

The NA62 experiment at CERN

* High-intensity fixed target kaon experiment at CERN SPS

2008
Approval

Detector R&D and commissioning

Run1: 2016 - 2017- 2018
physics runs

LS2
upgrades

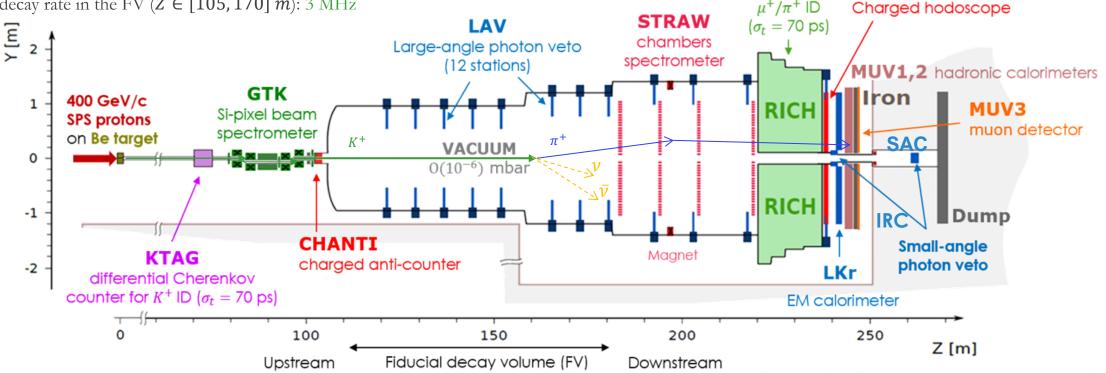
upgrades

Run2: 2021 - 2022
2023 - 2024 - 2025 - 2026
physics runs

- $*K^+$ decay-in-flight technique
- **Primary goal: study of the ultra-rare** $K^+ \to \pi^+ \nu \overline{\nu}$ decay
 - $BR_{2016-2022}(K^+ \to \pi^+ \nu \overline{\nu}) = \left(13.0^{+3.0|}_{-2.7|stat} \begin{array}{c} +1.3| \\ -1.3|sys \end{array}\right) \times 10^{-11} \ (> 5\sigma \text{ significance})$ []HEP 02 (2025) 191] → Silvia M. talk
- Broader physics programme both in flavour physics...
 - \Leftrightarrow test of low-energy hadronic theories : e.g. $K^+ \to \pi^+ \gamma \gamma$ [Phys.Lett.B 850 (2024) 138513]
 - ❖ searches for LFV/LNV decays → This talk
 - *
- \diamond ...and in hidden sector searches (Dark photon (A'), Dark scalars(S), ALP (a), HNL (N)...)
 - \star in kaon mode: e.g. $K^+ \to \pi^+ X$ [arXiv.2507.17286[hep-ex], submitted to JHEP], $\pi^+ \to e^+ N$, [arXiv.2507.07345[hep-ex], submitted to Phys.Lett.B]
 - \bullet in a dedicated beam dump programme: eg. $X \to hadrons$ [Eur. Phys. J. C 85 (2025) 571]

The NA62 beam line & detector layout

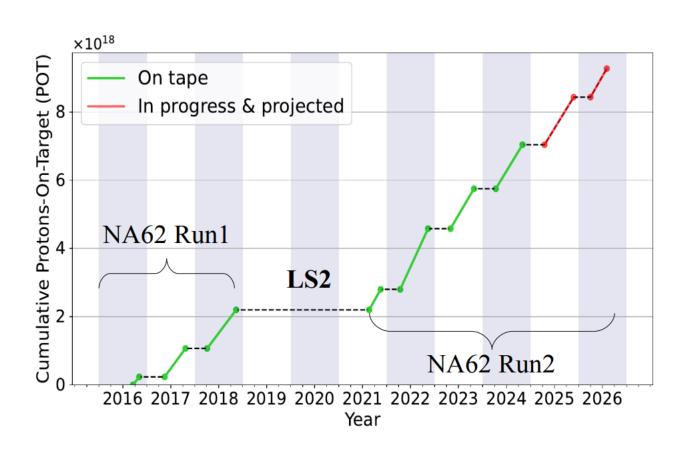
(designed and optimised for the $K^+ \to \pi^+ \nu \bar{\nu}$ study)


