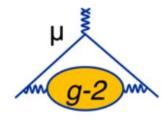
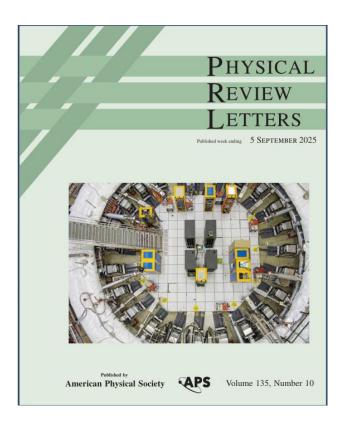

WIFAI 2025 11-14 novembre 2025, Bari


Fermilab Muon g-2 final result

Antonio Gioiosa
Università degli Studi del Molise, INFN for the FNAL Muon g-2 collaboration



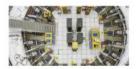
Muon g-2 Collaboration

176 collaborators, 34 institutes, 7 countries
Particle-, Nuclear-, Atomic-, Optical-, Accelerator-, and Theoretical-Physicists and Engineers

PRL publication dated 2 Sep 2025

04/09/2025, 13:35

Physical Review Letters - Volume 135 Issue 10

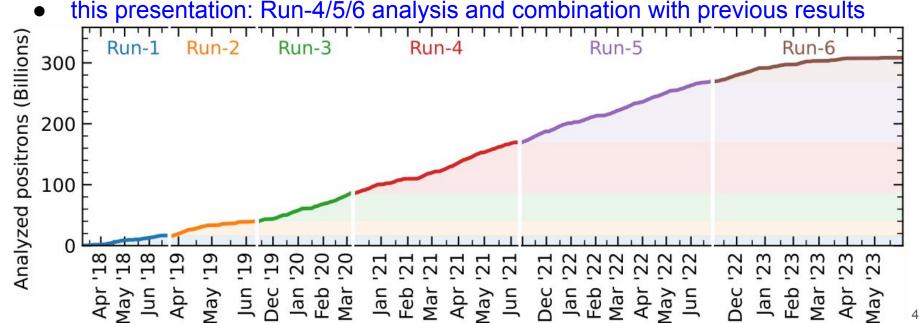

HIGHLIGHTED ARTICLES

FEATURED IN PHYSICS EDITORS' SUGGESTION

<u>Measurement of the Positive Muon Anomalous Magnetic Moment to</u> <u>127 ppb</u>

D. P. Aquillard et al. (Muon g - 2 Collaboration)

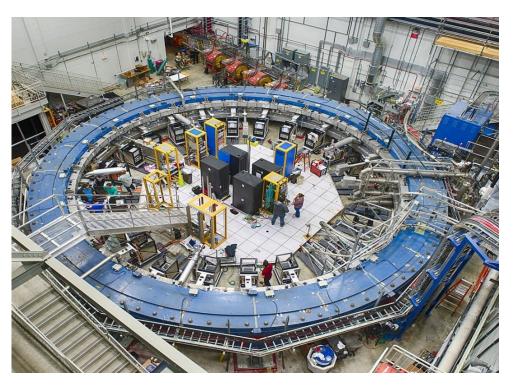
Phys. Rev. Lett. 135, 101802 (2025) - Published 2 September, 2025



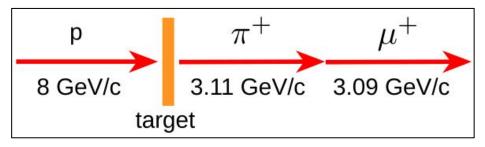
The final results from the Muon g – 2 experiment agree with the latest predictions of muon's magnetic properties—letting down hopes that the particle would upset the standard model's applecart.

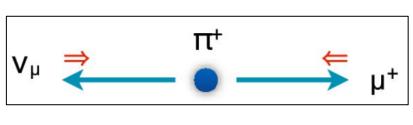
PRL 135 (2025) 101802

Data sample over 6 years (analyzed positrons)


- April 2021: Run-1
- August 2023: Run-2/3 (and combination with Run-1)
- June 2025: Run-4/5/6 (and combination with Run-1/2/3)

14th Nov 2025 | A. Gioiosa | WIFAI 2025


FNAL accelerator complex for Muon g -2

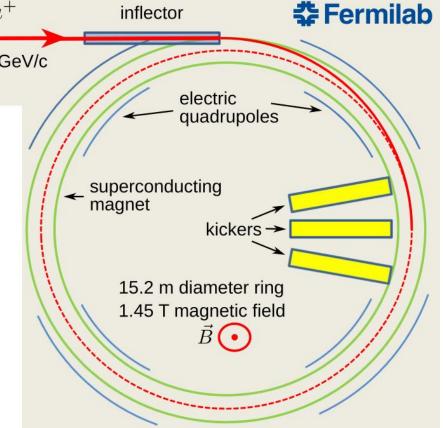



Production of polarized muons

- Dump 8 GeV protons on target to produce pions
- Select pions with momentum $p \approx 3.11 \text{ GeV}$
- Let them decay into muons
- In pion rest frame, parity violation in pion decay causes μ^+ spin anti-aligned to momentum vector
- In laboratory frame, highest energy muons are > 90% polarized
- with 8 GeV protons on target, μ^+ are produced more frequently than μ^-

Muon g-2 measurement technique

Measurement principles


- Store polarized muons in magnetic ring
- Measure ω_a , muon spin precession
- Measure ω_p , proton spin precession (measure average magnetic field with NMR)

