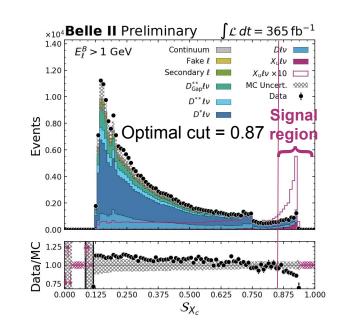

Results


- Extract form factor parameters and $|V_{ub}|$ using χ^2 fit
- $B \rightarrow \pi / v \rightarrow$ BCL parametrisation, LQCD or LQCD + LCSR constraints

$$|V_{ub}|_{LQCD} = (3.93 \pm 0.09 \pm 0.13 \pm 0.19) \times 10^{-3}$$

$$|V_{ub}|_{LQCD+LCSR} = (3.73 \pm 0.07 \pm 0.07 \pm 0.16) \times 10^{-3}$$

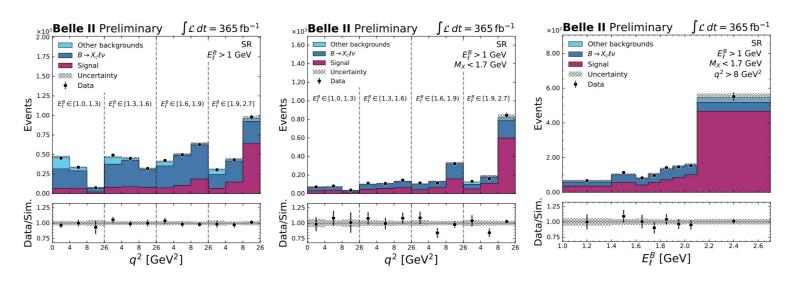
- $B \rightarrow \rho \ l \ v \rightarrow$ Bharucha, Straub, Zwicky parametrisation and LCSR constraints
 - $|V_{ub}|_{LCSR} = (3.19 \pm 0.12 \pm 0.17 \pm 0.26) \times 10^{-3}$
- Theoretical uncertainty dominates
- Light cone sum rules pull the central value down significantly


INCLUSIVE MEASUREMENTS

$B \rightarrow X_u I v$ measurement at Belle II

Inclusive $|V_{ub}|$ measurement

- Partner B meson is fully reconstructed in its hadronic decay channels → hadronic system is reconstructed inclusively
- Main challenge \rightarrow large background from $e^+e^- \rightarrow q\overline{q}$ (q=u,d,s,c) and $B\rightarrow X_c I v$
 - Two separate neural networks to suppress background
 - Kaon veto to suppress decays to charm mesons
 - Poor modelling of $B \rightarrow X_c I v$ requires a complex fitting procedure to correct mismodelling without biasing the signal
- Signal extraction strategy
 - \circ 2D fit in E_i^B and q^2
 - \circ Simultaneously fit the signal region and a control region to extract the shape of the $B \to X_c l v$ background from data



$B \rightarrow X_u I v$ measurement at Belle II

Extract $|V_{ub}|$ from 3 different regions of phase-space

- $E_{I}^{B} > 1.0 \text{ GeV}$
- $E_i^B > 1.0 \text{ GeV}, M_{\chi} < 1.7 \text{ GeV}$
- $E_i^B > 1.0 \text{ GeV}, M_X < 1.7 \text{ GeV}, q^2 > 8 \text{ GeV}^2$

Tighter selection increases signal purity but also model dependence

$B \rightarrow X_{u} I v$ measurement at Belle II

Results

 Theoretical predictions are most reliable over broader regions of phase-space

```
\triangle B(B \to X_u / v) = (1.54 \pm 0.08 \pm 0.12) \times 10^{-3}
with E_l^B > 1.0 \text{ GeV}
```


$B \rightarrow X_u I v$ measurement at Belle II

Results

$$|V_{ub}| = \sqrt{\frac{\Delta \mathcal{B}(B \to X_u \ell \nu)}{\tau_B \Delta \tilde{\Gamma}(B \to X_u \ell \nu)}}$$

