

WIFAI 2025: Workshop Italiano sulla Fisica ad Alta Intensità

Predictions for cLFV processes from symmetries

Claudia Hagedorn IFIC - UV/CSIC

WIFAI 2025, Bari, Italy, 11.-14.11.2025

Overview

- Introduction
- Idea of residual symmetries
- Systematic search
- Allowed cLFV processes
- Experimental constraints and prospects
- Beyond this study
- Summary and outlook

Based on

Lorenzo Calibbi, CH, Michael A. Schmidt, James Vandeleur (2505.24350 [hep-ph])

Introduction

- Standard Model (SM) is very successful. Nevertheless, several phenomena are not explained within SM.
 - Replication of fermion generations
 - Fermion masses
 - Quark and lepton mixing
 - Baryon asymmetry of the Universe (BAU)
 - Dark Matter (DM)
 - •
- In the SM, charged lepton flavour violation (cLFV) is absent, e.g.

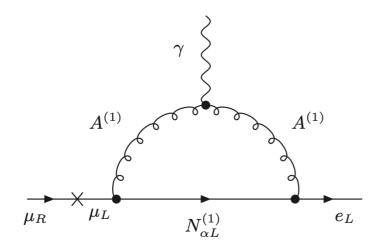
$$\mu \rightarrow e \gamma$$

$$\tau \rightarrow 3 \mu$$

Introduction

- Standard Model (SM) is very successful. Nevertheless, several phenomena are not explained within SM.
 - Replication of fermion generations
 - Fermion masses
 - Quark and lepton mixing
 - Baryon asymmetry of the Universe (BAU)
 - Dark Matter (DM)
 - •
- In the SM, charged lepton flavour violation (cLFV) is absent.
- Additionally, in beyond SM (BSM) theories cLFV processes are often induced at a sizeable rate,

e.g.



Control them well!

Correlations among them?

Introduction

explain and CP a

 $N_{\alpha L}^{(1)}$

 e_L

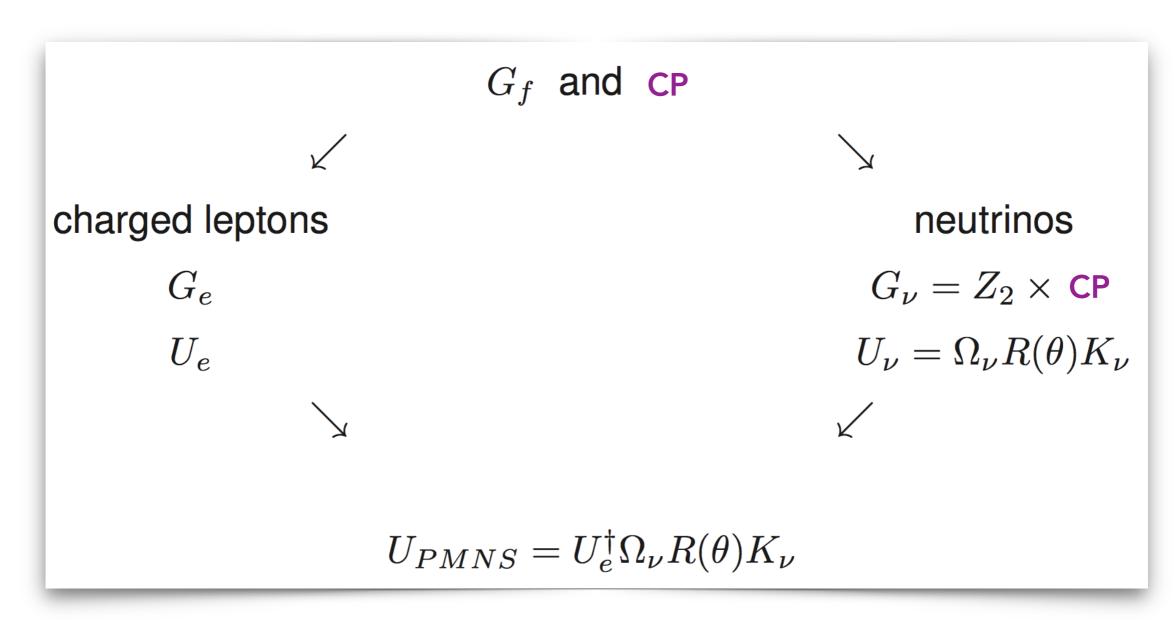
 $A^{(1)}$

Correlations among them?

