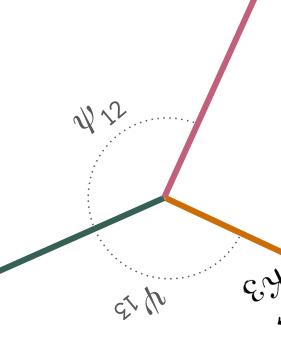
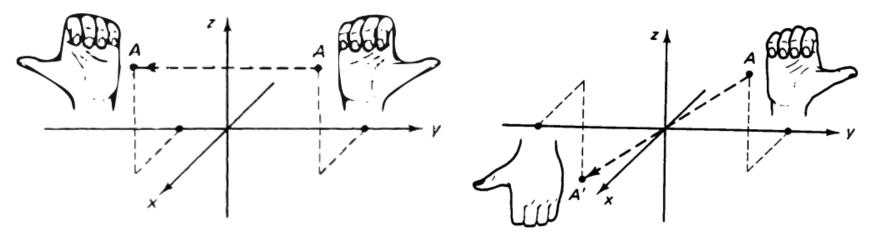
Fourth Italian Workshop on Physics at High Intensity

Development of a CP Symmetry Violation Measurement System

J. Nascimento, J. R. B. Oliveira



MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E INOVAÇÃO


Outline

- **★** Introduction
- **★** CP Violation in Positronium
- **★** Methods and Material
- **★** Obtained Data
- **★** Conclusion
- **★** Future Steps

The discrete symmetries are represented by the following operators:

- ★ Charge Conjugation (C): relates particles to their antiparticles.
- ★ Time Reversal (T): reverses the direction of time.
- ★ Parity (P): reflects spatial coordinates (mirror inversion).

The "Θ-τ puzzle":

- ★ Same mass, spin, charge...
- ★ One of them decays into **two pions** and the other into **three pions**.

$$\Theta^{+} = \pi^{+} + \pi^{0}$$

$$\tau^{+} = \begin{cases} \pi^{+} + \pi^{0} + \pi^{0} \\ \pi^{+} + \pi^{+} + \pi^{-} \end{cases}$$

PHYSICAL REVIEW

VOLUME 104. NUMBER 1

OCTOBER 1, 1956

Question of Parity Conservation in Weak Interactions*

T. D. Lee, Columbia University, New York, New York

AND

C. N. Yang,† Brookhaven National Laboratory, Upton, New York (Received June 22, 1956)

The "Θ-τ puzzle":

- ★ Madame Wu experiment
- **★ P violated** in weak interactions

$$\Theta^+ \to P = (-1)^2 = +1$$

$$\tau^+ \to P = (-1)^3 = -1$$

Experimental Test of Parity Conservation in Beta Decay*

C. S. Wu, Columbia University, New York, New York

AND

E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson, National Bureau of Standards, Washington, D. C. (Received January 15, 1957)

VOLUME 13, NUMBER 4

PHYSICAL REVIEW LETTERS

27 July 1964

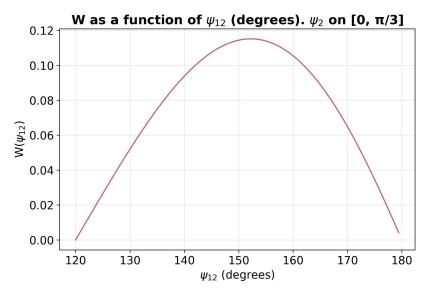
EVIDENCE FOR THE 2π DECAY OF THE K20 MESON*†

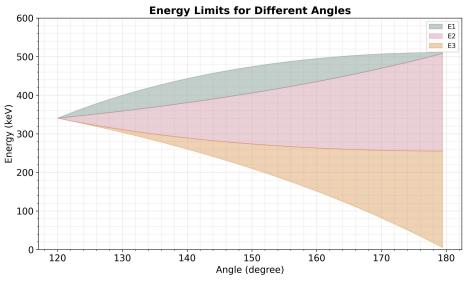
J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay Princeton University, Princeton, New Jersey (Received 10 July 1964)

CP Violation in Positronium

The Positronium:

- **★** The **singlet state**:
 - Para-positronium (p-Ps):
 - Antiparallel
 - Two gamma rays
- ★ The triplet state
 - Ortho-positronium (o-Ps):
 - Parallel
 - Three gamma rays