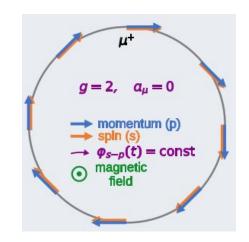
$$\bullet \quad a_{\mu} = \frac{\omega_a}{\omega_p} \frac{\mu_p}{\mu_B} \frac{m_{\mu}}{m_e}$$

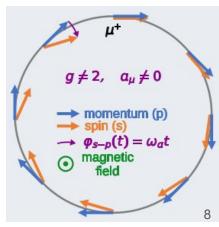
- Precision goal 140 ppb
- (100 stat ω_a , 70 syst ω_a , 70 syst ω_n)

Main improvements

More and more pure muons than BNL

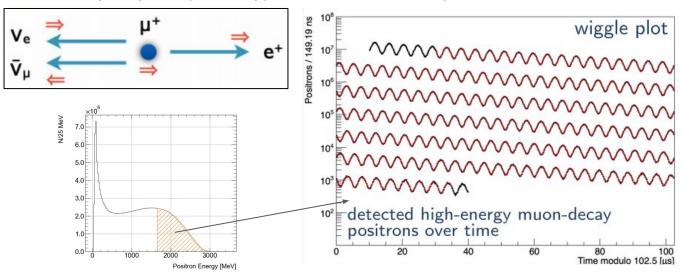
Muon g-2 measurement technique, additional details

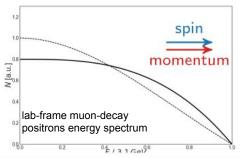

• Accounting for vertical-focusing electric field and vertical muon beam oscillations:

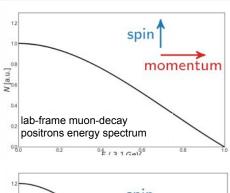

$$ec{\omega}_{\mathsf{a}} \equiv ec{\omega}_{\mathsf{s}} - ec{\omega}_{\mathsf{c}} = rac{e}{m_{\mu}c} \left[a_{\mu} ec{B} - \left(a_{\mu} - \left[rac{m_{\mu}c}{p}
ight]^2
ight) ec{eta} imes ec{E} - a_{\mu} rac{(\gamma)}{(\gamma+1)} (ec{eta} \cdot ec{B}) ec{eta}
ight]$$

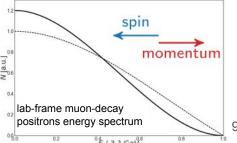
- zero $\vec{\beta} \times \vec{E}$ term $\Rightarrow p_{\text{magic}} = \frac{m_{\mu} c}{\sqrt{a_{\mu}}} \approx 3.094 \text{ GeV/c Lorentz } \gamma_{\text{magic}} \approx 29.3$
- muon spin precession $\omega_spprox g_\mu rac{eB}{2m_\mu c} + (1-\gamma)rac{eB}{\gamma m_\mu c} ~~pprox 2\pi\cdot 6.9~\mathrm{MHz}$ muon cyclotron $\omega_cpprox rac{eB}{\gamma m_\mu c} ~~pprox 2\pi\cdot 6.7~\mathrm{MHz}$

muon anomalous precession
$$\omega_a \approx a_\mu \frac{eB}{m_\mu c}$$
 $\approx 2\pi \cdot 229 \text{ kHz}$ proton spin precession $\omega_p'(T) \approx g_p'(T) \frac{eB}{2m_p c}$ $\approx 2\pi \cdot 61.8 \text{ MHz}$

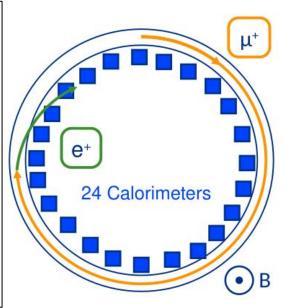

- ω_a independent (not directly dependent) of uncertainty on muon momentum
- ~5000 stored muons per fill, 12 Hz fills
- ~500 high-energy positrons detected per fill
- ~310 billion analyzed high-energy positrons from muon-decays

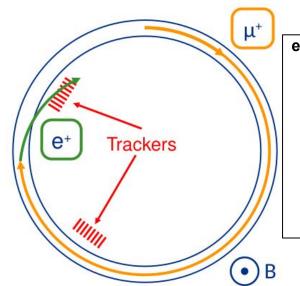





Rate of high-energy muon-decay positrons modulated with $\cos \omega_a t$

- Because of parity violation in muon decay, decay positrons peak along muon spin
- Positrons decaying along muon momentum have highest energy in laboratory frame
- $N_e(E_e > E_t) = N_{e0}e^{-t/\tau_{\mu}}(1 + A \cos \omega_a t)$


14th Nov 2025 | A. Gioiosa | WIFAI 2025

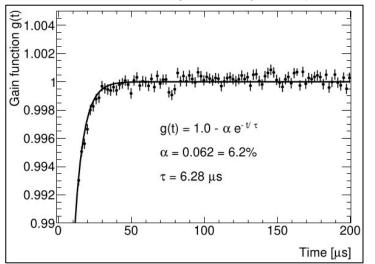

Positrons from positive-muons' decays are detected

- Positrons from positive muons decays curl inward and are detected
- Calorimeters measure energy for ω_a measurement
- Trackers reconstruct muon decay vertices to measure beam dynamics

