

UNIVERSITA' DEGLI STUDI DI BARI "ALDO MORO" Dipartimento Interateneo di Fisica "M. Merlin"

Istituto Nazionale di Fisica Nucleare (INFN – Bari)

Correlating lepton flavor violating $b \rightarrow s$ and leptonic decay modes in a minimal abelian extension of the SM

Davide Milillo

based on arxiv:2506.02552 (P. Colangelo, F. De Fazio, D. Milillo)

Accepted for publication in **JHEP**

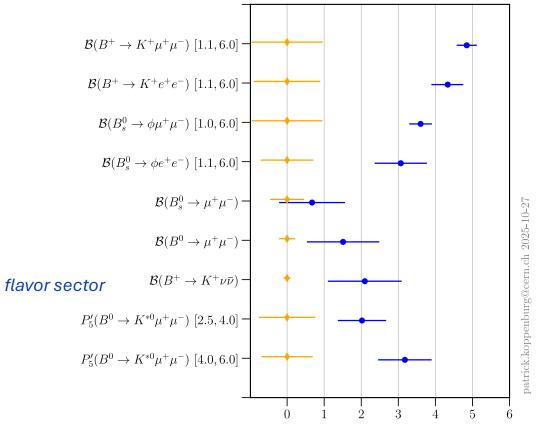
WIFAI 2025 – Bari 11-14 Nov 2025

Overview

- Motivations to BSM
- Abelian extension of SM: ABCD model
- \clubsuit Lepton Flavor Violation in $b \rightarrow s \&$ leptonic modes
- Conclusions

SM & beyond: open problems & tensions

- SM is the best tested theory of fundamental particles & interactions
- However, many tensions observed:
- > Predicted CP-violation too small to explain baryogenesis
- CKM unitarity & determination of matrix elements
- \rightarrow b \rightarrow d, s observables (BRs, angular distributions, etc.)
- $R_{D^{(*)}} = \frac{\mathcal{B}(B \to D^{(*)} \tau \bar{\nu}_{\tau})}{\mathcal{B}(B \to D^{(*)} \ell \bar{\nu}_{\ell})} \quad \text{exceed SM by > 3σ, possibly}$ suggesting lepton flavor universality violation (LFUV)



Flavor anomalies motivate the search for physics beyond SM (BSM)

→ SM prediction \rightarrow measurement significance (σ)

[1.0, 6.0] \rightarrow range of dilepton invariant mass squared

Minimal abelian extension of the SM:

$$SU(3)_C \times SU(2)_L \times U(1)_V \times U(1)'$$
 \rightarrow new massive neutral **Z'** boson

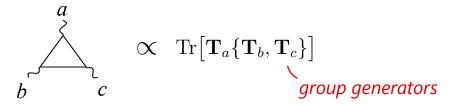
Z' boson interaction with SM fermions:

$$\mathcal{L}_{\rm int}' = -g_{Z'} \!\! \sum_{\psi} \sum_{i,j} \left[Z_{\psi_L}^{ij} \; \overline{\psi}_{iL} \gamma^\mu \psi_{jL} + Z_{\psi_R}^{ij} \; \overline{\psi}_{iR} \gamma^\mu \psi_{jR} \right] \mathbf{Z}_\mu'$$
 gauge coupling constant
$$\mathbf{Z'} \; \text{gauge field}$$

 \star Couplings: $Z_{\psi}^{ij} = z_{\psi_i} \delta^{ij}$ (diagonal in flavor basis)

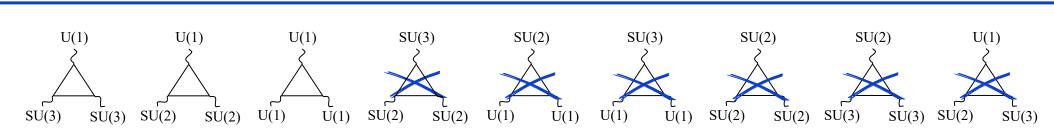
Gauge anomalies cancellation

- Gauge anomalies lead to profound inconsistencies (e.g. electric charge not conserved)
- Anomalous contribution comes from 1-loop correction to 3-gauge bosons vertex function (triangle diagrams)



❖ Gauge theories (e.g. the SM) must be *anomaly free* → triangle diagrams must cancel

Gauge anomalies cancellation in SM

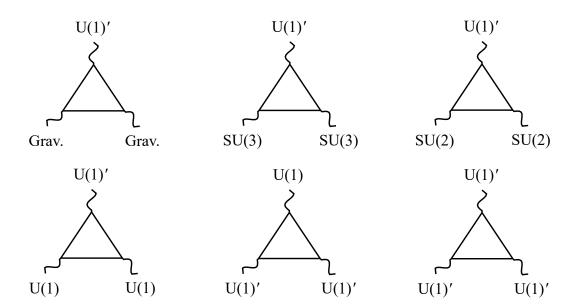


3 anomaly cancellation equations (ACEs)

verified independently by each fermion generation

$$\begin{cases} A_{331} = 2y_q - y_u - y_d = 0 \\ A_{221} = 3y_q + y_\ell = 0 \\ A_{111} = 3(2y_q^3 - y_u^3 - y_d^3) + 2y_\ell^3 - y_e^3 = 0 \end{cases}$$

