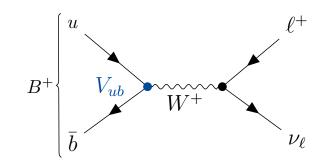
WIFAI 2025 - Young Scientific Forum

Studying the beauty mesons structure with radiative leptonic decays at the LHCb experiment

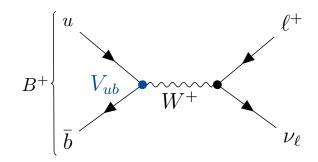
Martino Borsato¹, Fabian Glaser^{2,3}, Alice Moro¹, Marie-Hélène Schune³

- ¹ Università degli Studi di Milano-Bicocca, INFN Sezione di Milano-Bicocca, Italy
- ² Universität Heidelberg, Physikalisches Institut, Germany
- ³ Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France



Motivation

- $B^+ \to \ell^+ \nu_\ell$ decay
 - suppressed by V_{ub} and helicity
 - very precise theory prediction, $BR = (3.8 \pm 0.4) \times 10^{-7}$
 - PDG $BR(\ell = \mu) < 8.6 \times 10^{-7}$ @ 90% CL $BR(\ell = e) < 9.8 \times 10^{-7}$ @ 90% CL

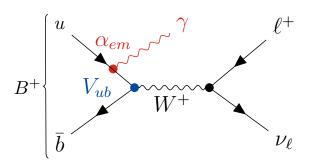


Test the SM

Measure V_{ub} Search for H^+ and LQ

Motivation

- $B^+ \to \ell^+ \nu_\ell$ decay
 - suppressed by V_{ub} and helicity
 - very precise theory prediction, $BR = (3.8 \pm 0.4) \times 10^{-7}$
 - PDG $BR(\ell = \mu) < 8.6 \times 10^{-7}$ @ 90% CL $BR(\ell = e) < 9.8 \times 10^{-7}$ @ 90% CL

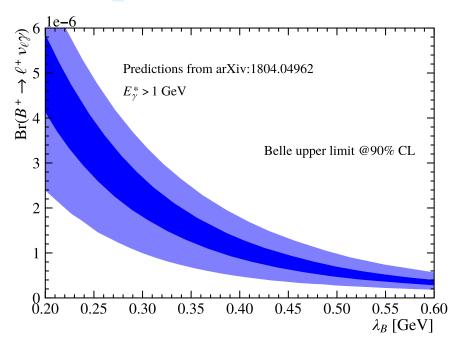


Test the SM

Measure V_{ub}

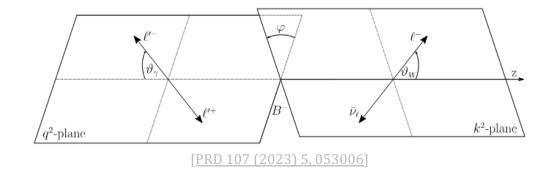
Search for H^+ and LQ

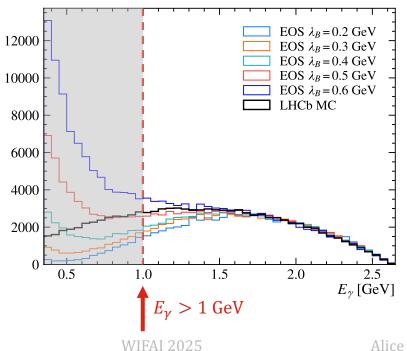
- $B^+ \to \ell^+ \nu_\ell \gamma$ decay
 - suppressed by V_{ub} and α_{em}
 - dependence on $B \to \gamma$ form factors, $BR \simeq 2 \times 10^{-6}$
 - PDG $BR(\ell = \mu) < 3.4 \times 10^{-6}$ @ 90% CL $BR(\ell = e) < 4.3 \times 10^{-6}$ @ 90% CL

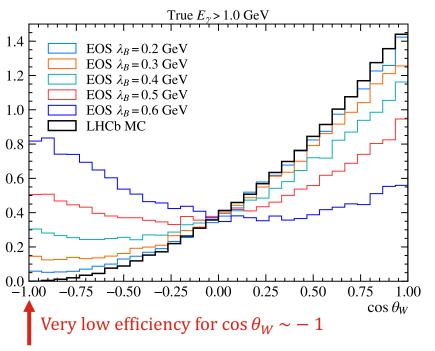

Study B mesons

Motivation

- $B^+ \to \ell^+ \nu_\ell \gamma$ golden mode to probe B sub-structure
- Never been observed, Upper Limit by Belle
 - $BR(B^+ \to \ell^+ \nu_{\ell} \gamma) < 3.0 \times 10^{-6}$ @ 90% CL [PRD 98 (2018) 11, 112016]
- At 1st order $BR(B^+ \to \ell^+ \nu_\ell \gamma) \propto \lambda_B^{-1}$, with λ_B first inverse moment of B-meson