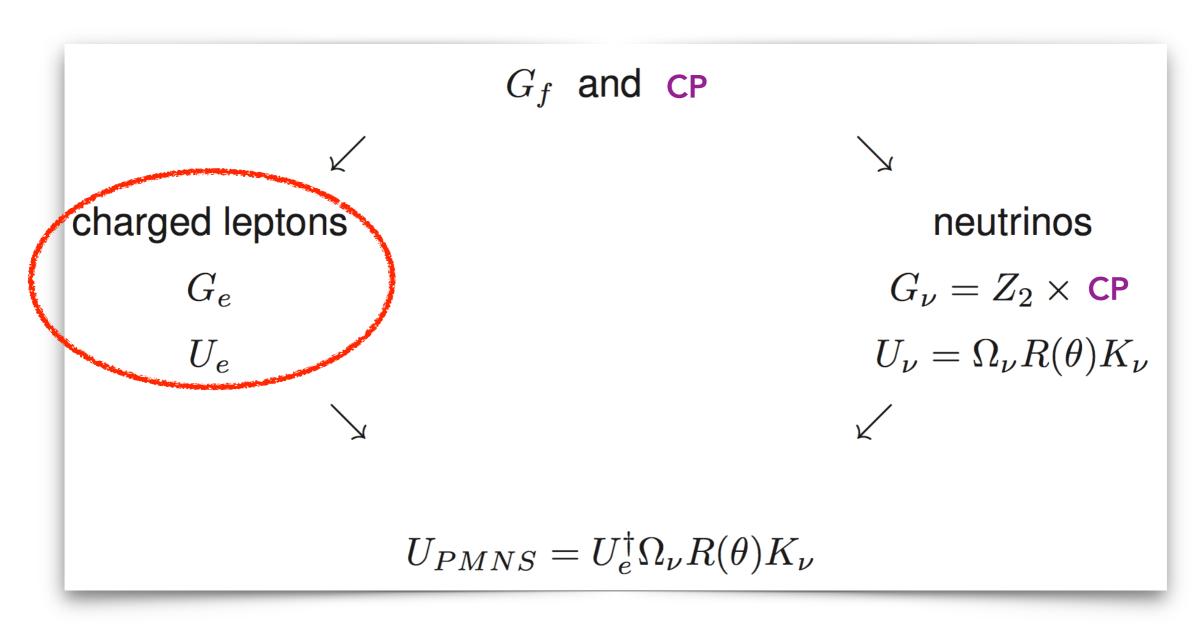
C. Hagedorn

WIFAI 2025

Idea: Keep some residual symmetry among **charged leptons** and neutrinos, G_e and G_v , with $G_e \neq G_v$ Mismatch of symmetries corresponds to lepton mixing



Idea: Keep some residual symmetry among **charged leptons** and neutrinos, G_e and G_v , with $G_e \neq G_v$ Mismatch of symmetries corresponds to lepton mixing



• $G_e = Z_3$ is often encountered (and $G_\nu = Z_2 \times Z_2$)

Example of a Z_3 among charged leptons (coined **lepton triality**, Ma ('10))

$$e^{-} \rightarrow e^{-}$$
 $e^{+} \rightarrow e^{+}$
 $\mu^{-} \rightarrow \omega \mu^{-}$ $\mu^{+} \rightarrow \omega^{2} \mu^{+}$
 $\tau^{-} \rightarrow \omega^{2} \tau^{-}$ $\tau^{+} \rightarrow \omega \tau^{+}$

$$\omega = \exp\left(\frac{2\pi i}{3}\right)$$
 3rd root of unity

Typical A_4 and S_4 models leading to tri-bimaximal mixing have $G_e = Z_3$, see e.g. Altarelli/Feruglio ('05), He/Keum/Volkas ('06), Lam ('08)