B meson lifetime

 Theoretical predictions are most reliable over broader regions of phase-space

$$\Delta B(B \to X_u / v) = (1.54 \pm 0.08 \pm 0.12) \times 10^{-3}$$

with $E_i^B > 1.0 \text{ GeV}$

 Using the <u>Gambino, Giordano, Ossola,</u> <u>Uraltsev framework</u>

$B \rightarrow X_u I v$ measurement at Belle II

Results

$$|V_{ub}| = \sqrt{\frac{\Delta \mathcal{B}(B \to X_u \ell \nu)}{\tau_B \Delta \tilde{\Gamma}(B \to X_u \ell \nu)}}$$

B meson lifetime

 Theoretical predictions are most reliable over broader regions of phase-space

$$\Delta B(B \to X_u / v) = (1.54 \pm 0.08 \pm 0.12) \times 10^{-3}$$

with $E_i^B > 1.0 \text{ GeV}$

Using the <u>Gambino</u>, <u>Giordano</u>, <u>Ossola</u>,

Uraltsev framework

$$|V_{ub}| = (4.01 \pm 0.19^{+0.07}_{-0.08}) \times 10^{-3}$$
exp theo

Preliminary

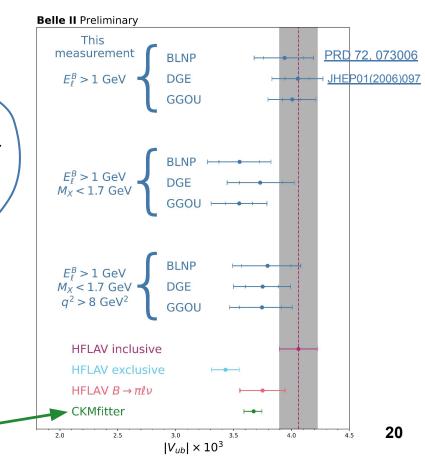
$B \rightarrow X_{"} I v$ measurement at Belle II

Results

$$|V_{ub}| = \sqrt{\frac{\Delta \mathcal{B}(B \to X_u \ell \nu)}{\tau_B \Delta \tilde{\Gamma}(B \to X_u \ell \nu)}}$$

B meson lifetime

 Theoretical predictions are most reliable over broader regions of phase-space


$$\Delta B(B \to X_u / v) = (1.54 \pm 0.08 \pm 0.12) \times 10^{-3}$$

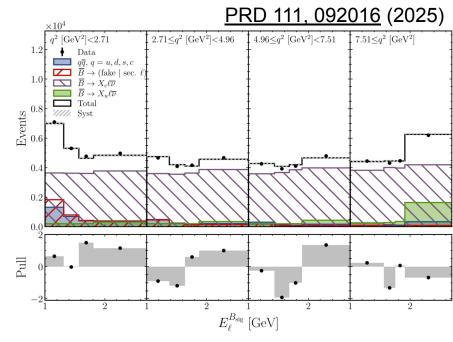
with $E_l^B > 1.0 \text{ GeV}$

Using the <u>Gambino, Giordano, Ossola,</u>

<u>Uraltsev framework</u>

$$|V_{ub}| = (4.01 \pm 0.19^{+0.07}_{-0.08}) \times 10^{-3}$$
 exp theo

CKMfitter output without using $|V_{ub}|$ inputs



Inclusive $|V_{ub}| / |V_{cb}|$ measurement at Belle

Inclusive $|V_{ub}|$ and $|V_{cb}|$ measurement

- Simultaneous constraint on $|V_{ub}|$ and $|V_{cb}|$ with reduced systematic uncertainty
- Partner B reconstructed in hadronic decays
- B → X_u I v yields are extracted from a region enriched in such decays using a 2D E_i^B:q² fit
- $B \rightarrow X_c / v$ yields are obtained from a region enriched in such decays by subtracting the scaled $B \rightarrow X_u / v$ yields
- Ratio of partial branching fractions is obtained from ratio of X_u and X_c yields
- $|V_{ub}| / |V_{cb}| = (10.06 \pm 0.66) \times 10^{-2}$