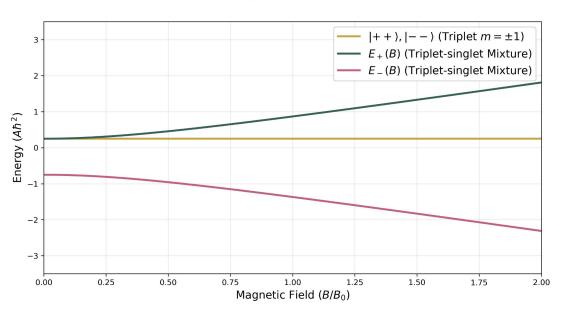

$$\vec{k_1} > \vec{k_2} > \vec{k_3}$$


$$|0,0\rangle = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$$

$$\begin{cases} |1,1\rangle = |\uparrow\uparrow\rangle \\ |1,0\rangle = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle) \\ |1,-1\rangle = |\downarrow\downarrow\rangle \end{cases}$$

CP Violation in Positronium

★ Angular correlation:

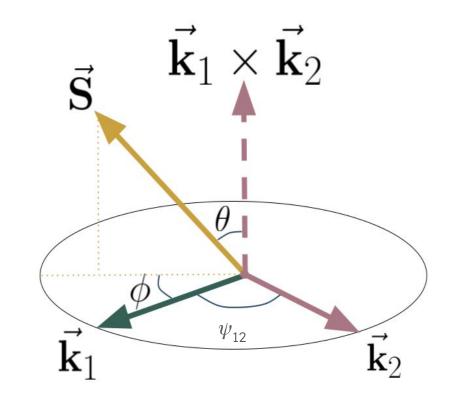


★ Under a Magnetic Field:

$$|\Psi_{+}\rangle = \cos\theta |1,0\rangle + \sin\theta |0,0\rangle$$

$$|\Psi_{-}\rangle = \cos\theta |0,0\rangle - \sin\theta |1,0\rangle$$

Positronium Energy Levels under Magnetic Field


The Experiment:

★ The CP Violation will occur when:

$$Q = C_{CP} \left(\vec{S} \cdot \vec{k_1} \right) \left(\vec{S} \cdot \vec{k_1} \times \vec{k_2} \right)$$
$$= C_{CP} \left(\frac{P_2}{2} \cdot \sin(2\theta) \sin \psi_{12} \cos \phi \right)$$

★ Polarization tensor:

$$P_2 = \frac{N_{+1} - 2N_0 + N_{-1}}{N_{+1} + N_0 + N_{-1}}$$

★ Mesured C_{CP}:

 \circ 0.0013 ± 0.0021(stat.) ± 0.0006(sys.)

Search for *CP*-violation in Positronium Decay

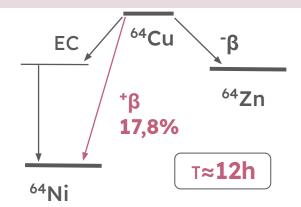
T. Yamazaki, T. Namba, S. Asai, and T. Kobayashi Department of Physics, Graduate School of Science, and International Center for Elementary Particle Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan (Dated: November 2, 2018)

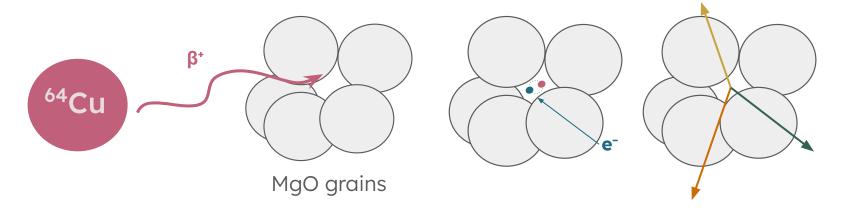
The Nossa Caixa spectrometer device

- \star Arranged in a compact geometry with a temporal resolution of $\approx 3.7(5)$ ns
 - ±45°, ±90° and ±135°
 - \circ 38% of a 4 π solid angle

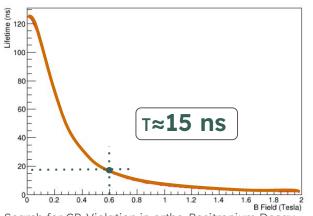
New spectrometer projects for challenging particlegamma measurements of nuclear reactions