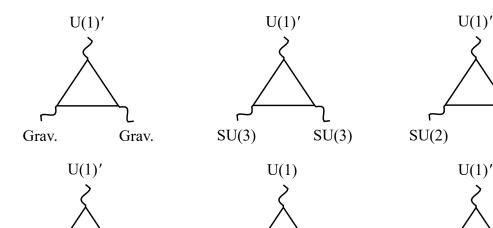
Gauge anomalies cancellation (ABCD model)



6 additional ACEs:

$$\begin{cases} A_{GG1'} = 2z_{\ell} - z_{\nu} - z_{e} = 0 \\ A_{331'} = 2z_{q} - z_{u} - z_{d} = 0 \\ A_{221'} = 3z_{q} + z_{\ell} = 0 \\ A_{111'} = \frac{1}{6}z_{q} - \frac{4}{3}z_{u} - \frac{1}{3}z_{d} + \frac{1}{2}z_{\ell} - z_{e} = 0 \\ A_{1'1'1} = z_{q}^{2} - 2z_{u}^{2} + z_{d}^{2} - z_{\ell}^{2} + z_{e}^{2} = 0 \\ A_{1'1'1'} = 3(2z_{q}^{3} - z_{u}^{3} - z_{d}^{3}) + 2z_{\ell}^{3} - z_{\nu}^{3} - z_{e}^{3} = 0 \end{cases}$$

Gauge anomalies cancellation (ABCD model)



U(1)'

U(1)

U(1)

6 additional ACEs:

$$\begin{cases} A_{GG1'} = 2z_{\ell} - z_{\nu} - z_{e} = 0 \\ A_{331'} = 2z_{q} - z_{u} - z_{d} = 0 \\ A_{221'} = 3z_{q} + z_{\ell} = 0 \\ A_{111'} = \frac{1}{6}z_{q} - \frac{4}{3}z_{u} - \frac{1}{3}z_{d} + \frac{1}{2}z_{\ell} - z_{e} = 0 \\ A_{1'1'1} = z_{q}^{2} - 2z_{u}^{2} + z_{d}^{2} - z_{\ell}^{2} + z_{e}^{2} = 0 \\ A_{1'1'1'} = 3(2z_{q}^{3} - z_{u}^{3} - z_{d}^{3}) + 2z_{\ell}^{3} - z_{\nu}^{3} - z_{e}^{3} = 0 \end{cases}$$

ABCD assumption: generation-dependent z-hypercharges

$$z_{\psi_i} = y_{\psi} + \epsilon_i$$
 (i=1,2,3 generation index)

SM weak hypercharges rational numbers

U(1)'

SU(2)

U(1)'

i.e. same ϵ_i for all fermions (quark & leptons) of a given generation

U(1)'

#free parameters reduced:

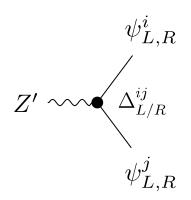
$$\epsilon_3 = -(\epsilon_1 + \epsilon_2)$$

Z' couplings to fermions

lacktriangle Rotate fermion fields to mass basis by unitary matrices $\hat{V}_{L/R}$ (PMNS, CKM, CKM-like):

$$\mathcal{L}'_{\text{int}} = -\sum_{\psi} \sum_{i,j} \left[\overline{\psi}_{iL} \gamma^{\mu} \Delta_{\psi_L}^{ij} \psi_{jL} + \overline{\psi}_{iR} \gamma^{\mu} \Delta_{\psi_R}^{ij} \psi_{jR} \right] \mathbf{Z}'_{\mu}$$

ullet Couplings: $\Delta_{L/R}^{ij} = g_{Z'} \sum_k \epsilon_k (\hat{V}_{L/R})_{ki}^* (\hat{V}_{L/R})_{kj}^*$ (generally non-diagonal)

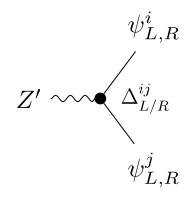


Z' couplings to fermions

lacktriangle Rotate fermion fields to mass basis by unitary matrices $\hat{V}_{L/R}$ (PMNS, CKM, CKM-like):

$$\mathscr{L}'_{\text{int}} = -\sum_{\psi} \sum_{i,j} \left[\overline{\psi}_{iL} \gamma^{\mu} \Delta^{ij}_{\psi_L} \psi_{jL} + \overline{\psi}_{iR} \gamma^{\mu} \Delta^{ij}_{\psi_R} \psi_{jR} \right] \mathbf{Z}'_{\mu}$$

 $\Delta_{L/R}^{ij} = g_{Z'} \sum_{k} \epsilon_k (\hat{V}_{L/R})_{ki}^* (\hat{V}_{L/R})_{kj}^*$ (generally non-diagonal)



the set $\{\epsilon_1, \epsilon_2, \epsilon_3\}$ is the same for both quark & lepton sectors

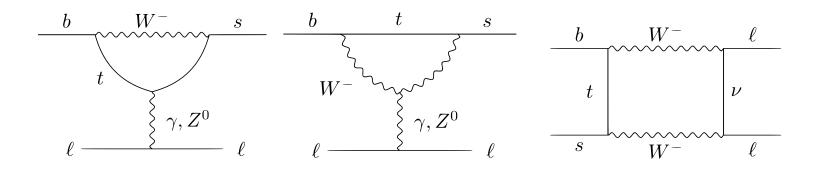
- quark & lepton sectors act together to avoid large deviations from SM
- > correlations between hadron & lepton decays can be established