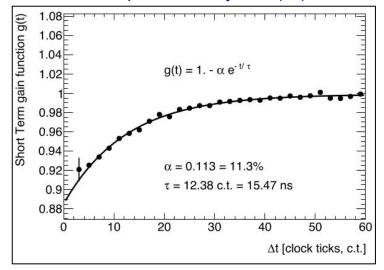
Each calorimeter module has

- 6×9 PbF₂ crystals array
- 2.5 cm×2.5 cm×14 cm, 15 X₀
- Readout Cherenkov light at 800 MHz with SiPMs
- Continuous gain monitoring with laser system pulses

each tracker has

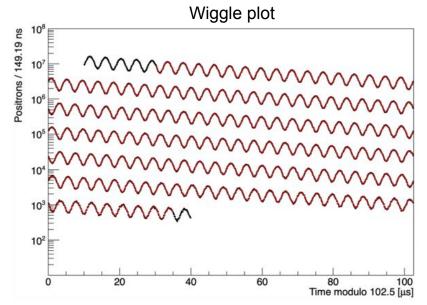

- 8 modules
- 128 straw chambers each
- Trace back muon decay points

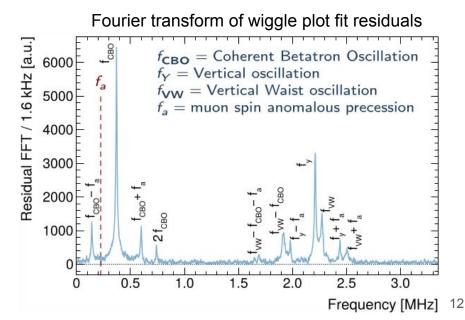
10


Laser calorimeter gain monitoring system

- SiPM gain is reduced by occurrence of preceding hits
- If unaccounted, there is a significant bias on ω_a measurement
- Gain monitored by reading back reference laser light pulses injected in calorimeter crystals
 - Also during data-taking
- Positron energy measurement from SiPM readout corrected for average measured gain loss

SiPM power supply recovery time (μ s)

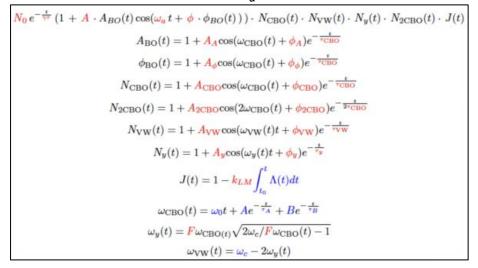

SiPM pixel recovery time (ns)

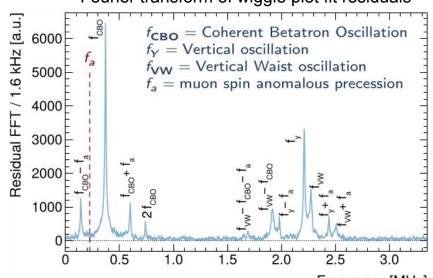


$\omega_a^{\ m}$ wiggle plot fit, 5 parameters function

$$N(t) = N_0 e^{-t/\tau_{\mu}} [1 + A \cos(\omega_a t + \varphi)]$$
number of e⁺ vs. time
$$\frac{\text{dilated } \mu^+}{\text{life time}} = \frac{\text{Wiggle}}{\text{asimmetry}}$$
anomalous precession phase at injection

- Peaks in Fourier transform of fit residuals
- Biases of order 1 ppm

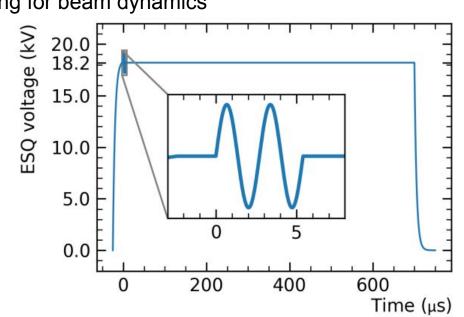



ω_a wiggle plot fit, full function

- ~30-parameter typical fit function to account for
 - Beam vertical and horizontal/radial motion
 - Muon loss
- No peaks in Fourier transform of fit residuals
- Good \Box^2 [largest statistics dataset \Box^2 / ndof = 4007 / 4097, p = 84%]

Example full ω_a fit function

Fourier transform of wiggle plot fit residuals


RF on quad HV to dampen radial & vertical beam dynamics

New on Run 4/5/6

- ~1 KV radio-frequency modulation of quad high voltage in first 6 μs of quad activation during fills
- Obtained significant reduction of radial and vertical motion of average muon distribution
- ~10× ω_a bias reduction when not accounting for beam dynamics

Four datasets with different RF damping

- NoRF no RF
- xRF RF for radial (x) beam motion
- xyRF5 RF for radial & vertical beam motion, Run 5
- xyRF6 RF for radial & vertical beam motion, Run 6

Measuring ω_a^m with ~30 ppb systematic accuracy for Run 4/5/6

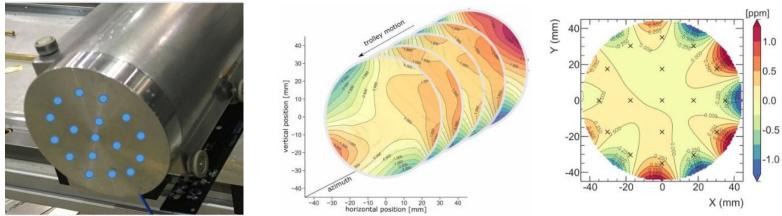
- 5 independent and mutually software-blinded analysis groups
- Completed total of 20 analyses (on each of 4 Run 4/5/6 datasets)
- Consistency checks of SW and HW blind analyses
- Consistency checks of common-HW-blinded analyses
- To estimate statistical correlations between analyses
 - Assembled 200 bootstrap samples extracting datasets subruns
 - Estimated between-analyses correlations on data
 - Bootstrap samples planned and performed for most analyses
 (has been done in few cases also when performing Run 2/3 measurement)
- Perform one analysis fit on the wiggle plot assembled for another analysis
- All these tests either succeeded or facilitated debugging and well-understood fixes