Primary beam:

[INST 12 (2017) P05025]

❖ 400 GeV/c protons from the SPS

Secondary beam:


- unseparated $(70\%)\pi^+$, (23%)p, $(6\%)K^+$ beam with 75 GeV/c momentum $(\pm 1\%)$
- Average particle rate at GTK: ~ 450-600 MHz
- K^+ decay rate in the FV ($Z \in [105, 170] m$): 3 MHz

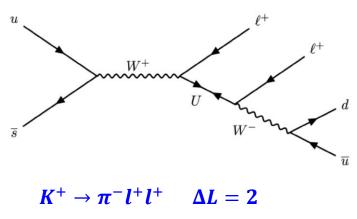
LAV, LKr, IRC, SAC: hermetic coverage of polar angles up to 50 mrad from the beam axis, for photons emitted, for instance, in the $K^+ \to \pi^+ \pi^0 (\pi^0 \to \gamma \gamma)$ decay

CHOD

The NA62 data samples in kaon mode

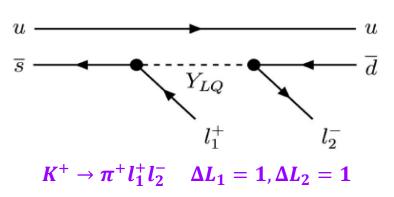
2016-2018: $\sim 2.2 \times 10^{18}$ POT were delivered

❖ ~ 6.2×10^{12} K⁺ decays collected by the main trigger line + dedicated trigger streams collecting single-track or multi-track final state events [JHEP 2303 (2023) 122]


Since 2021: Proton intensity +35% wrt 16-18 data

- * average beam intensity: 20×10^{11} (in 2018) \rightarrow 30×10^{11} protons per pulse on target
- Matched by improvements to the trigger configuration

LFV/LNV searches in kaon decays: motivations


- \clubsuit Lepton Number (L) and Lepton Flavor (L_e , L_μ , L_τ) are accidentally conserved quantities within the SM.
- * Violation of these conservation laws is a clear indication of BSM physics. Neutrino oscillation: first evidence of LFV
- ❖ Searches for LNV and LFV kaon decays are powerful probes of BSM theories at mass scales up to O(100 TeV)
- * Kaons are competitive in searches for LFV/LNV:
 - * copious production (high statistics) and simple decay topologies (clean experimental signatures)
 - \clubsuit tagged π^0 via $K^+ \to \pi^+\pi^0$ (for e.g.): precision π^0 decay physics

Lepton number violation (LNV)

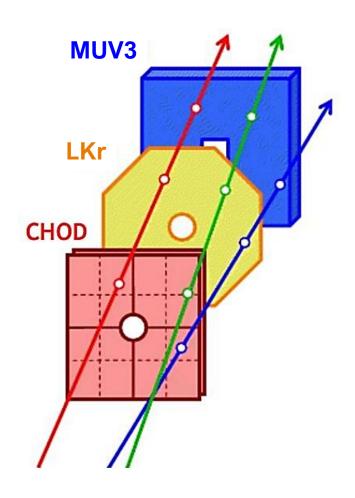
Seesaw mechanism provides a source of LNV through the exchange of Majorana neutrinos (U) as in $0\nu\beta\beta$ decay [IHEP 05 (2009) 030]

Lepton flavor violation (LFV)

LFV processes can occur via exchange of leptoquarks (Y_{LQ}), Z' boson or in SM extensions with light pseudoscalar bosons [Rev. Mod. Phys. 81, 1199 (2009), Rep. Prog. Phys. 86 (2023) 016201 <u>JHEP 01 (2020)158</u>]

LFV&LNV at NA62

$$K^{+} \to \pi^{-} \mu^{+} \mu^{+} \text{ , } K^{+} \to \pi^{-} (\pi^{0}) e^{+} e^{+} \text{ , } K^{+} \to \pi^{\pm} \mu^{\mp} e^{+} \text{ , } K^{+} \to \mu^{-} \nu e^{+} e^{+} \text{ , } K^{+} \to \pi^{-} \pi^{0} \mu^{+} e^{+} \text{ , } K^{+} \to \pi^{+} \pi^{0} \mu^{\mp} e^{\pm} e$$