Most distinctive feature of ABCD model

Promising processes to be investigated: rare & SM-forbidden hadron & lepton decays

Effective Hamiltonian for $b \rightarrow s \ell^- \ell^+$ (SM)

- FCNCs (e.g. $b \rightarrow s\ell^-\ell^+$) forbidden at tree-level due to unitarity of CKM matrix & universality of weak interactions
- ❖ However, they can occur at 1-loop level through penguin & box diagrams



 \star At typical hadron energies ($m_b \sim 4.2$ GeV) heavy fields can be integrated out \rightarrow effective point-like interaction

$$\mathcal{H}_{\mathrm{eff}} = -4 \frac{G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_k C_k \mathcal{O}_k$$

Wilson coefficients: short-distance effects at scales $\mu > m_b$ (effective coupling constants)

relevant operators for $b \to s\ell_i^-\ell_j^+$:

$$\mathcal{O}_{9} = \frac{e^{2}}{16\pi^{2}} (\bar{\mathbf{s}}\gamma^{\mu} P_{L} \mathbf{b}) (\bar{\boldsymbol{\ell}}_{i} \gamma_{\mu} \boldsymbol{\ell}_{j})$$

$$\mathcal{O}_{10} = \frac{e^{2}}{16\pi^{2}} (\bar{\mathbf{s}}\gamma^{\mu} P_{L} \mathbf{b}) (\bar{\boldsymbol{\ell}}_{i} \gamma_{\mu} \gamma_{5} \boldsymbol{\ell}_{j})$$

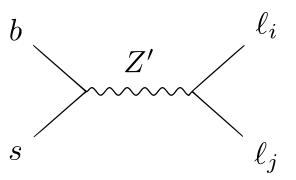
$$\mathcal{O}_{7} = \frac{e}{16\pi^{2}} [\bar{\mathbf{s}}\sigma^{\mu\nu} (m_{s} P_{L} + m_{b} P_{R}) \mathbf{b}] \mathbf{F}_{\mu\nu} \delta_{ij}$$

$$b \longrightarrow \mathbf{0}$$

Effective Hamiltonian for $b \to s \ell_i^- \ell_i^+$ (ABCD model)

In ABCD model, Z' boson can have flavor non-universal couplings

- lepton flavor conserving (LFC) FCNC transition $b \rightarrow s\ell^-\ell^+$ at tree level
- lepton flavor violating (**LFV**) transition $b \rightarrow s\ell_i^-\ell_j^+$ ($i \neq j$) allowed



NP effects \rightarrow modification of Wilson coefficients: $(C_{9,10})_{ij} = C_{9,10}^{\rm SM} \delta_{ij} + (C_{9,10}^{\rm NP})_{ij}$

$\overline{C_7^{ ext{SM}}}$	$C_9^{ m SM}$	$C_{10}^{ m SM}$
-0.450	4.273	-4.166

and
$$(C_{9,10}^{\mathrm{NP}})_{ij} = -\frac{g_t^2}{M_{Z'}^2} \Delta_{d_L}^{bs} (\Delta_{e_R}^{ij} \pm \Delta_{e_L}^{ij})$$
 with: $g_t^2 = \frac{4\pi^2}{8G_F^2 M_W^2 \sin^2 \theta_W \, V_{tb}^* V_{ts}}$

Bordone, Cornella, Davighi [arXiv:2503.22635]

Scenario A: no flavor violation for RH fermions ($\Delta_{\psi_R}^{ij}=0$ if $i\neq j$)

Note: for increasing $M_{Z'}$ ABCD model approaches SM (NP contribution vanishes) \rightarrow smaller deviations

(Semi)leptonic $B_{(s)}$ decay modes

$$B_s \to \ell_i^- \ell_j^+$$

$$\bar{\mathcal{B}}(B_s \to \ell_i^- \ell_j^+) = \frac{1}{(1 - y_s)} \frac{\alpha^2 G_F^2 \tau_{B_s}}{64\pi^3 M_{B_s}^3} F_{B_s}^2 |V_{tb} V_{ts}^*|^2 \lambda^{1/2} (M_{B_s}^2, m_{\ell_i}^2, m_{\ell_j}^2) \\ \times \left\{ [M_{B_s}^2 - (m_{\ell_i} + m_{\ell_j})^2] \left| (m_{\ell_i} - m_{\ell_j}) C_9 \right|^2 \right. \\ \left. + [M_{B_s}^2 - (m_{\ell_i} - m_{\ell_j})^2] \left| (m_{\ell_i} + m_{\ell_j}) C_{10} \right|^2 \right\}$$