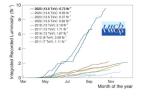
$$\frac{|V_{ub}|}{|V_{cb}|} = \sqrt{\frac{\Delta \mathcal{B}(\bar{B} \to X_u \mathcal{E}\bar{\nu})}{\Delta \mathcal{B}(\bar{B} \to X_c \mathcal{E}\bar{\nu})}} \frac{\Delta \Gamma(\bar{B} \to X_c \mathcal{E}\bar{\nu})}{\Delta \Gamma(\bar{B} \to X_u \mathcal{E}\bar{\nu})}}$$

OTHER MEASUREMENTS

Other measurements

- Inclusive |V_{cb}| → latest result from Belle II
 - Measurement of lepton mass squared moments in $B \rightarrow X_c I v$ decays with the Belle II experiment [PRD 107, 072002 (2023)]
- LHCb
 - \circ Two measurements of $|V_{ub}| / |V_{cb}|$ ratio
 - $\Lambda_{b/c}$ semileptonic decays [Nature Physics 11, 743–747 (2015)]
 - B_s semileptonic decays [PRL 126, 081804 (2021)]
 - One measurement of $|V_{cb}|$ using $B_s \to D^{(*)}_s \mu v$ [PRD 101, 072004 (2020)]

Large number of incoming results from LHCb


Upcoming measurements at LHCb

CKM 2025

- 1. Extracting $|V_{ub}|$ from $B^0_s o K^-\mu^+
 u_\mu$ and $B^0_s o K^-$ FF parameters with Run 2 data
 - Measure shape of differential decay rate in eight bins of q2
- 2. Extracting $|V_{ub}|$ from $B^+ \to \rho^0 \mu^+ \nu_\mu$ and $B^+ \to \rho^0$ FF parameters with Run 2 data
 - Measure shape of differential decay rate in 10 bins of a^2
- 3. Extracting $|V_{ub}|/|V_{cb}|$ from $B_c^+ \to D^{(*)0} \mu^+ \nu_{\mu}$ with Run 2 data
 - Normalize to $B_c^+ o J/\psi \mu^+ \nu_\mu$
- Profit from LQCD $B_c^+ \to D^0$ FF across full q^2 [Phys. Rev. D 105, 014503 (2022)]
- 4. Extracting $|V_{cb}|$ form $\Lambda_b^0 \to \Lambda_c^+ \mu^- \overline{\nu}_\mu$ with Run 2 data
 - Measure shape of differential decay rate
- 5. Extracting ${\it B}^0
 ightarrow {\it D}^{*-}$ FF from ${\it B}^0
 ightarrow {\it D}^{*-} \mu^+
 u_\mu$ using Run 2 data

⇒ Already collected more data in Run 3 than in Run 1+2 combined

n Glaser CKM 2025 September 16th 2025 22 / 23

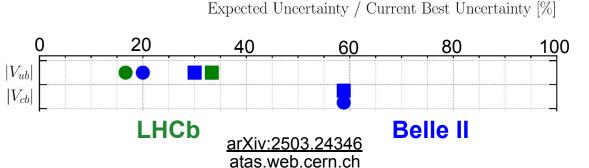
Leptonic B decays

$$B^+ \rightarrow \tau^+/\mu^+ v$$

$$\mathcal{B}(B^{+} \to \ell^{+}\nu_{\ell}) = \frac{G_{F}^{2}m_{B}}{8\pi} m_{\ell}^{2} \left(1 - \frac{m_{\ell}^{2}}{m_{B}^{2}}\right)^{2} f_{B}^{2} V_{ub} |_{\Gamma}^{2} \tau_{B}$$

$$f_{B} = 190.0 \pm 1.3 \text{ MeV}$$
[FLAG]

- Cleanest channels to measure |V_{ub}|
- Challenging measurements because of helicity suppression
 - $B^+ \to \tau^+ v$ branching fraction is expected to be of the same order as that of $B \to \pi l v$ but it suffers from large backgrounds
- Belle II has performed two measurements
 - Hadronic tag $B^+ \to \tau^+ \nu \to |V_{ub}| = (4.41^{+0.74}_{-0.89}) \times 10^{-3} [PRD 112, 072002 (2025)]$
 - Untagged $B^+ \to \mu^+ \nu \to |V_{ub}| = (3.90^{+0.88}_{-1.08}) \times 10^{-3}$ (preliminary)