- \diamond World's leading sensitivity to most LFV/LNV K^+ decays thanks to **dedicated di-lepton trigger lines**
- **BRs** measured relative to a SM decay with a similar topology (normalisation channel)
- * Main (common) steps of the event selection
 - > Track selection: momentum and direction (STRAW), time (CHOD or RICH)
 - > 3-track events forming a Q=+1 vertex in the FV
 - \triangleright vertex momentum $(|\sum_{final\ state} \vec{p}_f|)$ consistent with beam (i.e. K^+) average momentum
 - \triangleright LKr (E/p) and MUV3 detectors to distinguish between e^+ , μ^+ and π^+ ; LAV for low energy photon veto
- ***** Expected background and selection acceptances from MC
 - > Primary bkg mechanisms from misidentification
 - > Data sample used to account for discrepancy between data and MC PID probabilities

$$\pi^{\pm} \to e^{\pm} \text{ misID: } (4-5) \times 10^{-3}$$
 $e^{\pm} \to \pi^{\pm} \text{ misID: } (1-3) \times 10^{-2}$ E.g. from $K^{+} \to \pi^{\pm} \mu^{\mp} e^{+}$ searches $\pi^{\pm} \to \mu^{\pm} \text{ misID: } (2-3) \times 10^{-3}$

- ❖ Discriminating kinematic variable and blind analysis strategy
 - > Signal region (SR) kept closed until final bkg validation in control regions

Di-lepton trigger lines (Run1)

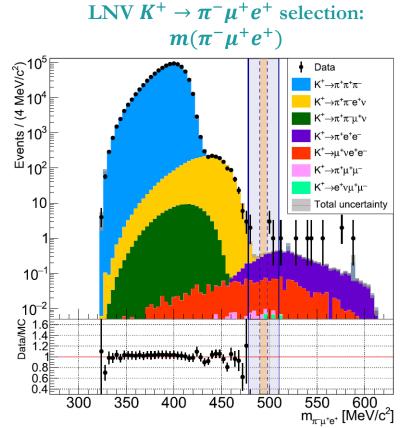
[JHEP 2303 (2023) 122]

Lepton pair collection ($\sim 1/4$ of trigger bandwidth): equivalent of $\mathcal{O}(10^{12})$ kaon decays in Run 1

L0 trigger primitives (firmware):

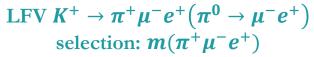
- * QX: two diagonally-opposite CHOD quadrants;
- ❖ E10/20: at least 10/20 GeV deposit in LKr;
- ❖ MO2: at least two signals in outer MUV3 tiles.

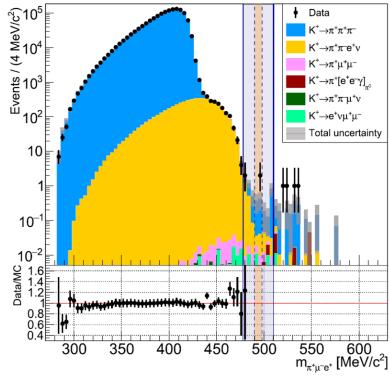
L1 trigger conditions (software):


- \star KTAG: in-time signals from a beam K^+ ;
- ❖ STRAW: a negatively-charged STRAW track.

Trigger line		L0 trigger conditions	Downscaling (D)
MT	(generic) multi-track	$RICH \cdot QX$	100
$2\mu MT$	di-muon multi-track	$RICH \cdot QX \cdot MO2$	2
eMT	electron multi-track	$RICH \cdot QX \cdot E20$	8
μMT	Muon multi-track	$RICH \cdot QX \cdot MO1 \cdot E10$	5

LNV $K^+ \rightarrow \pi^- \mu^+ e^+$ and LFV $K^+ \rightarrow \pi^+ \mu^- e^+$


[Phys. Rev. Lett. 127 (2021) 131802]


- NA62 2017+2018 data samples.
- * $K^+ \to \pi^- \pi^+ \pi^+$ as normalisation channel. K^+ decays in the FV: $(1.30 \pm 0.02) \times 10^{12}$
- **The invariant mass m_{\pi\mu e}** used to distinguish between signal and bkg.
- \clubsuit Bkg from K^+ decays due to:
 - ❖ Particle misID
 - $\star \pi^{\pm} \rightarrow l^{\pm} \nu_l \ (l = \mu, e)$ decays in flight
- **LFV** $\pi^0 \to \mu^- e^+$ process is also investigated via $K^+ \to \pi^+ \pi^0 (\pi^0 \to \mu^- e^+)$. Additional constraint: consistency of the reconstructed mass $m_{\mu^- e^+}$ with the π^0 mass.