• $G_e = Z_3$ is often encountered (and $G_\nu = Z_2 \times Z_2$)

Example of a Z_3 among charged leptons (coined **lepton triality**, Ma ('10))

$$Q_{Z_3}(e^-) = 0$$
 $Q_{Z_3}(e^+) = 0$ $Q_{Z_3}(\mu^-) = 1$ $Q_{Z_3}(\mu^+) = 2$ $Q_{Z_3}(\tau^-) = 2$ $Q_{Z_3}(\tau^+) = 1$

 Z_3 charge is modulo 3

Typical A_4 and S_4 models leading to tri-bimaximal mixing have $G_e = Z_3$, see e.g. Altarelli/Feruglio ('05), He/Keum/Volkas ('06), Lam ('08)

• It is known that it **forbids** cLFV processes such as

$$\mu \to e \gamma$$
 , $\mu \to e e \bar{e}$ and $\mu - e$ conversion in nuclei N

since

$$Q_{Z_3}(\mu^{\pm}) \neq Q_{Z_3}(e^{\pm})$$
 and $Q_{Z_3}(\gamma) = 0$, $Q_{Z_3}(\text{quarks}) = 0$

but allows for the tri-lepton tau lepton decays

$$\tau \to e e \bar{\mu}$$
 and $\tau \to \mu \mu \bar{e}$

since

$$Q_{Z_3}(\tau^-) = 2 Q_{Z_3}(e^-) + Q_{Z_3}(\mu^+)$$
 and $Q_{Z_3}(\tau^-) = 2 Q_{Z_3}(\mu^-) + Q_{Z_3}(e^+)$

See e.g. Feruglio/CH/Lin/Merlo ('08), Csaki/Delaunay/Grojean/Grossman ('08), Ma ('10), Holthausen/Lindner/Schmidt ('12), Pascoli/Zhou ('16), Bigaran et al. ('22), Lichtenstein/Schmidt/Valencia/Volkas ('23)

- $G_e = Z_3$ is not the only option
- Other known examples are:
 - $G_e = Z_4$ (and $G_v = Z_2 \times Z_2$) from S_4 leads to bimaximal mixing see e.g. de Adelhart Toorop/Feruglio/CH ('11)
 - $G_e = Z_5$ (and $G_\nu = Z_2 \times Z_2$ or $G_\nu = Z_2 \times CP$) from A_5 (and CP) leads to golden ratio(-like) mixing see e.g. Feruglio/Paris ('11), Di Iura/CH/Meloni ('15), Ballett/Pascoli/Turner ('15), Li/Ding ('15)
 - $G_e = Z_7$ can arise in scenarios with the flavour symmetry PSL(2,7) see e.g. de Adelhart Toorop/Feruglio/CH ('11)
 - further examples for G_e from $\Sigma(n\,\varphi)$ see e.g. CH/Meroni/Vitale ('13)

• Consider small $G_e = Z_N$ with $N \le 8$ (also discussed direct products)

- Consider small $G_e = Z_N$ with $N \le 8$ (also discussed direct products)
- Are residuals of some discrete group that fits in U(3), maybe also SU(3) (affects the possibilities for Q_{Z_N} of e, μ and τ)

- Consider small $G_e = Z_N$ with $N \le 8$ (also discussed direct products)
- Are residuals of some discrete group that fits in U(3), maybe also SU(3)
- Take into account all possible flavour charge assignments (α, β, γ) ; also those where two flavours have the same charge,

e.g.
$$Q_{Z_N}(e^-) = 0$$
, $Q_{Z_N}(\mu^-) = 0$ and $Q_{Z_N}(\tau^-) = 1$

• Interested in studying cLFV processes, lepton number is conserved

- Interested in studying cLFV processes, lepton number is conserved
- Use SMEFT operators and focus on their flavour structure

e.g.
$$\frac{1}{\Lambda^2} (\overline{\ell}_{\mu} \gamma_{\nu} \ell_e) (\overline{\ell}_{\mu} \gamma^{\nu} \ell_e) \rightarrow e e \mu^{\dagger} \mu^{\dagger}$$