PERSPECTIVES

$|V_{cb}|$ in the next 5 years

- In addition to statistical uncertainty, several systematic uncertainties in Belle II
 measurements can be reduced with larger dataset (number of *Y(4S)* events,
 particle identification...)
- But the bottleneck comes from theoretical predictions for form factors
- Cause of the exclusive/inclusive discrepancy hasn't been identified but investigations are ongoing
 - \circ Understand better $B \to D^{**} I v$ and non-resonant decays (see next slides)
 - \circ LHCb: potential study of inclusive B_s decays via sum of exclusive [JHEP06(2024)158]

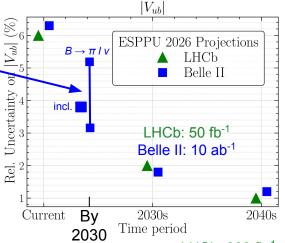
● 2040s uncertainty

2030s uncertainty

$|V_{ub}|$ in the next 5 years

My guesstimates

• $|V_{ub}|$ from $B \rightarrow \pi I v$


- Measurements are limited by the theoretical uncertainty → need more precise lattice QCD results
- Experimental uncertainty of Belle II result is dominated by systematic uncertainty but part of it can be reduced with higher statistics
- Assume 5 ab⁻¹ collected by Belle II
 - Same theoretical uncertainty \rightarrow total $|V_{ub}|$ uncertainty: 6.4% \rightarrow 5.2%
 - Theoretical uncertainty halved \rightarrow total $|V_{ij}|$ uncertainty: 6.4% \rightarrow 3.2%

Inclusive measurements of |V_{ub}|

- Latest Belle II result suffers from poor modelling of dominating charm background
- Assuming 5 ab⁻¹ of collected data and an improved background modelling
 - Total $|V_{ub}|$ uncertainty: $5.1\% \rightarrow 3.8\%$

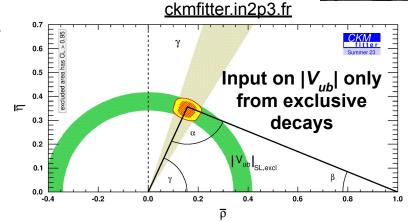
Leptonic decays

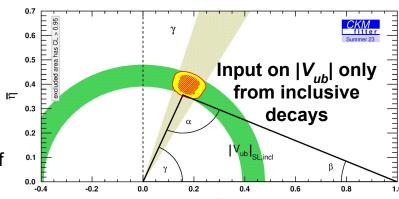
- Unlikely to give competitive measurements in the next few years but with large datasets (Belle II, FCC-ee) they will yield the most precise determinations of $|V_{ub}|$
- LHCb has the potential to measure $B \rightarrow \mu \nu \gamma$ (and $B \rightarrow \tau \nu$)

LHCb: 300 fb⁻¹ Belle II: 50 ab⁻¹

arXiv:2503.24346 atas.web.cern.ch

What about the $|V_{ub}|$ discrepancy?


Modelling of inclusive B → X, I v decays ?

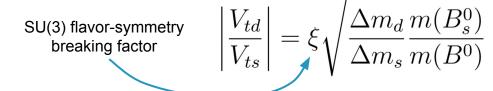

- Modelling is more reliable over broad regions of phase-space
- But measurements are very sensitive to high signal purity region
- Larger dataset and improved machine learning selection would help increase the signal purity over the entire phase-space → reduced model dependence

• $B \rightarrow X_c I v$ background ?

- B → X_c I v: gap between sum of exclusive BR and total inclusive BR is filled by ad hoc never-observed decays
- Ongoing theoretical and experimental investigation of decay modes which could fill this gap

Summary

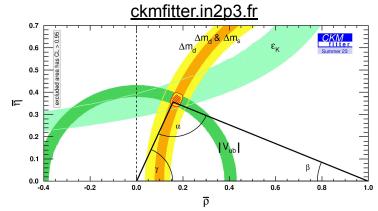
- Already several measurements of $|V_{ub}|$ and $|V_{cb}|$ at Belle II
 - Thanks to improved analysis techniques, these results are competitive with / better than BaBar and Belle measurements already with the current dataset
- LHCb is on track to perform several measurements using Run 2 data
 - The total collected dataset after Run 3 offers a chance to perform measurements with very low statistical uncertainty
- Understanding the discrepancies between exclusive and inclusive measurements of $|V_{ub}|$ and $|V_{cb}|$ is crucial to constrain the unitarity triangle sides and enhance the sensitivity of other CKM unitarity tests to possible non-SM effects
- Exciting times for CKM matrix tests → stay tuned!