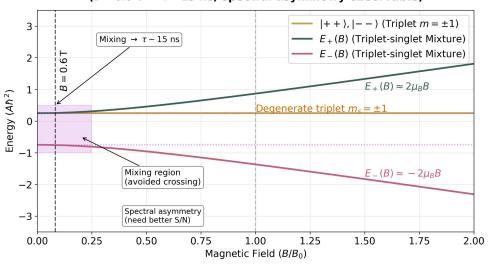
To cite this article: J R B Oliveira et al 2018 J. Phys.: Conf. Ser. 1056 012040


Testes do novo espectrômetro gama Nossa Caixa com a reação de $^{10}\mathrm{B} + ^{120}\mathrm{Sn}$

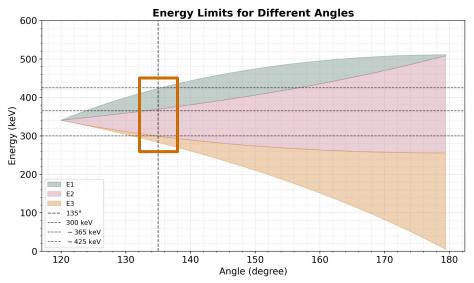

Caio Eduardo Cabral de Vasconcellos Master's thesis

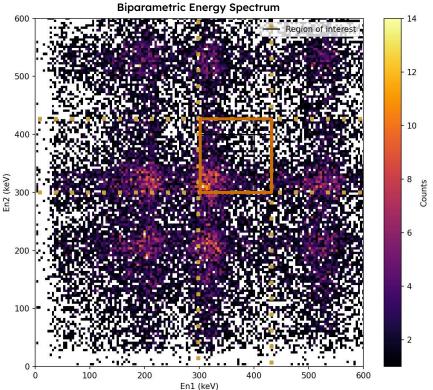
Formation of Positronium in MgO:


- ★ Thousands of collisions with the grains
 - Capturing a surface electron
 - Energetically forbidden to re-enter a grain
- ★ Short-range repulsive forces:
 - Create small void gaps

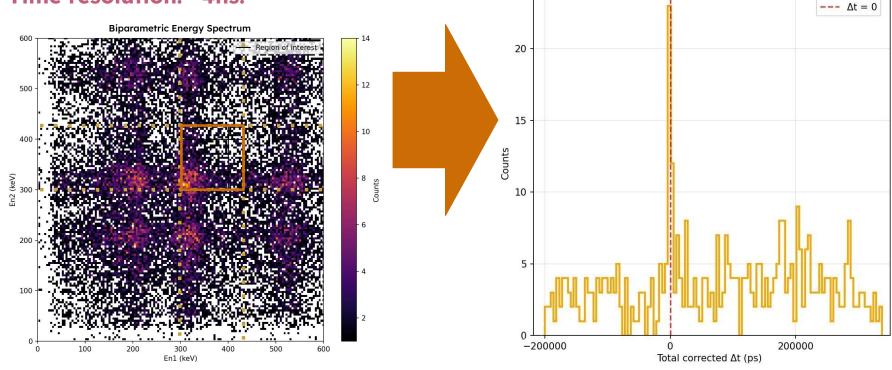

Under a magnetic field (B):

- \star Mixing the $m_s = 0$ states:
 - Changing the properties
 - Allows the manipulation of the half-life of the m_s = ±0




Search for CP-Violation in ortho-Positronium Decay T.E. Haugen1, E.A. George2, O. Naviliat-Cuncic1,3, P.A. Voytas2

Positronium Energy Levels under Magnetic Field (B=0.6 T \Rightarrow $\tau\sim15$ ns, spectral asymmetry observable)

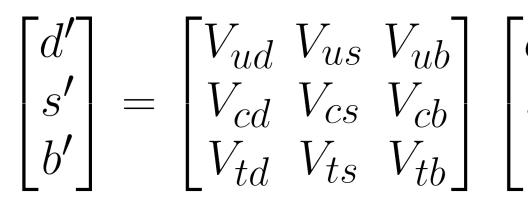


Biparametric Energy Spectrum:

Time spectrum — region 300-400 / 400-430 keV (487 events)