Expected bkg events in SR: 1.07 ± 0.20 Observed events in SR: 0

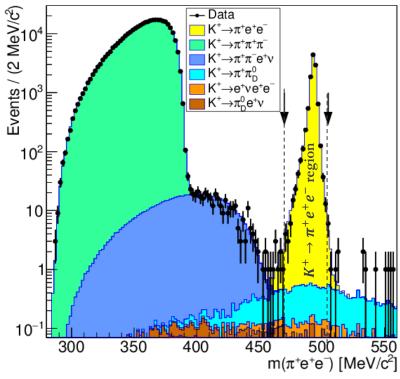
$$BR(K^+ \to \pi^- \mu^+ e^+) < 4.2 \times 10^{-11}$$

at 90% CL

Exp. bkg in SR: $0.92 \pm 0.34(0.23 \pm 0.15)$ Observed events in SR: 2 (0)

$$BR(K^+ \to \pi^+ \mu^- e^+) < 6.6 \times 10^{-11} \text{ at } 90\% \text{CL}$$

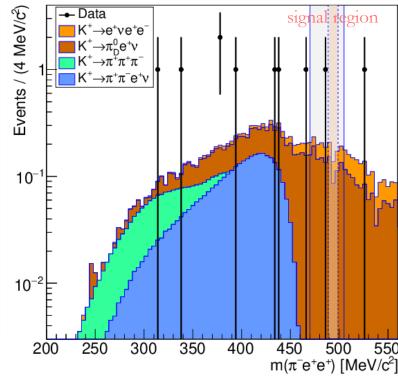
 $BR(\pi^0 \to \mu^- e^+) < 3.2 \times 10^{-10} \text{ at } 90\% \text{CL}$


LNV $K^+ \rightarrow \pi^- e^+ e^+$

[Phys. Lett. B 830 (2022) 137172]

* Whole NA62 Run1 data set analysed.

- \Rightarrow SM $K^+ \rightarrow \pi^+ e^+ e^-$ to normalise.
- **The second of the second of**
- LNV selection: (LKr+RICH)-based e^+ ID to suppress the otherwise dominant $K^+ \to \pi^+ \pi^0_D (\pi^0_D \to e^+ e^- \gamma)$ and $K^+ \to \pi^+ e^+ e^-$ decays with $\pi^+ \to e^+$ and $e^- \to \pi^-$ misID

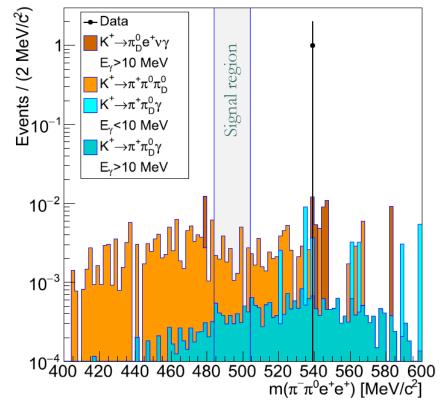

Nomalisation selection: $m(\pi^+e^+e^-)$

Observed $K^+ \to \pi^+ e^+ e^-$ candidates: 11041 $BR(K^+ \to \pi^+ e^+ e^-) = (3.00 \pm 0.09) \times 10^{-7}$

Number of K^+ decays in the FV: $(1.015 \pm 0.010_{stat} \pm 0.030_{ext}) \times 10^{12}$

LNV selection: $m(\pi^-e^+e^+)$

Expected bkg events in SR: 0.43 ± 0.09 Observed events in SR: 0


$$BR(K^+ \to \pi^- e^+ e^+) < 5.3 \times 10^{-11}$$
 at 90% CL

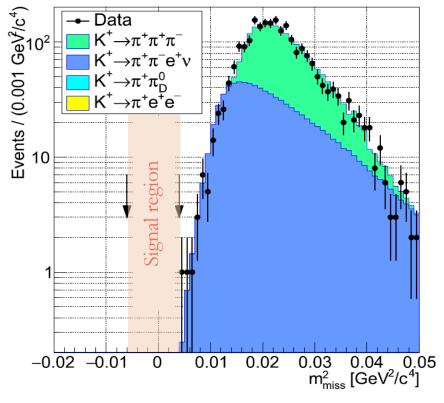
LNV $K^{+} \to \pi^{-}\pi^{0}e^{+}e^{+}$