New on Run 4/5/6

$\omega_a^{\ m}$ measurement done separately on 4 datasets

For each dataset, $\omega_a^{\ m}$ = even average of 7 analyses using most precise methods

- Conservative 100% correlation assumed for each statistical and systematic uncertainty component
- Safe, stable, and only 1.5% larger uncertainty than optimal average

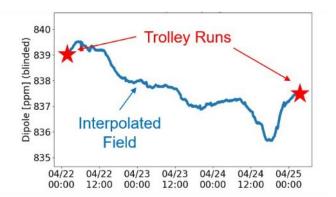

Positron-rate-dependent calorimeter gain sag

New on Run 4/5/6

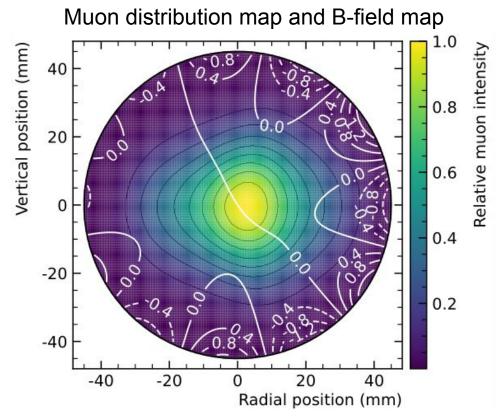
- Calorimeter gain sag after calorimeter hits due to SIPM power supply recovery time
 - Well known, measured with laser monitoring system using high power test laser pulses
 - o Occurs with injection beam flash, measured with laser monitoring during data-taking, and corrected
- Time-dependent rate of positron hits contributes additional gain sag over fill time
 - Below sensitivity of laser monitoring system during data-taking
 - \circ Dedicated studies estimated order 40 ppb ω_a bias because of phase difference w.r.t. ω_a phase
 - Confirmed with extra studies performed with laser pulses after end of data-taking
- Run 4/5/6: estimated positron gain sag bias subtracted, updated systematic uncertainty
- Run 1 & 2/3: revised published results, accounting for updated understanding

Measurement of the magnetic field map $\omega_p'(T_r)^m$

In-vacuum trolley with NMR probes maps magnetic field every ~3 days



trolley with 17 probes 2-D field maps (~8000 points) azimuthally averaged field map


378 fixed probes monitor field during muon storage at 72 locations

Fixed probes above/below muon storage region

Measurement of the magnetic field, weighting with muon distribution map M

- Muon distribution map M reconstructed
- With trackers in close to trackers
- With trackers + simulation elsewhere

 $\tilde{\omega}'_{p}(T_{r})^{m} = \omega'_{p}(T_{r})^{m} \times M$ B-field map weighted with muon distribution map [48 ppb precision]

Corrections to ω_a^m and $\tilde{\omega}_p'(T_r)^m$

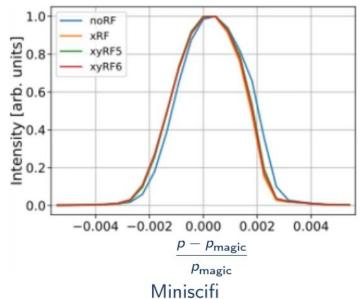
$$R'_{\mu}(T) = \frac{\widetilde{\omega_a}}{\widetilde{\omega}'_p(T_r)} = \frac{\widetilde{\omega}'_a}{\widetilde{\omega}'_p(T_r)^m} = \frac{\widetilde{\omega}'_a}{\widetilde{\omega}'_p(T_r)^m} \frac{1 + C_e + C_p + C_{pa} + C_{dd} + C_{ml}}{1 + \underbrace{B_k + B_q}_{\text{corrected}}}$$

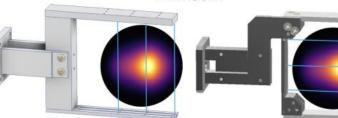
- C quadrupole electric field outside magic radius
- ullet $C_{_{D}}$ (Pitch) spin-precession contribution from muon vertical oscillation motion
- $\bullet \quad C_{\text{pa}} \ \text{\tiny{(Phase \, Acceptance)}} \ time-variation \ of \ mean \ muon \ distribution \ phase \ from \ detector \ acceptance \ and \ beam \ motion$
- $\bullet \quad C_{\text{dd}} \; \text{(Differential Decay)} \; time-variation \; of \; mean \; muon \; distribution \; phase \; from \; momentum-dependent \; muon \; lifetimes \; distribution \; phase \; from \; momentum-dependent \; muon \; lifetimes \; distribution \; phase \; from \; momentum-dependent \; muon \; lifetimes \; distribution \; phase \; from \; momentum-dependent \; muon \; lifetimes \; distribution \; phase \; from \; momentum-dependent \; muon \; lifetimes \; distribution \; phase \; from \; momentum-dependent \; muon \; lifetimes \; distribution \; phase \; from \; momentum-dependent \; muon \; lifetimes \; distribution \; phase \; from \; momentum-dependent \; muon \; lifetimes \; distribution \; phase \; from \; momentum-dependent \; muon \; lifetimes \; distribution \; phase \; from \; momentum-dependent \; muon \; lifetimes \; distribution \; phase \; d$
- C_{ml} time-variation of mean muon distribution phase from momentum-dependent muon storage losses
- B_k transient B-field generated by kicker eddy currents
- B_a transient B-field from vibration of plates of pulsed electrostatic quadrupole field system