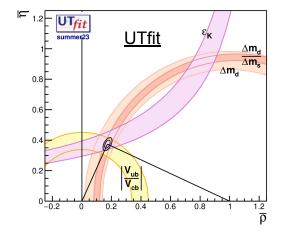

THANKS FOR LISTENING!

BACKUP

$B^0 - \overline{B}^0$ mixing

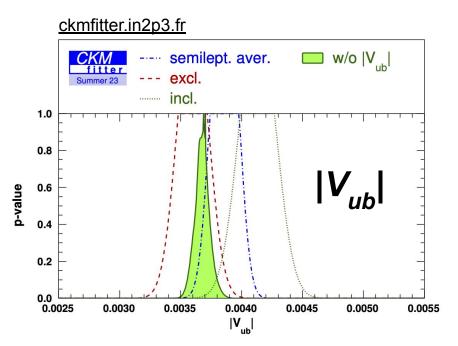
- Measured for the first time by UA1 and ARGUS in 1987
- Probability for B_q^0 or \overline{B}_q^0 meson to decay after time t in same flavour state (+1) or opposite (-1) is proportional to $1 \pm \cos(\Delta m_a t)$
- \rightarrow oscillation frequency Δm_a is extracted from time-dependent studies of B^0 mixing
- **B-factories** (BaBar, Belle, Belle II)
 - o Identify the flavour of the signal B using a high branching fraction decay
 - e.g. charge of lepton in $B \to D^* I v$ or pion in $B \to D^{*-} \pi^+$
 - Identify flavour of the other B using a flavour tagging algorithm
 - \circ The decay time Δt is then measured as the time difference between the decays of both B
- **High-energy colliders** (LEP, Tevatron, LHC)


hadron produced in the collision


- \circ Infer the proper time of the B^0 from its decay length
- o Identify its flavour at time of production from information related this *B* or the other *b*

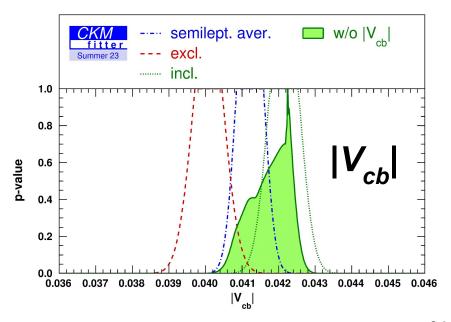
CKM parameter combinations

- CKM matrix parameter values can also be inferred from global fits to measured values
 - CKMfitter (frequentist approach)
 - UTfit (Bayesian approach)
- Global fits incorporate unitarity constraints
- Precision of Unitarity Triangle fits is limited by the uncertainty on $|V_{ub}|/|V_{cb}|$



Inclusive or exclusive?

That is the question

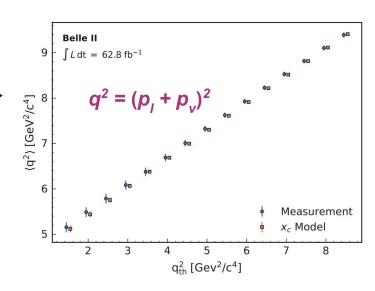


CKMfitter average

Constraint from exclusive

Constraint from inclusive

Indirect determination from global fit


|V_{ch}| measurements

Inclusive measurements

$$\langle Y^n \rangle = \int Y^n \frac{d\Gamma}{dY} dY$$

Measure moments of kinematic variables in inclusive $B \rightarrow X_c I v$ decays

- Y can be the momentum transfer q^2 for example
- Express moments using the heavy quark expansion (HQE) and simultaneously extract the HQE non-perturbative parameters and |V_{cb}|
- Moments measured most recently by Belle II
 - PRD 107, 072002 (2023)

$$|V_{cb}| = (41.69 \pm 0.63) \cdot 10^{-3}$$