[Phys. Lett. B 830 (2022) 137172]

- ❖ Whole NA62 Run1 data set analysed.
- * SM $K^+ \to \pi^+ e^+ e^-$ as normalisation channel (same selection as for the LNV $K^+ \to \pi^- e^+ e^+$ search). K^+ decays in the FV: $(1.015 \pm 0.010_{stat} \pm 0.030_{ext}) \times 10^{12}$
- * Invariant mass $m_{\pi^-\pi^0e^+e^+}$ used to distinguish between signal $(\sigma_m = 1.9 \text{ MeV/c}^2)$ and bkgs.
- \bullet π^0 reconstructed in LKr calorimeter via the $\pi^0 \to \gamma \gamma$ decay.
- * Common selection to the LNV $K^+ \to \pi^- e^+ e^+$ but sample bkg free with LKr PID only.

LNV selection: $m(\pi^-\pi^0e^+e^+)$

Exp. bkg events in SR: 0.044 ± 0.020 Observed events in SR: 0


$$BR(K^+ \to \pi^- \pi^0 e^+ e^+) < 8.5 \times 10^{-10}$$

at 90% CL

LFV/LNV $K^+ \rightarrow \mu^- \nu e^+ e^+$

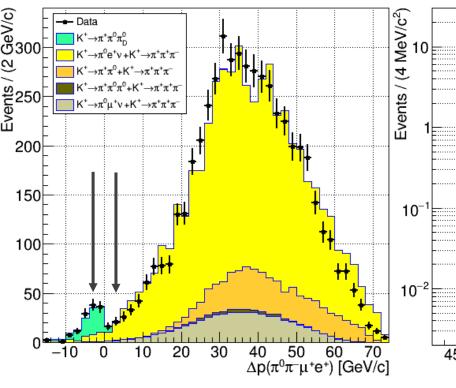
[Phys. Lett. B 838 (2023) 137679]

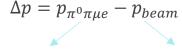
- ❖ Whole NA62 Run1 data set.
- LFV or LNV depending on neutrino flavor.
- * $K^+ \to \pi^+ e^+ e^-$ used as normalisation channel. K^+ decays in the FV: $(1.97 \pm 0.02_{stat} \pm 0.02_{svs} \pm 0.06_{ext}) \times 10^{12}$.
- * Squared missing mass $m_{miss}^2 \equiv \left(P_K \left(P_\mu + P_{e1} + P_{e2}\right)\right)^2$ used to distinguish between signal $\left(\sigma_{m_{miss}^2} = 1.4 \times 10^{-3} \text{ GeV}^2/\text{c}^4\right)$ and bkg.
- ❖ Dominant bkgs due to $K^+ \to \pi^- \pi^+ \pi^+$ and $K^+ \to \pi^- \pi^+ e^+ \nu_e$ with $\pi^- \to \mu^- \nu_\mu$ decay-in-flight and $\pi^+ \to e^+$ misID.

LNV/LNV selection: m_{miss}^2

Expected bkg events in SR: 0.26 ± 0.04 Observed events in SR: 0

 $BR(K^+ \to \mu^- \nu e^+ e^+) < 8.1 \times 10^{-11} \text{ @}90\% \text{ CL}$

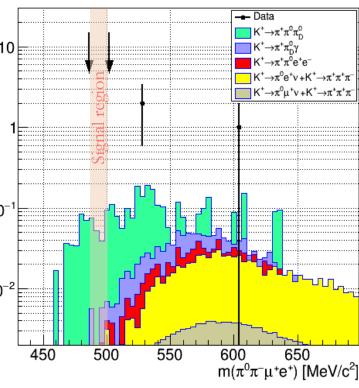

LNV $K^+ \rightarrow \pi^0 \pi^- \mu^+ e^+$


[Phys. Lett. B 859 (2024) 139122]

❖ Whole NA62 Run1 data set analysed.