E-field correction C_e: largest one & largest systematic contribution

The largest correction: 347 ppb

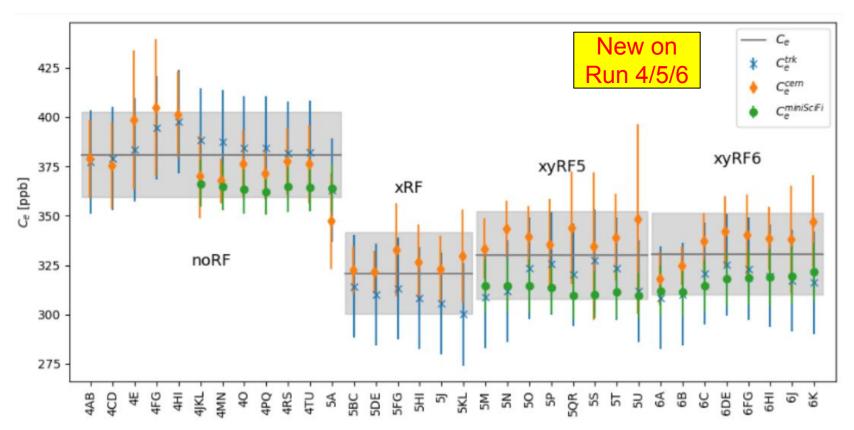
Depends on radial muon distribution equivalent to momentum distribution obtained with three detectors:

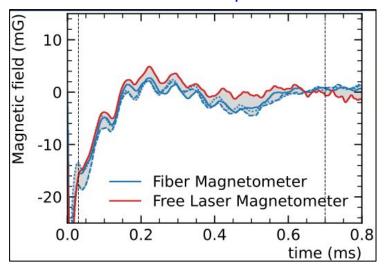

- Calorimeters
 - Parasitic on data-taking
 - Measure injected muon bunches dephasing (how muons spread along the beam over time)
- improved elaborations


New on Run 4/5/6

Run 4/5/6

- Trackers
 - Parasitic on data-taking
 - Complement with beam dynamics simulation
 - Measure muon radial distribution along ring
- Miniscifi (Minimally Intrusive Scintillating Fiber detector)
 - Dedicated runs
 - Complement with beam dynamics simulation
 - Measure muon radial distribution


measured muon momentum distribution

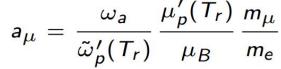

E-field correction C_e: largest one & largest systematic contribution

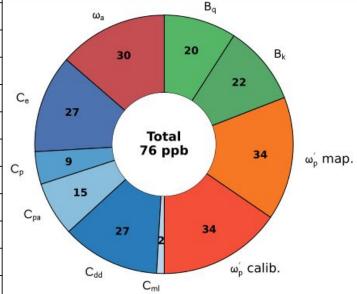
using 3 different consistent approaches ⇒ systematic uncertainty reduced to 27 ppb

Kicker transient field measured with two magnetometers

- Measure Faraday rotation of polarized laser light in TGG crystal
- Two independent teams and detectors
- Higher transient field measured off magic-radius
- Ckecks with hardware mockup
- −37 ± 22 ppb correction to B-field
- Run 1 & 2/3 results revised with improved understanding

New on Run 4/5/6


fiber magnetometer


free laser magnetometer

Systematic corrections and uncertainties for Run 4/5/6

Quantity	Correction (ppb)	Uncertainty (ppb)
$\omega_a^{\ m}$ (statistical)		114
$\omega_a^{\ m}$ (systematic)		30
C _e	347	27
C_{ρ}	175	9
C _p	-33	15
C_{dd}	26	27
C _{ml}	0	2
$\omega_p'(T_r)^m$ (mapping, tracking)		34
$\omega_p'(T_r)^m$ (calibration)		34
B_k	-37	22
B_q	-21	20
$\mu'_{p}(T_{r})/\mu_{B}$		4
m _{//} m _e		22
Total systematic for $R'_{\mu}(T_r)$		76
Total for a_{μ}	572	139

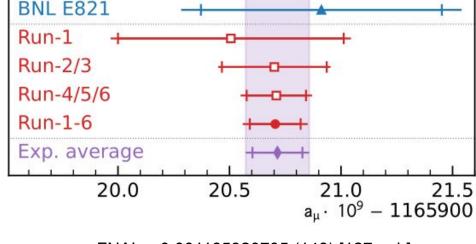
- External inputs from CODATA 2022
- Tr = $25 \,^{\circ}$ C

- Total systematic < 100 ppb (design)
- Systematics evenly distributed

Result

- Results blinded by unknown offset in calorimeter DAQ sampling frequency
- Collaboration approved result before unblinding on 20 May 2025
- BNL, FNAL Run 1 & 2/3 $R'_{\mu}(T_r)$, $\omega'_{p}(T_r)$ converted to spherical water sample at Tr = 25 °C
- FNAL Run 1 & 2/3 results revised

• Experimental results on $R'_{\mu}(Tr)$ have been combined (100% correlated systematics for FNAL


measurements)