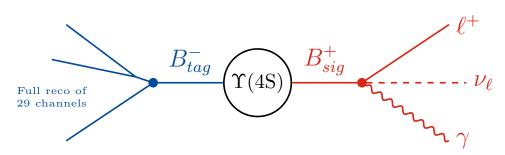

Light-Cone Distribution Amplitude (LCDA) [Eur.Phys.I.C 71 (2011) 1818]

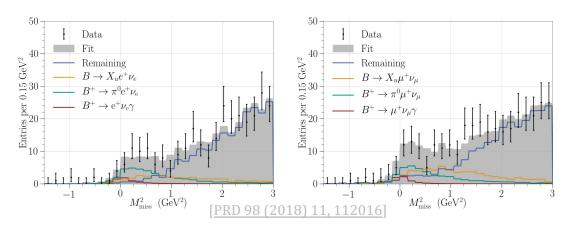

- crucial theory input [PRD 69 (2004) 034014] [Nucl.Phys.B 832 (2010) 109-151] [PLB 848 (2024) 138345]
- calculations of non-leptonic and non-perturbative
 B decays (QCD factorisation)



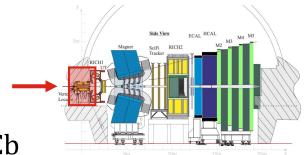
Model dependence

- Three-body decay described by E_{ν} and $\cos \theta_{W}$
 - θ_W angle between ℓ^+ and B^+ flight direction
- Strong dependence of E_{γ} and $\cos \theta_W$ on λ_B

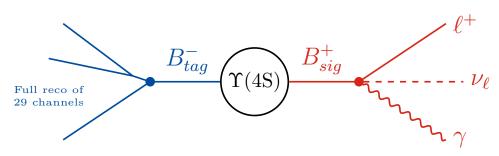



Reconstruction strategies

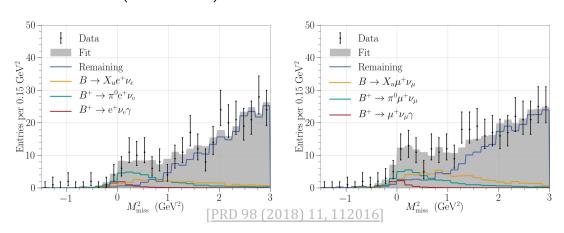
Belle



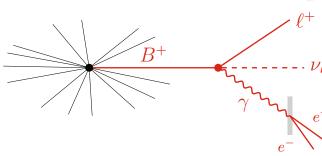
Full reconstruction of B_{tag}^- with $\varepsilon \simeq 0.8 \%$


$$p_{B_{sig}^{+}} = \left(\frac{\sqrt{s}}{2}, -\vec{p}_{B_{tag}^{-}}\right) \qquad M_{miss}^{2} = p_{\nu}^{2} = \left(p_{B_{sig}^{+}} - p_{\ell} - p_{\gamma}\right)^{2}$$

Reconstruction strategies



Belle

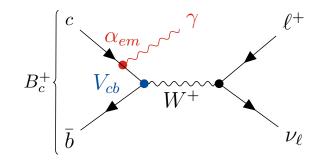


Full reconstruction of B_{tag}^- with $\varepsilon \simeq 0.8 \%$

$$p_{B_{sig}^+} = \left(rac{\sqrt{s}}{2} , - ec{p}_{B_{tag}^-}
ight) ~~ M_{miss}^2 = p_{
u}^2 = \left(p_{B_{sig}^+} - p_{\ell} - p_{\gamma}
ight)^2$$

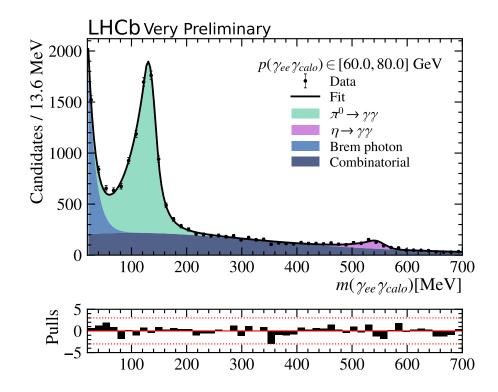


 $\gamma \rightarrow e^+e^-$ conversions in material $\rightarrow B^+$ displaced vertex