- * $K^+ \to \pi^+ e^+ e^-$ as normalisation channel. Number of K^+ decays in the FV: $(1.97 \pm 0.02_{stat} \pm 0.02_{sys} \pm 0.06_{ext}) \times 10^{12}$
- **The invariant mass** $m_{\pi^0\pi^-\mu^+e^-}$ used to distinguish between signal ($\sigma_m = 1.3 \text{ MeV/c}^2$) and bkg.
- \star π^0 reconstructed in LKr calorimeter via the $\pi^0 \to \gamma \gamma$ decay
- \Leftrightarrow Main bkg in the SR from $K^+ \to \pi^+ \pi^0 \pi_D^0$:
 - $\star \pi^+ \to \mu^+ \nu_\mu$ decay-in-flight
 - * $\pi_D^0 \to e^+e^-\gamma$ with undetected soft photon and $e^- \to \pi^-$ misID

LNV loose selection: $\Delta p(\pi^0\pi^-\mu^+e^+)$



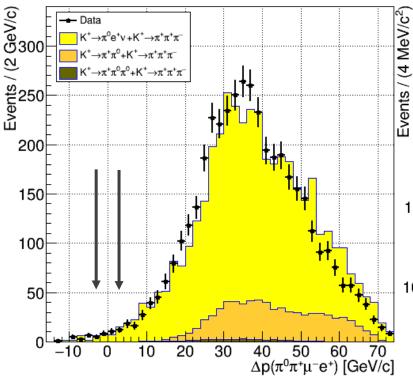
tot final state reco momentum

Average beam momentum measured from data

LNV full selection: $m(\pi^0\pi^-\mu^+e^+)$

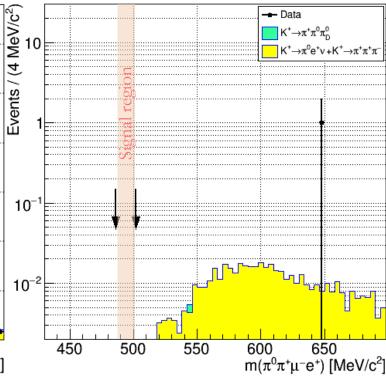
Expected bkg in SR: 0.33 ± 0.07 Observed events in SR: 0

$$BR(K^+ \to \pi^0 \pi^- \mu^+ e^-) < 2.9 \times 10^{-10}$$
 @90% CL


LFV $K^+ \rightarrow \pi^0 \pi^+ \mu^- e^+$

[Phys. Lett. B 859 (2024) 139122]

❖ Whole NA62 Run1 data set analysed.


- * $K^+ \to \pi^+ e^+ e^-$ as normalisation channel. Number of K^+ decays in the FV: $(1.97 \pm 0.02_{stat} \pm 0.02_{sys} \pm 0.06_{ext}) \times 10^{12}$
- Invariant mass $m_{\pi^0\pi^+\mu^-e^+}$ used to distinguish between signal $(\sigma_m = 1.3 \text{ MeV/c}^2)$ and bkg.
- Same selection as in the search for the LNV $K^+ \to \pi^0 \pi^- \mu^+ e^+$ decay
- * Main bkg in the SR from **concurrent** $K^+ \to \pi^+\pi^-\pi^+$ (with $\pi^- \to \mu^-\nu_\mu$ and one undetected π^+) and $K^+ \to \pi^0 e^+\nu_e$ decays

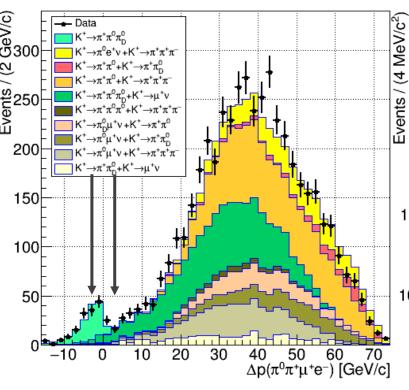
LFV loose selection: $\Delta p(\pi^0\pi^+\mu^-e^+)$

 $\Delta p = (p_{\pi^0\pi\mu e} - p_{beam}) > 10 \text{ GeV/c}$ used to validate bkgs from combination of pairs of decays