- Interested in studying cLFV processes, lepton number is conserved
- Use SMEFT operators and focus on their flavour structure

e.g.
$$\frac{1}{\Lambda^2} (\overline{\ell}_{\mu} \gamma_{\nu} \ell_e) (\overline{\ell}_{\mu} \gamma^{\nu} \ell_e) \rightarrow e e \mu^{\dagger} \mu^{\dagger}$$

• All operators conserve *number of charged leptons*, i.e.

$$(n_e^- - n_e^+) + (n_\mu^- - n_\mu^+) + (n_\tau^- - n_\tau^+) \equiv \Delta n_e + \Delta n_\mu + \Delta n_\tau = 0$$

Example: $ee\mu^{\dagger}\tau^{\dagger}$ is characterised by $\{\Delta n_e, \Delta n_{\mu}, \Delta n_{\tau}\} = \{2, -1, -1\}$ and fulfils the equation

- Interested in studying cLFV processes, lepton number is conserved
- Use SMEFT operators and focus on their flavour structure

e.g.
$$\frac{1}{\Lambda^2} (\overline{\ell}_{\mu} \gamma_{\nu} \ell_e) (\overline{\ell}_{\mu} \gamma^{\nu} \ell_e) \rightarrow e e \mu^{\dagger} \mu^{\dagger}$$

• All operators conserve *number of charged leptons*, i.e.

$$(n_e^- - n_e^+) + (n_\mu^- - n_\mu^+) + (n_\tau^- - n_\tau^+) \equiv \Delta n_e + \Delta n_\mu + \Delta n_\tau = 0$$

• All operators are invariant under residual symmetry $G_e = Z_N$ i.e.

$$\alpha \, \Delta n_e + \beta \, \Delta n_\mu + \gamma \, \Delta n_\tau = 0 \mod N$$

with α flavour charge of e, β of μ and γ of τ

- Denote particular **flavour charge assignment** as $Z_N(\alpha, \beta, \gamma)$
- Labelling can be reduced with the two constraints to two parameters $\delta_1 = \beta \alpha$ and $\delta_2 = \gamma \beta$ and the constraint

$$0 \mod N = \delta_1 \Delta n_\mu + (\delta_1 + \delta_2) \Delta n_\tau$$

so we have $N(\delta_1, \delta_2)$

- $N(\delta_1, \delta_2)$ does not uniquely specify **flavour charge assignment**
- At this stage e, μ and τ can be permuted

- Several equivalences among the **flavour charge assignments**: common factors, permutations, complex conjugation
- For flavour structures:

Hermitian conjugation, trivial flavour structures (e.g. ee^{\dagger}), combinations of invariant flavour structures are not included

• Systematic scan over all possible **flavour charge assignments** $Z_N(\alpha, \beta, \gamma)$