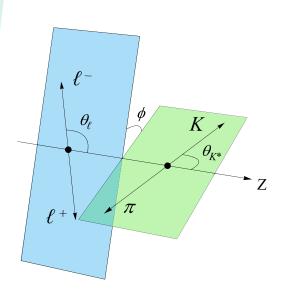
- riangle Hadronic uncertainties only due to F_{B_s}
- ❖ In LFC case (i = j) only C_{10} contributes

$$\overline{B} \to \overline{K}^* \ell_i^- \ell_j^+$$

Fully differential decay distribution for $\bar{B} \to \bar{K}^*(\to K\pi)\ell_i^-\ell_i^+$:

angular coefficients

$$\begin{split} \frac{d^4\Gamma}{dq^2\,d\cos\theta_\ell\,d\cos\theta_{K^*}\,d\phi} &= \frac{9}{32\pi} \left\{ \underbrace{I_1^s \sin^2\theta_{K^*} + \underbrace{I_2^c \cos^2\theta_{K^*} + \underbrace{I_2^c \cos^2\theta_{K^*} + \underbrace{I_2^c \cos^2\theta_{K^*}}}_{+\underbrace{I_3}\sin^2\theta_{K^*}\sin^2\theta_\ell\cos2\phi + \underbrace{I_4}\sin2\theta_{K^*}\sin2\theta_\ell\cos\phi}_{+\underbrace{I_5}\sin2\theta_{K^*}\sin\theta_\ell\cos\phi + \underbrace{I_6^s \sin^2\theta_{K^*} + \underbrace{I_6^c \cos^2\theta_{K^*}}_{-\underbrace{I_6}\cos^2\theta_{K^*}}}_{+\underbrace{I_7}\sin2\theta_{K^*}\sin\theta_\ell\sin\phi + \underbrace{I_8}\sin2\theta_{K^*}\sin2\theta_\ell\sin\phi + \underbrace{I_9}\sin^2\theta_{K^*}\sin^2\theta_\ell\sin2\phi}_{+\underbrace{I_9}\sin^2\theta_{K^*}\sin\theta_\ell\sin\phi}_{+\underbrace{I_9}\sin^2\theta_{K^*}\sin\theta_\ell\sin\phi}_{+\underbrace{I_9}\sin^2\theta_{K^*}\sin^2\theta_\ell\sin\phi}_{+\underbrace{I_9}\sin^2\theta_{K^*}\sin^2\theta_\ell\sin\phi}_{+\underbrace{I_9}\sin^2\theta_\ell\sin$$



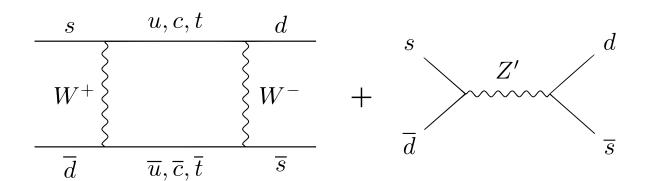
Parameter space

Free-parameters:

$$\left\{ g_{Z'}, \ M_{Z'}, \ \epsilon_1, \ \epsilon_2, \ |V_{ub}|, \ |V_{cb}| \right\} \qquad \left\{ \begin{array}{l} 0.01 \le g_{Z'} \le 1 & |V_{ub}|_{\text{exc}} \le |V_{ub}| \le |V_{ub}|_{\text{inc}} \\ M_{Z'} = 1 \, \text{TeV and } 3 \, \text{TeV} & |V_{cb}|_{\text{exc}} \le |V_{cb}| \le |V_{cb}|_{\text{inc}} \end{array} \right.$$

Constrain ϵ_1 , ϵ_2 by requiring $\Delta F = 2$ mixing observables (\mathcal{F}) to lie within experimental range:

$$\mathcal{F} = \mathcal{F}_{ ext{SM}} + \mathcal{F}_{ ext{NP}} \in \left[\mathcal{F}_{ ext{exp}} - \delta \mathcal{F}_{ ext{exp}}, \, \mathcal{F}_{ ext{exp}} + \delta \mathcal{F}_{ ext{exp}}
ight]$$



Example:
$$K^0 - \overline{K}^0$$
 mixing (SM+NP)

$$\frac{\mathcal{F}}{B_d - \bar{B}_d} \begin{cases} \mathcal{F} & \mathcal{F}_{\text{exp}} \pm \delta \mathcal{F}_{\text{exp}} \\ \Delta M_d & (0.5069 \pm 0.0019) \, \text{ps}^{-1} \\ S_{\psi K_S} & 0.709 \pm 0.011 \end{cases}$$

$$\frac{B_s - \bar{B}_s}{\text{mixing}} \begin{cases} \Delta M_s & (17.765 \pm 0.004) \, \text{ps}^{-1} \\ S_{\psi \phi} & 0.051 \pm 0.046 \end{cases}$$

$$\frac{K^0 - \bar{K}^0}{\text{mixing}} \begin{cases} \Delta M_K & (0.0059 \pm 0.0015) \, \text{ps}^{-1} \\ \varepsilon_K & (2.25 \pm 0.25) \times 10^{-3} \end{cases}$$