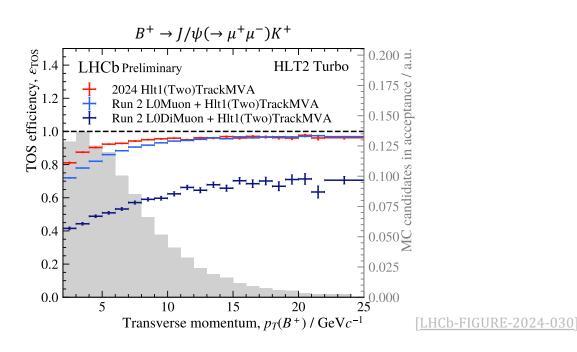

$$m_{corr}(\ell^+ e^+ e^-) = \sqrt{m_{visible}^2(\ell^+ e^+ e^-) + p_\perp^2} + p_\perp$$

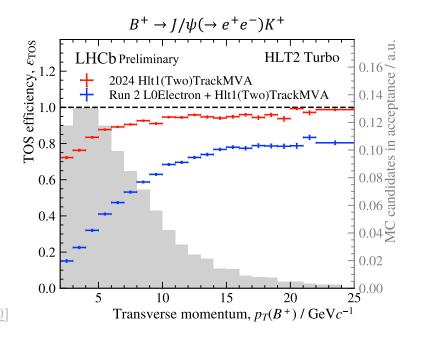
Very preliminary! No offline selection applied → backgrounds dominate

On the decay $B_c^+ \to \ell^+ \nu_\ell \gamma$


- B_c^+ channel comes (almost) for free and
 - it is exclusively accessible at LHCb
 - it has never been searched for, μ^+ -channel for first time with Run 2 data (stay tuned!)

- Lower efficiency due to $\tau(B_c^+) \simeq 0.3 \times \tau(B^+)$
- Smaller cross section, but CKM favoured thanks to $\frac{f_c}{f_u} \simeq \frac{|V_{cb}|^2}{|V_{ub}|^2} \to \text{similar rate as } B^+$
- Much lower background


Background modelling


- Boosted Decision Trees for background classification
 - 1. combinatorial \rightarrow random ℓ^+ - γ_{ee} combinations
 - 2. charged isolation \rightarrow additional charged tracks
 - 3. neutral isolation $\rightarrow \pi^0/\eta \rightarrow \gamma_{ee}\gamma_{calo}$
- Main contributions from $\pi^0/\eta \to \gamma_{ee}\gamma_{calo}$ with γ_{calo} additional calorimetric photon \to data-driven templates, also for μ^+/e^+ misID

Run 3 news: electron channel

- e^{\pm} reconstruction efficiency: in Run 2 the bottleneck was hardware trigger (L0)
 - → removed in Run 3
 - → increase in statistics with electron channel

Conclusions

- First search for $B_{(c)}^+ \to \ell^+ \nu_\ell \gamma$ at LHCb
 - μ^+ -channels with Run 2 data
 - e^+ -channels added in Run 3 analysis
- Reconstruction strategy possible and competitive
 - $\gamma \rightarrow e^+e^-$ to get B^+ displaced vertex
 - data-driven technique to get backgrounds
- Run 2 sensitivity compatible with current world-best limit
- Prospects:
 - first observation possible with Run 3 \rightarrow measurement of *BR*
 - combined results from LHCb+Belle2 expected to provide clean experimental constraints to λ_B
 - measurement of λ_B expected to improve QCD-factorisation predictions for several B-meson decay channels

Thank you!

Back-up slides

$BR(B^+ \to \ell^+ \nu_{\ell} \gamma)$ depends on λ_B

$$\frac{d\Gamma(B^{+} \to \ell^{+} \nu_{\ell} \gamma)}{E_{\gamma}^{*}} = \frac{\alpha_{em} G_{F}^{2} |V_{ub}|^{2}}{6\pi^{2}} m_{B} E_{\gamma}^{*3} \left(1 - \frac{2E_{\gamma}^{*}}{m_{B}} \right) \left(|F_{V}|^{2} + \left| F_{A} + \frac{e_{\ell} f_{B}}{E_{\gamma}^{*}} \right|^{2} \right)$$

$$E_{\gamma}^{*} > 1 \ GeV \to F_{V}(E_{\gamma}^{*}) = \frac{e_{u} f_{B} m_{B}}{2E_{\gamma}^{*} \lambda_{B}(\mu)} R(E_{\gamma}^{*}, \mu) + \xi(E_{\gamma}^{*}) + \Delta \xi(E_{\gamma}^{*})$$

$$F_{A}(E_{\gamma}^{*}) = \frac{e_{u} f_{B} m_{B}}{2E_{\gamma}^{*} \lambda_{B}(\mu)} R(E_{\gamma}^{*}, \mu) + \xi(E_{\gamma}^{*}) - \Delta \xi(E_{\gamma}^{*})$$