PRL 135 (2025) 101802

Uncertainty

$R_{\mu}'(T_r)$	stat. [ppb]	syst. [ppb]	total [ppb]
Run-1	434	159*	462
Run-2/3	201	78*	216
Run-4/5/6	114	76	137
Run-1-6	98	78	125

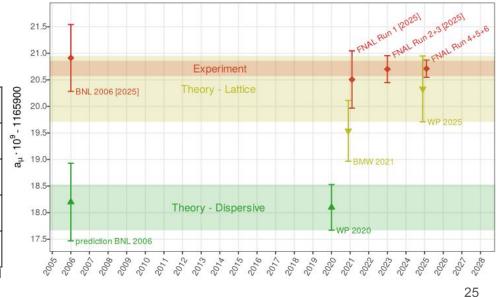
^{*}revised 23 ppb uncertainty from externally measured factors is not showed

 a_{μ} FNAL = 0.001165920705 (148) [127 ppb] a_{μ} EXP = 0.001165920715 (145) [124 ppb]

Result

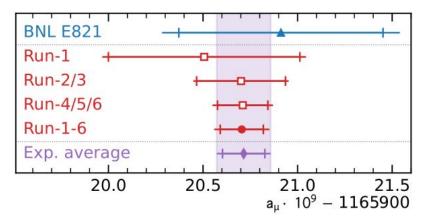
- Results blinded by unknown offset in calorimeter DAQ sampling frequency
- Collaboration approved result before unblinding on 20 May 2025
- BNL, FNAL Run 1 & 2/3 $R'_{\mu}(T_r)$, $\omega'_{p}(T_r)$ converted to spherical water sample at Tr = 25 °C
- FNAL Run 1 & 2/3 results revised

• Experimental results on $R'_{\mu}(Tr)$ have been combined (100% correlated systematics for FNAL


measurements)

PRL 135 (2025) 101802

Uncertainty


$R_{\mu}'(T_r)$	stat. [ppb]	syst. [ppb]	total [ppb]
Run-1	434	159*	462
Run-2/3	201	78*	216
Run-4/5/6	114	76	137
Run-1-6	98	78	125

*revised 23 ppb uncertainty from externally measured factors is not showed

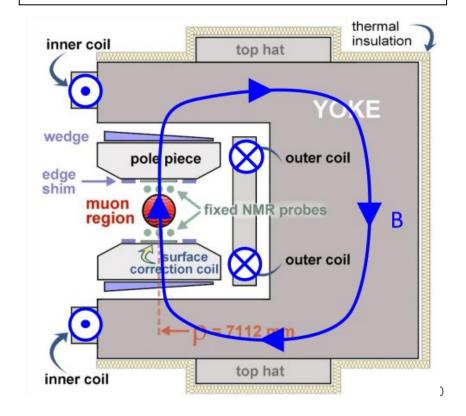
Conclusion

- Most precise a_u measurement
- For many years to come
- Key ingredient of SM test
- Tight constraint on New Physics models

PRL 135 (2025) 101802

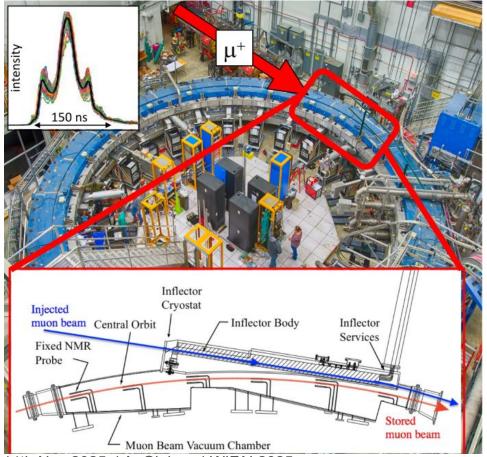
Acknowledgements

- Department of Energy (USA)
- National Science Foundation (USA)
- Istituto Nazionale di Fisica Nucleare (Italy)
- Science and Technology Facilities Council (UK)
- Royal Society (UK)
- Leverhulme Trust (UK)
- European Union's Horizon 2020
- Strong 2020 (EU)
- German Research Foundation (DFG)
- National Natural Science Foundation of China
- MSIP, NRF and IBS-R017-D1 (Republic of Korea)

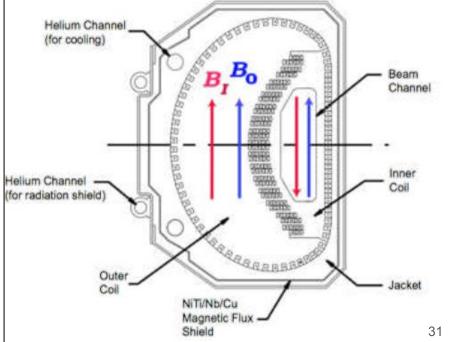

Thanks!!