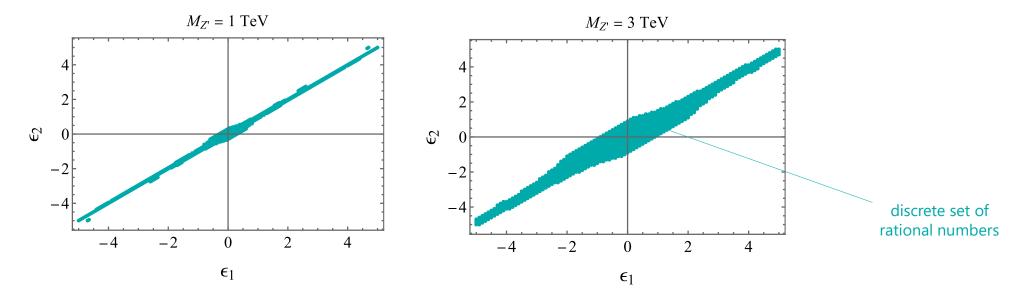
Parameter space

Free-parameters:

$$\left\{ g_{Z'}, \ M_{Z'}, \ \epsilon_1, \ \epsilon_2, \ |V_{ub}|, \ |V_{cb}| \right\} \qquad \left\{ \begin{array}{l} 0.01 \le g_{Z'} \le 1 \\ M_{Z'} = 1 \, \text{TeV and } 3 \, \text{TeV} \end{array} \right. \qquad \frac{|V_{ub}|_{\text{exc}} \le |V_{ub}| \le |V_{ub}|_{\text{inc}}}{|V_{cb}|_{\text{exc}} \le |V_{cb}| \le |V_{cb}|_{\text{inc}}}$$

Constrain ϵ_1 , ϵ_2 by requiring $\Delta F = 2$ mixing observables (\mathcal{F}) to lie within experimental range:

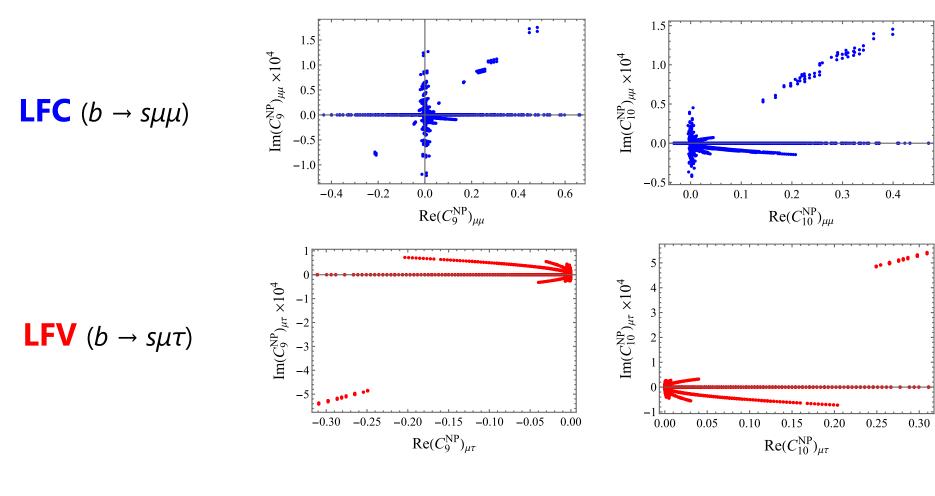
$$\mathcal{F} = \mathcal{F}_{\mathrm{SM}} + \mathcal{F}_{\mathrm{NP}} \in \left[\mathcal{F}_{\mathrm{exp}} - \delta \mathcal{F}_{\mathrm{exp}}, \ \mathcal{F}_{\mathrm{exp}} + \delta \mathcal{F}_{\mathrm{exp}}
ight]$$



Hereafter only the case $M_{Z'} = 1 \text{ TeV}$ is shown, but similar results hold for $M_{Z'} = 3 \text{ TeV}$

Wilson coefficients – $Re(C_{9,10}^{NP})$ vs $Im(C_{9,10}^{NP})$

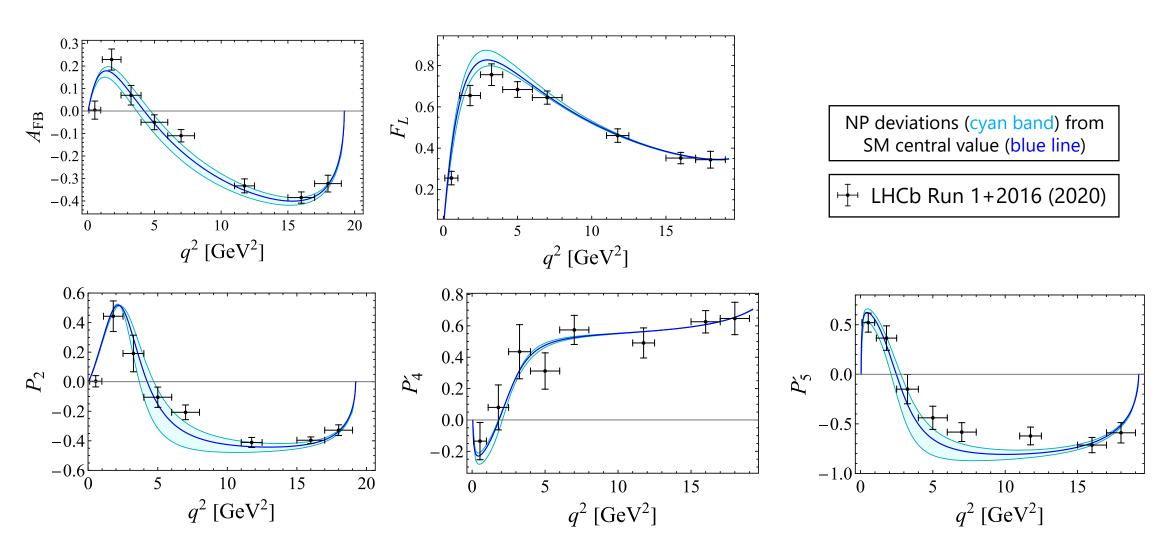
NP contribution to relevant Wilson coefficients:



 $Re(C_k^{NP}) \approx 10\%$ of $C_k^{SM} \rightarrow$ (small) deviations from SM possible

$\bar{B} \to \bar{K}^* \mu^- \mu^+$ angular analysis

Starting from angular coefficients several observables can be constructed that are sensitive to NP



Correlations between LFC & LFV B_(s) decay modes

LFC vs LFC

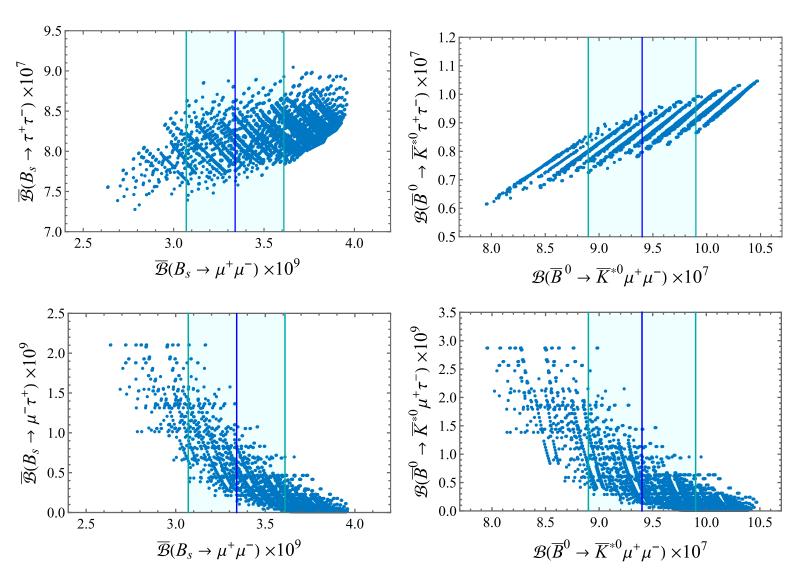
requiring $b \rightarrow s\mu\mu$ -induced modes to lie within measured range at 1σ (cyan band):

$$\bar{\mathcal{B}}(B_s \to \tau^+ \tau^-) = (8.2 \pm 0.5) \times 10^{-7}$$

 $\mathcal{B}(\bar{B}^0 \to \bar{K}^{*0} \tau^+ \tau^-) = (8.6 \pm 1.3) \times 10^{-8}$

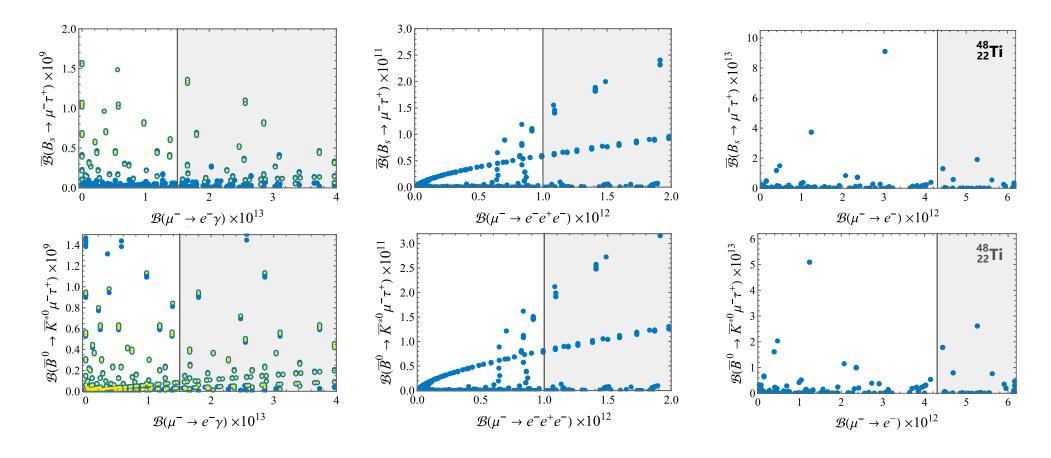
LFC vs LFV

LFV branching ratios bounded by LFC modes to $\mathcal{O}(10^{-9})$



Correlations between LFV $B_{(s)}$ & lepton decay modes

- hadron & lepton decays mutually constrain each other to prevent large deviations from SM
- \star $\mu \to e\gamma$, $\mu \to 3e$ and $\mu \to e$ conversion in nuclei constrain $B_{(s)}$ branching ratios in hierarchical order



Grey band: excluded region by experimental upper bound (to be updated by MEG II, COMET, Mu2e, Mu3e)

Yellow points: extracted requiring the corresponding LFC branching ratio to agree within 1σ with experiment

Summary & future prospects

Summary of results:

Correlations between hadron & lepton decays can be established within ABCD model & used to bound rare & SM-forbidden modes

		upper limit on branching ratio			
	LFV mode	constrained by $\mu \rightarrow e \gamma$	constrained by $\mu \rightarrow 3e$	constrained by $\mu \rightarrow e$ in $^{48}_{22}$ Ti	experiment
$M_{Z'} = 1 \text{ TeV}$	$B_s \to \mu^- \tau^+$ $\overline{B} \to \overline{K}^* \mu^- \tau^+$	$(0.00 \div 1.60) \times 10^{-9}$ $(0.00 \div 1.15) \times 10^{-9}$	$(0.00 \div 1.20) \times 10^{-11}$ $(0.00 \div 1.60) \times 10^{-11}$	$(0.00 \div 9.20) \times 10^{-13}$ $(0.00 \div 5.10) \times 10^{-13}$	$< 4.2 \times 10^{-5}$ $< 1.0 \times 10^{-5}$
$M_{Z'} = 3 \text{ TeV}$	$B_s \to \mu^- \tau^+$ $\overline{B} \to \overline{K}^* \mu^- \tau^+$	$ \begin{array}{c c} (0.00 \div 0.14) \times 10^{-9} \\ (0.00 \div 0.20) \times 10^{-9} \end{array} $	$(0.00 \div 1.10) \times 10^{-11}$ $(0.00 \div 1.53) \times 10^{-11}$	$(0.00 \div 1.05) \times 10^{-13}$ $(0.00 \div 1.42) \times 10^{-13}$	< 4.2 ×10 ⁻⁵ < 1.0 ×10 ⁻⁵

Future prospects in ABCD model:

- Explore new scenarios
- Study other rare & SM-forbidden decays

Thank you

Backup

Backup

Angular coefficients

Angular coefficients are expressed in terms of transversity amplitudes^[2] $(A_{\perp,\parallel,0,t})_{L/R}$:

$$\bullet I_1^c = \frac{q^4 - (m_i^2 - m_j^2)^2}{q^4} \Big[|A_{0L}|^2 + |A_{0R}|^2 \Big] + \frac{8m_i m_j}{q^2} \operatorname{Re} \{ A_{0L} A_{0R}^* - A_{tL} A_{tR}^* \} - 2 \frac{(m_i^2 - m_j^2)^2 - q^2 (m_i^2 + m_j^2)}{q^4} \Big[|A_{tL}|^2 + |A_{tR}|^2 \Big]$$

•
$$I_3 = \frac{\lambda_{\ell}}{2q^4} \Big[|A_{\perp L}|^2 - |A_{\parallel L}|^2 + (L \to R) \Big]$$

•
$$I_4 = \frac{\lambda_\ell}{\sqrt{2}q^4} \left[\operatorname{Re}\{A_{0L}A_{\parallel L}^*\} + (L \to R) \right]$$

Transversity amplitudes

$$A_{\parallel L,R} = -\mathcal{N}\sqrt{2}(M_B^2 - M_{K^*}^2) \left[2(m_b - m_s)C_7 \frac{T_2(q^2)}{q^2} + (C_9^- \mp C_{10}^-) \frac{A_1(q^2)}{M_B - M_{K^*}} \right]$$

$$A_{0L,R} = \frac{-\mathcal{N}}{2M_{K^*}\sqrt{q^2}} \left\{ 2(m_b - m_s)C_7 \left[(M_B^2 + 3M_{K^*}^2 - q^2)T_2(q^2) - \frac{\lambda_H T_3(q^2)}{M_B^2 - M_{K^*}^2} \right] + (C_9^- \mp C_{10}^-) \left[(M_B^2 - M_{K^*}^2 - q^2)(M_B + M_{K^*})A_1(q^2) - \frac{\lambda_H A_2(q^2)}{M_B + M_{K^*}} \right] \right\}$$

$$A_{tL,R} = \frac{-\mathcal{N}}{\sqrt{q^2}} \lambda_H^{1/2} (C_9^- \mp C_{10}^-) A_0(q^2)$$

where:
$$\mathcal{N} = V_{tb}^* V_{ts} \left[\frac{G_F^2 \alpha^2}{3 \times 2^{10} \pi^5 M_B^3} \lambda_H^{1/2} \lambda_\ell^{1/2} \right]^{1/2}$$
 with: $\lambda_H = \lambda(q^2, M_B^2, M_{K^*}^2)$ and: $C_k^{\pm} = C_k \pm C_k'$ (Källén function)

 $A_{0,1,2}(q^2)$, $V(q^2)$, $T_{1,2,3}(q^2)$ are $B \to K^*$ form factors

Backup

$B \rightarrow K^*$ hadronic matrix elements

 $B \rightarrow K^*$ hadronic matrix elements (standard parametrization):

$$\langle K^*(p',\epsilon)|\bar{\mathbf{s}}\gamma_{\mu}(1-\gamma_5)\mathbf{b}|B(p)\rangle = \epsilon_{\mu\nu\alpha\beta}\epsilon^{*\nu}p^{\alpha}p'^{\beta}\frac{2V(q^2)}{M_B+M_{K^*}} - i\left\{\epsilon_{\mu}^*(M_B+M_{K^*})A_1(q^2) - (p+p')_{\mu}(\epsilon^*\cdot p)\frac{A_2(q^2)}{M_B+M_{K^*}} - q_{\mu}(\epsilon^*\cdot q)\frac{2M_{K^*}}{q^2}\left[A_3(q^2) - A_0(q^2)\right]\right\}$$