LFV full selection: $m(\pi^0\pi^+\mu^-e^+)$

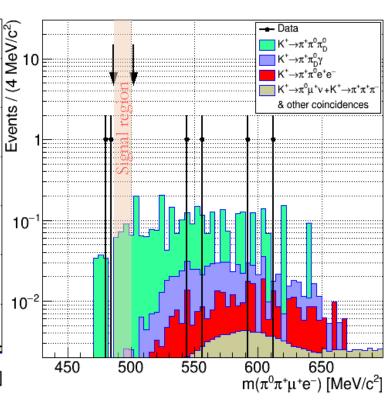
Expected bkg in SR: 0.004 ± 0.003 Observed events in SR: 0

$$BR(K^+ \to \pi^0 \pi^+ \mu^- e^+) < 3.1 \times 10^{-10}$$
 @90% CL


LFV $K^+ \rightarrow \pi^0 \pi^+ \mu^+ e^-$

[Phys. Lett. B 859 (2024) 139122]

Whole NA62 Run1 data set analysed.


- * $K^+ \to \pi^+ e^+ e^-$ as normalisation channel. Number of K^+ decays in the FV: $(1.97 \pm 0.02_{stat} \pm 0.02_{sys} \pm 0.06_{ext}) \times 10^{12}$
- * Invariant mass $m_{\pi^0\pi^+\mu^+e^-}$ used to distinguish between signal $(\sigma_m = 1.3 \text{ MeV/c}^2)$ and bkg.
- Same selection as in the search for the LNV $K^+ \to \pi^0 \pi^- \mu^+ e^+$ decay
- \clubsuit Main bkg in the SR from $K^+ \to \pi^+ \pi^0 \pi_D^0$:
 - $\star \pi^+ \to \mu^+ \nu_\mu$ decay-in-flight
 - * $\pi_D^0 \to e^+e^-\gamma$ with undetected soft photon and $e^+ \to \pi^+$ misID

LFV loose selection: $\Delta p(\pi^0\pi^+\mu^+e^-)$

Included combinations of pairs of decays having product of BR as low as $O(10^{-6})$

LFV full selection: $m(\pi^0\pi^+\mu^+e^-)$

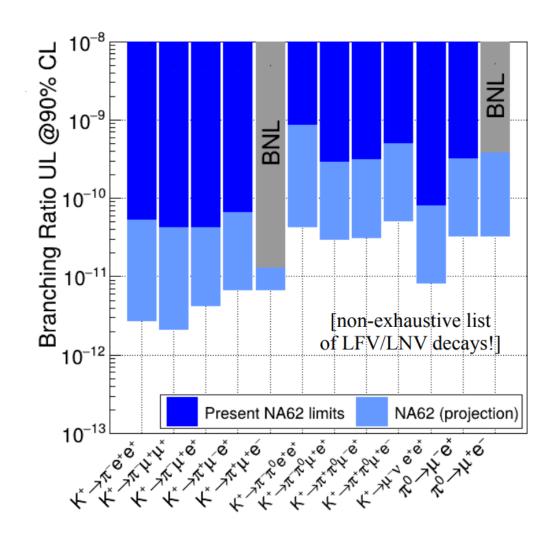
Expected bkg in SR: 0.29 ± 0.07 Observed events in SR: 0

$$BR(K^+ \to \pi^0 \pi^+ \mu^+ e^-) < 5.0 \times 10^{-10}$$
 @90% CL

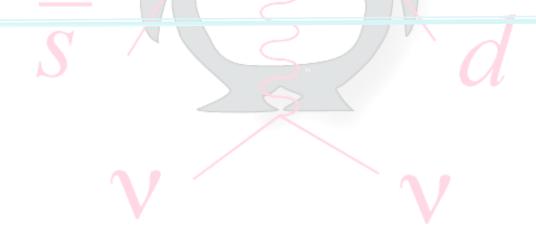
LFV&LNV at NA62: RUN1 analysis programme in context