Conclusion and Future Steps

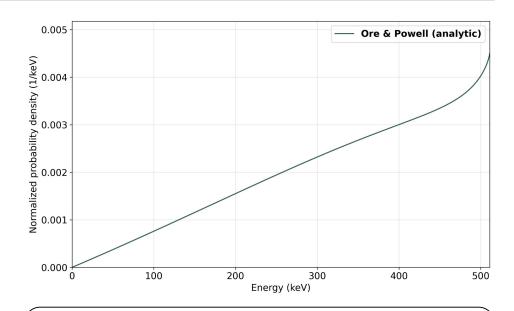
- **★** Conclusion:
 - Limited statistics
 - 24 hours of experimental run
 - ⁶⁴Cu: τ ~ 12 hours
 - The count's in the region of interest was limited


- **★** Future steps:
 - Finalize the simulation in Geant4
 - Repeat the experiment

Thanks for your attention!!

Back-up

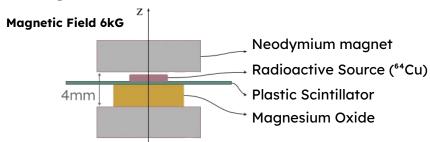
- ★ The Standard Model allows CP Violation through:
 - Phases Mixing Matrices
 - CKM and PMNS


- ★ Clean Signals:
 - Neutral systems:
 - Kaons
 - B-Mesons
 - Z-Bosons

CP Violation in Positronium

- ★ A. Ore and J. L. Powell:
 - \circ C=+1 \rightarrow two gamma rays
 - \circ C=-1 \rightarrow three gamma rays

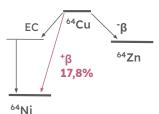
$$\begin{cases} \vec{k_1} + \vec{k_2} + \vec{k_3} \approx 0 \\ \vec{k_1} > \vec{k_2} > \vec{k_3} \end{cases}$$

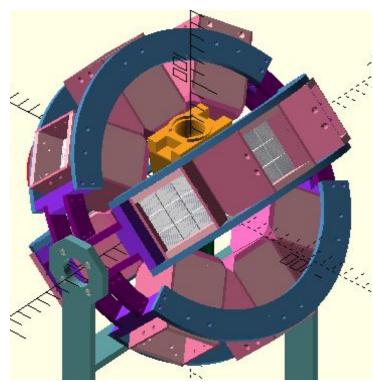

Three-Photon Annihilation of an Electron-Positron Pair

A. Ore* AND J. L. POWELL*

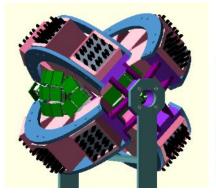
Institute for Nuclear Studies, University of Chicago, Chicago, Illinois
(Received January 12, 1949)

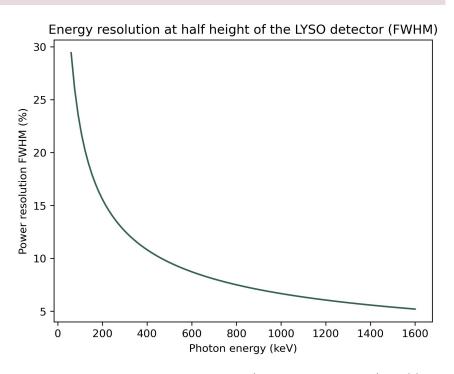
The experiment:

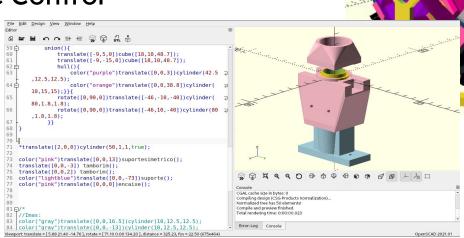

The positron is produced by a copper source and combines with an electron trapped between the grains of magnesium oxide.



