## WIFAI 2025: Workshop Italiano sulla Fisica ad Alta Intensità



Contribution ID: 13 Type: not specified

## Studying the beauty mesons structure with radiative leptonic decays at the LHCb experiment

Wednesday 12 November 2025 15:00 (13 minutes)

The rare radiative leptonic decay  $B^+ \to \ell^+ \nu_\ell \gamma$ , with  $\ell = \mu, e$ , is considered a golden channel to probe the internal structure of the B meson through its Light-Cone Distribution Amplitude (LCDA). Predicted by the Standard Model with a Branching Ratio (BR) of  $\mathcal{O}(10^{-6})$ , it has not yet been observed. The most stringent upper limit on its BR has been set by the Belle experiment, while a search at a hadron collider such as LHC was long deemed unfeasible. A novel approach has been developed at the LHCb experiment, which exploits photons that convert to  $e^+e^-$  pairs in the material of the VErtex LOcator (VELO), allowing to extract the secondary B-vertex. Again, since the information on the final-state neutrino is lost, the corrected mass of the  $\ell^+e^+e^-$  system serves as the main observable. A crucial aspect of the strategy is the modelling of backgrounds, dominated by the neutral meson decays  $\pi^0 \to \gamma \gamma$  and  $\eta \to \gamma \gamma$ . The LHCb dataset also provides sensitivity to the analogous  $B_c^+$  decay modes. The ongoing search for the decay  $B^+ \to \mu^+ \nu_\mu \gamma$  with Run 2 data shows promising sensitivity, and a parallel analysis using Run 3 data has started. Benefiting from the latest detector upgrade and improved trigger efficiencies, the current Run 3 study targets both muon and electron channels with the aim of getting to the first observation of these  $B_{(c)}^+$  decays, or at least of significantly constraining the existing upper limits on their BRs.

Author: MORO, Alice (Istituto Nazionale di Fisica Nucleare)

Co-author: BORSATO, Martino (Milano Bicocca University and INFN)

**Presenter:** MORO, Alice (Istituto Nazionale di Fisica Nucleare)

Session Classification: Young Scientific Forum