$$\langle K^*(p',\epsilon)|\overline{\mathbf{s}}\sigma_{\mu\nu}q^{\nu}(1+\gamma_5)\mathbf{b}|B(p)\rangle = i\epsilon_{\mu\nu\alpha\beta}\epsilon^{*\nu}p^{\alpha}p'^{\beta}T_1(q^2) + i\Big[\epsilon^*_{\mu}(M_B-M_{K^*})A_1(q^2) - (p+p')_{\mu}(\epsilon^*\cdot q)\Big]T_2(q^2) + (\epsilon^*\cdot q)\Big[q_{\mu} - \frac{q^2}{M_B^2 - M_{K^*}^2}(p+p')_{\mu}\Big]T_3(q^2)$$

$$\langle K^*(p',\epsilon)|\overline{\mathbf{s}}\sigma_{\mu\nu}q^{\nu}(1+\gamma_5)\mathbf{b}|B(p)\rangle = i\epsilon_{\mu\nu\alpha\beta}\epsilon^{*\nu}p^{\alpha}p'^{\beta}T_1(q^2) + i\Big[\epsilon^*_{\mu}(M_B-M_{K^*})A_1(q^2) - (p+p')_{\mu}(\epsilon^*\cdot q)\Big]T_2(q^2) + (\epsilon^*\cdot q)\Big[q_{\mu} - \frac{q^2}{M_B^2 - M_{K^*}^2}(p+p')_{\mu}\Big]T_3(q^2)$$

$$\langle K^*(p',\epsilon)|\overline{\mathbf{s}}\sigma_{\mu\nu}q^{\nu}(1+\gamma_5)\mathbf{b}|B(p)\rangle = i\epsilon_{\mu\nu\alpha\beta}\epsilon^{*\nu}p^{\alpha}p'^{\beta}T_1(q^2) + i\Big[\epsilon^*_{\mu}(M_B-M_{K^*})A_1(q^2) - (p+p')_{\mu}(\epsilon^*\cdot q)\Big]T_2(q^2) + (\epsilon^*\cdot q)\Big[q_{\mu} - \frac{q^2}{M_B^2 - M_{K^*}^2}(p+p')_{\mu}\Big]T_3(q^2)$$

$$\langle K^*(p',\epsilon)|\overline{\mathbf{s}}\sigma_{\mu\nu}q^{\nu}(1+\gamma_5)\mathbf{b}|B(p)\rangle = i\epsilon_{\mu\nu\alpha\beta}\epsilon^{*\nu}p^{\alpha}p'^{\beta}T_1(q^2) + i\Big[\epsilon^*_{\mu}(M_B-M_{K^*})A_1(q^2) - (p+p')_{\mu}(\epsilon^*\cdot q)\Big]T_2(q^2) + (\epsilon^*\cdot q)\Big[q_{\mu} - \frac{q^2}{M_B^2 - M_{K^*}^2}(p+p')_{\mu}\Big]T_3(q^2)$$

 $A_{0,1,2,3}(q^2)$, $V(q^2)$, $T_{1,2,3}(q^2)$ are form factors (FF). They are not all independent, since:

$$A_3(q^2) = \frac{M_B + M_{K^*}}{2M_K^*} A_1(q^2) - \frac{M_B - M_{K^*}}{2M_K^*} A_2(q^2)$$

$$A_3(0) = A_0(0)$$

$$\bullet T_1(0) = T_2(0)$$

Backup

$B \rightarrow K^*$ form factors (BSZ)

Independent form factors F = V, A_0 , A_1 , A_{12} , T_1 , T_2 , T_{23} parametrized according to **BSZ**^[3]:

$$F(q^2) = \frac{1}{1 - q^2/M_{B^*}^2} \sum_{k=0}^2 \alpha_k(F) [z(q^2) - z(0)]^k \\ \qquad \qquad \text{with: } \begin{cases} t_{\pm} = (M_B \pm M_{K^*})^2 \\ t_0 = t_{+}(1 - \sqrt{1 - t_{-}/t_{+}}) \end{cases}$$

mass of lightest resonance

F	M_{B^*} (GeV)	$\alpha_0(F)$	$\alpha_1(F)$	$\alpha_2(F)$
\overline{V}	5.415	0.38 ± 0.03	-1.17 ± 0.26	2.42 ± 1.53
A_0	5.366	0.37 ± 0.03	-1.37 ± 0.26	0.13 ± 1.63
A_1	5.829	0.30 ± 0.03	0.39 ± 0.19	1.19 ± 1.03
A_{12}	5.829	0.27 ± 0.02	0.53 ± 0.13	0.48 ± 0.66
T_1	5.415	0.31 ± 0.03	-1.01 ± 0.19	1.53 ± 1.64
T_2	5.829	0.31 ± 0.03	0.50 ± 0.17	1.61 ± 0.80
T_{23}	5.829	0.67 ± 0.06	1.32 ± 0.22	3.82 ± 2.20

Finally $A_2 \& T_3$ are obtained from:

$$A_{12} = \frac{(M_B + M_{K^*})^2 (M_B^2 - M_{K^*}^2 - q^2) A_1(q^2) - \lambda(q^2, M_B^2, M_{K^*}^2) A_2(q^2)}{16 M_B M_{K^*} (M_B + M_{K^*})}$$

$$T_{23} = \frac{(M_B - M_{K^*})^2 (M_B^2 + 3M_{K^*}^2 - q^2) T_2(q^2) - \lambda(q^2, M_B^2, M_{K^*}^2) T_3(q^2)}{8M_B M_{K^*} (M_B - M_{K^*})}$$