Backup

FNAL accelerator complex for Muon g -2

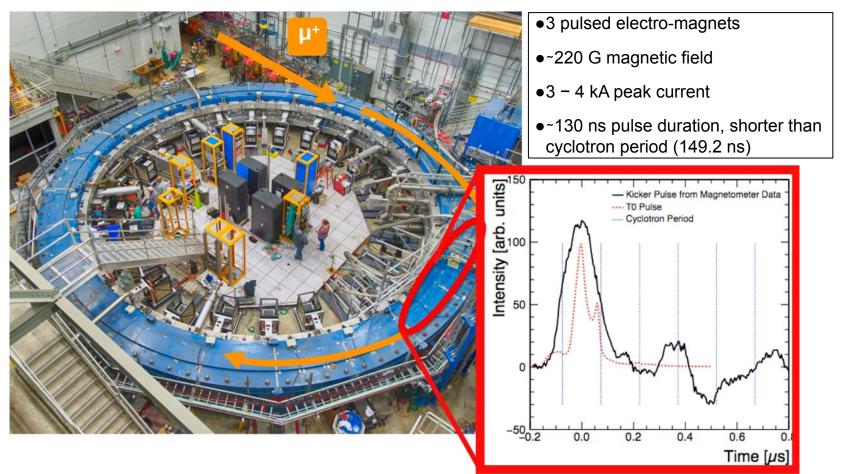


section of muon g-2 storage ring magnet

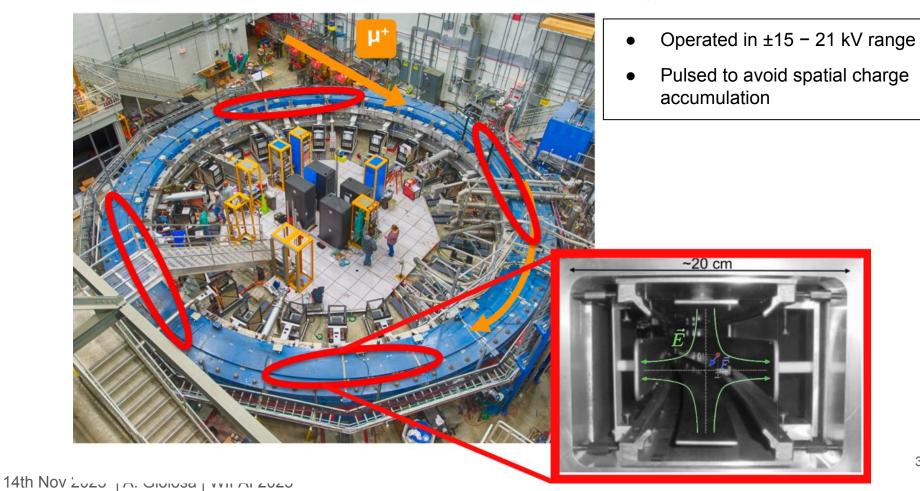


14th Nov 2025 | A. Gioiosa | WIFAI 2025

Pulsed inflector magnet injects muons into storage ring

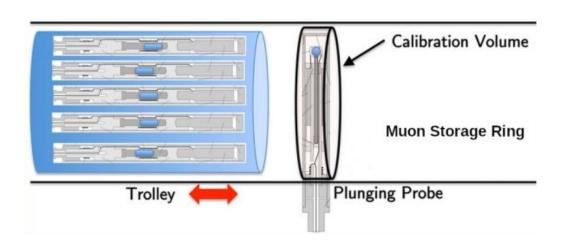


- Cancels 1.45 T field in beam channel
- Minimal perturbation of magnetic field in muon storage volume

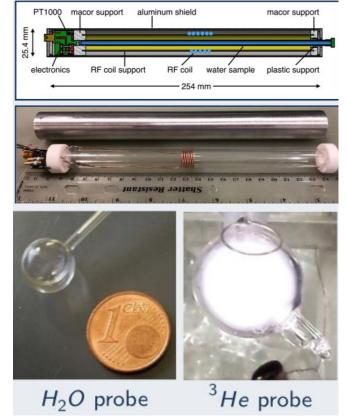


14th Nov 2025 | A. Gioiosa | WIFAI 2025

Magnetic kickers put muons into correct orbit



Electric quadrupoles focus beam vertically



Measurement of the magnetic field, probes calibration

Calibrate petroleum-jelly trolley probes with cylindrical H₂O probe (plunging probe) in same physical positions [20 ppb consistency and reproducibility]

- Calibrate plunging probe in ANL MRI magnet
- Reference spherical H₂O probe [15 ppb precision]
- Reference 3 He probe [20 ppb precision]

Run 4,5,6 ω_a measurements, 5 groups, 8 methods, 20 analyses

Groups (g)	F
BU	(1
RE1	F
RE2	F
RE3	F
RE4	F
EU	
Ку	
SJTU	

Reconstructions (r)	
RW	
RE	
RI2	
RQ	

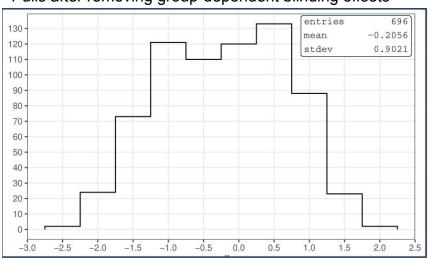
m	Measurement methods
Т	Threshold
Α	Asymmetry weighted
RT	Ratio T
RA	Ratio A
Q	Charge
RQ	Ratio Charge
ST	Stroboscopic T
SA	Stroboscopic A

rq	ratio quartering methods	
R	random	
K	kernel	

Analyses			
g	m	r	rq
BU	T, A, RT, RA	RW	K
RE1	T, A	RE	R
RE2	T, A	RE	
RE3	RT, RA	RE	R
RE4	ST, SA	RE	
EU	T, A, RT, RA	RI2	R
UK	Q, RQ	RQ	R
SJTU	T, A	RW	