		Previous UL @ 90% CL	NA62 UL @ 90% CL	
LNV	$\mathrm{BR}(K^+\to\pi^-\mu^+\mu^+)$	$< 8.6 \times 10^{-11}$	$< 4.2 \times 10^{-11}$	improved by factor 2 (30% Run1 sample)
	$BR(K^+ \to \pi^- e^+ e^+)$	$< 6.4 \times 10^{-10}$	$< 5.3 \times 10^{-11}$	improved by factor 12
	$BR(K^+ \to \pi^- \pi^0 e^+ e^+)$	none	$< 8.5 \times 10^{-10}$	first limit
	$BR(K^+\to\pi^-\pi^0\mu^+e^+)$	none	$< 2.9 \times 10^{-10}$	first limit
	$\mathrm{BR}(K^+\to\pi^-\mu^+e^+)$	$< 5.0 \times 10^{-10}$	$< 4.2 \times 10^{-11}$	improved by factor 12
LFV	$\mathrm{BR}(K^+\to\pi^+\mu^-e^+)$	$< 5.2 \times 10^{-10}$	$< 6.6 \times 10^{-11}$	improved by factor 8
	$BR(\pi^0 \to \mu^- e^+)$	$< 3.4 \times 10^{-9}$	$< 3.2 \times 10^{-10}$	improved by factor 11
	$BR(K^+\to\pi^+\pi^0\mu^-e^+)$	none	$< 3.1 \times 10^{-10}$	first limit
	$BR(K^+\to\pi^+\pi^0\mu^+e^-)$	none	$< 5.0 \times 10^{-10}$	first limit
	$BR(K^+ \to \pi^+ \mu^+ e^-)$	$< 1.3 \times 10^{-11}$	-	sensitivity similar to previous search with Run1
	$BR(\pi^0 \to \mu^+ e^-)$	$< 3.8 \times 10^{-10}$	-	sensitivity similar to previous search with Run1
LFV/LNV depending on v flavor	$BR(K^+ \to \mu^- \nu e^+ e^+)$	$< 2.1 \times 10^{-8}$	$< 8.1 \times 10^{-11}$	improved by factor $> O(10^2)$

Conclusions and prospects


Run1 dataset (2016-2018)

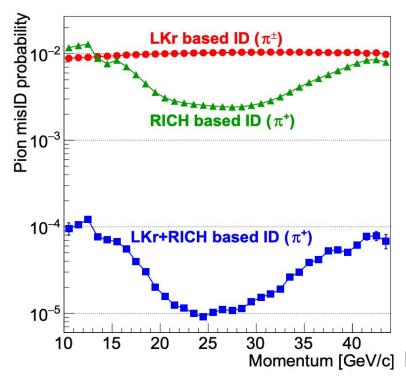
- ❖ World-leading limits established for 10 LFV/LNV decay modes
- Sensitivity not limited by backgrounds


Run1 + Run2 dataset (2016-2026)

- ❖ To cope with beam intensity increase in Run2: di-lepton trigger upgrades including LKr clustering at L0 and improved L1-STRAW reconstruction
 - → downscaling factors set to D=1 in late 2023
- * 2016-2026 di-lepton datasets are expected to be equivalent to $O(10^{13})$ collected kaon decays
 - → an order of magnitude improvement in sensitivity
- Further decay modes to be added

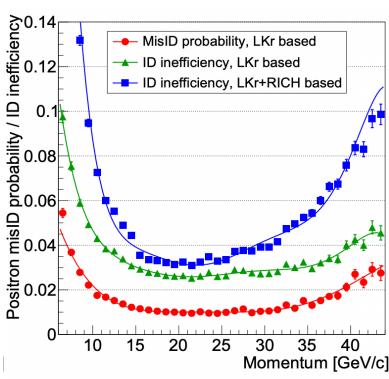
NA62 prospects for Run1+Run2 UL on BRs of LFV/LNV K^+ and π^0 decays: $\mathcal{O}(\mathbf{10^{-11}} - \mathbf{10^{-12}})$

Supplemental material



Backgrounds and PID studies

from $K^+ \to \pi^-(\pi^0)e^+e^+$ analysis [Phys. Lett. B 830 (2022) 137172]


- Primary bkg mechanisms from misidentification but limited simulation accuracy of PID probabilities
- ❖ Dedicated data driven models from data (polynomial fits in the plots)
- Measured PID probabilities applied as weights to MC event
- Validated using control samples

π misidentification into e

Measured from a $K^+ \to \pi^+ \pi^- \pi^+$ sample from data

e^+ misidentification into π^+

Measured from a $K^+ \rightarrow e^+ \nu_e \pi^0$ sample from data