The Nossa Caixa spectrometer device

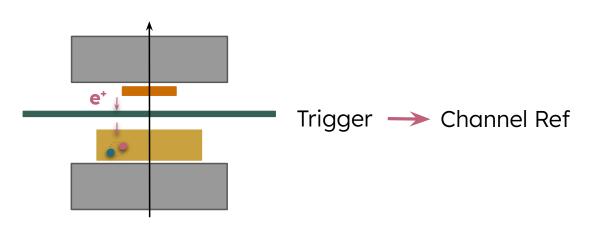

- ★ Two orthogonal rings:
 - 12 LYSO(Ce) scintillators
 - 3×3 pixels coupled to SiPMs

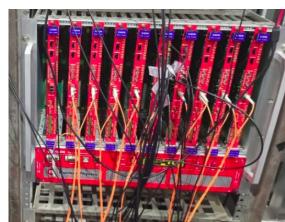




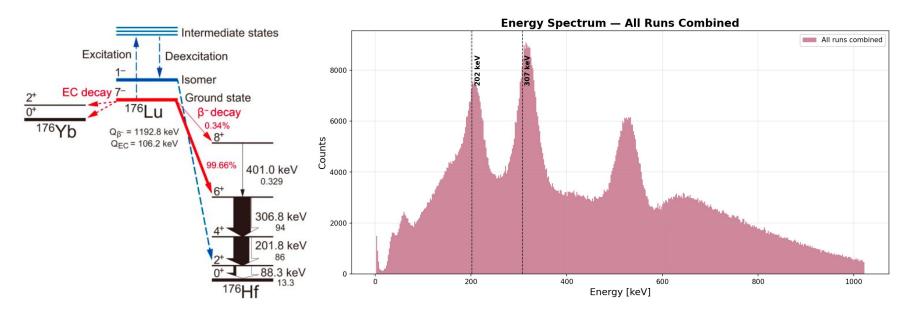
$$FWHM(\%) = e^{f \cdot (5.04 - 0.48ln(E_{\gamma}))}$$

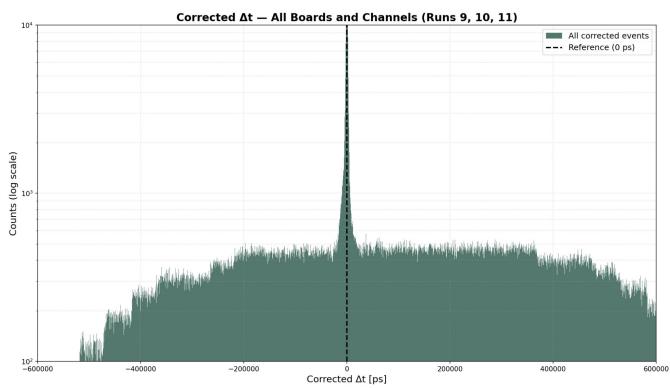
Open SCAD:


- **★** Intuitive
 - Script Based
 - Descriptive language
 - Parametric Control
- ★ Easy to learn
- **★** Free

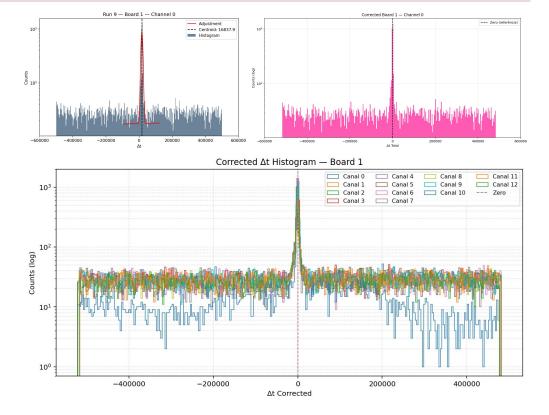


CoMPASS:


- ★ Developed by CAEN
- ★ Module control and operation
- ★ Master/Slave
- ★ Graphical interface



Energy Spectrum:


Time Spectrum:

★ All energies

Time Spectrum:

- **★** Boards and Channels:
 - time lag between themselves
- ★ timing corrections

★ Other ongoing experiments aim to increase sensitivity.

Search for CP-Violation in ortho-Positronium Decay

Tom-Erik Haugen^{1,*}, Elizabeth A. George², Oscar Naviliat-Cuncic^{1,3}, and Paul A. Voytas²

¹Facility for Rare Isotope Beams, and Department of Physics and Astronomy, Michigan State University, East Lansing, Mi, USA

²Wittenberg University, Springfield, Oh, USA

³Laboratoire de Physique Corpusculaire de Caen, and Université de Caen Normandie, Caen, France