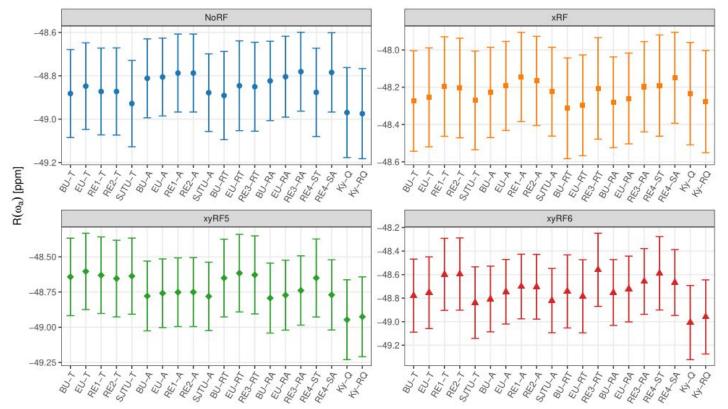

Pileup subtraction (ps)
RW-BU
RE
RW-EU
RW-SJTU

Envelope modeling	
analytic function	
spline	
Gaussian Process Regression	


Pulls – dealing with analysis-group-dependent blinding offsets

• I consistency checks for group-dependent blinding offsets possible relying on different datasets

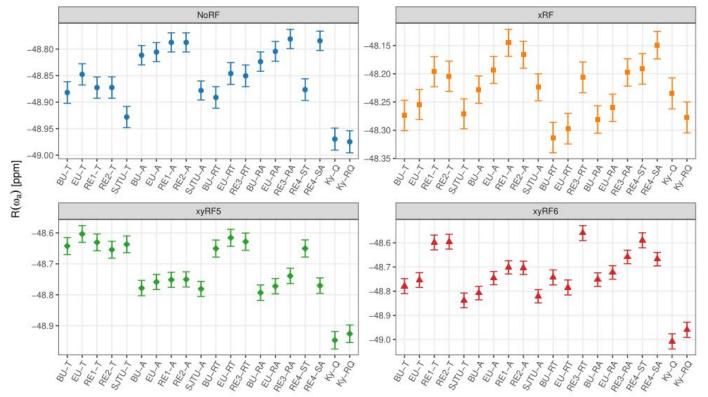
$$\bullet \quad \text{Pull} = \frac{\left(\omega_{a}^{\text{dataset 2, analysis 2}} - \omega_{a}^{\text{dataset 2, analysis 1}}\right) - \left(\omega_{a}^{\text{dataset 1, analysis 2}} - \omega_{a}^{\text{dataset 1, analysis 1}}\right)}{\sqrt{\sigma^{2}\left(\omega_{a}^{\text{dataset 2, analysis 2}} - \omega_{a}^{\text{dataset 2, analysis 1}}\right) + \sigma^{2}\left(\omega_{a}^{\text{dataset 1, analysis 2}} - \omega_{a}^{\text{dataset 1, analysis 1}}\right)}}$$



Pulls after removing group-dependent blinding offsets

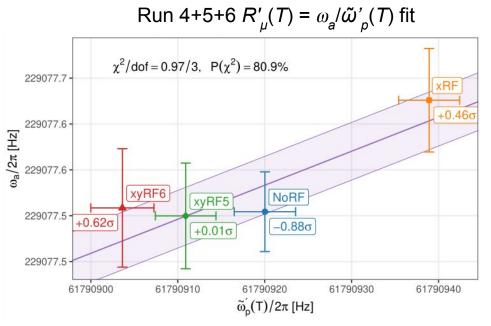
ω_{a}^{m} measurements must be consistent within each dataset

20 ω_a^m measurements on 4 Run 4+5+6 datasets



however, statistical uncertainties within same datasets are highly correlated

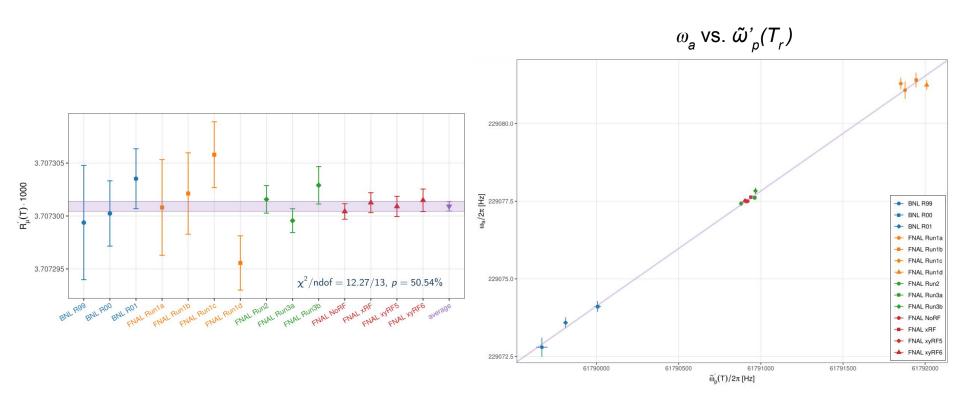
37


ω_{a}^{m} measurements with just their systematic uncertainties' estimates

20 ω_a^m measurements on 4 Run 4+5+6 datasets



- Even assuming uncorrelated systematics, $\omega_a^{\ m}$ measurements are inconsistent
- Estimate variance-contributing statistical decorrelation between analyses using bootstrap samples
 A. Gioiosa | WIFAI 2025


Consistency of Run 4/5/6 datasets, ω_a vs. $\tilde{\omega}'_p(T_r)$

ΔR_{μ} measurements, common blinding

Consistency of BNL final report and FNAL datasets