$$0 \le \alpha \le \beta$$
, $0 \le \beta \le \gamma$, $0 \le \gamma \le N - 1$

• Scan over flavour structures $\{\Delta n_e, \Delta n_u, \Delta n_\tau\}$

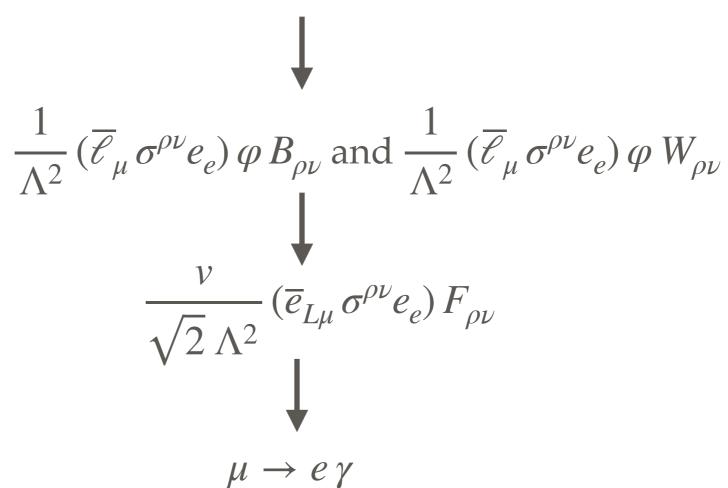
$$0 \le \Delta n_e \le N$$
, $-N \le \Delta n_\mu \le N$, $\Delta n_\tau = -\Delta n_e - \Delta n_\mu$

Output

Flavour charges	d_ℓ	Flavour structures	Flavour charges	d_ℓ	Flavour structures
2(0,1)	3 6	$e\mu^{\dagger}$ $\mu\mu\tau^{\dagger}\tau^{\dagger}$ $e\mu\tau^{\dagger}\tau^{\dagger}$ $ee\tau^{\dagger}\tau^{\dagger}$	${f 4(1,1)}$	6 9	$e\mu^{\dagger}\mu^{\dagger}\tau$ $ee\tau^{\dagger}\tau^{\dagger}$ $e\mu\mu\tau^{\dagger}\tau^{\dagger}\tau^{\dagger}$ $eee\mu^{\dagger}\mu^{\dagger}\tau^{\dagger}$
3(0,1) 3(1,1)	3 9	$e\mu\mu au^{\dagger} au^{\dagger} au^{\dagger}$	${f 5(0,1)}$	3	$\frac{\mu\mu\mu\mu\tau^{\dagger}\tau^{\dagger}\tau^{\dagger}\tau^{\dagger}}{eeee\mu^{\dagger}\mu^{\dagger}\mu^{\dagger}\mu^{\dagger}}$ $\frac{e\mu^{\dagger}}{e\mu^{\dagger}}$
	6	$\frac{ee\mu\tau^{\dagger}\tau^{\dagger}\tau^{\dagger}}{eee\tau^{\dagger}\tau^{\dagger}\tau^{\dagger}}$ $\frac{e\mu\tau^{\dagger}\tau^{\dagger}}{e\mu\tau^{\dagger}\tau^{\dagger}}$		15	$\mu\mu\mu\mu\mu\mu\tau^{\dagger}\tau^{\dagger}\tau^{\dagger}\tau^{\dagger}\tau^{\dagger}$ $e\mu\mu\mu\mu\tau^{\dagger}\tau^{\dagger}\tau^{\dagger}\tau^{\dagger}\tau^{\dagger}$ $ee\mu\mu\mu\tau^{\dagger}\tau^{\dagger}\tau^{\dagger}\tau^{\dagger}\tau^{\dagger}$
		$e\mu^\dagger\mu^\dagger au^\dagger onumber \ ee\mu^\dagger au^\dagger$			$eee\mu \mu \tau^{\dagger} \tau^{\dagger} \tau^{\dagger} \tau^{\dagger} \tau^{\dagger}$ $eeee\mu \tau^{\dagger} \tau^{\dagger} \tau^{\dagger} \tau^{\dagger} \tau^{\dagger}$
	9	$\mu\mu\mu au^\dagger au^\dagger au^\dagger$ $eee au^\dagger au^\dagger au^\dagger$ $eee\mu^\dagger\mu^\dagger\mu^\dagger$	${f 5(1,1)}$	6	$eeeee\tau^{\dagger}\tau^{\dagger}\tau^{\dagger}\tau^{\dagger}\tau^{\dagger}$ $e\mu^{\dagger}\mu^{\dagger}\tau$ $ee\mu\tau^{\dagger}\tau^{\dagger}\tau^{\dagger}$

Translate flavour structures of SMEFT operators into cLFV processes

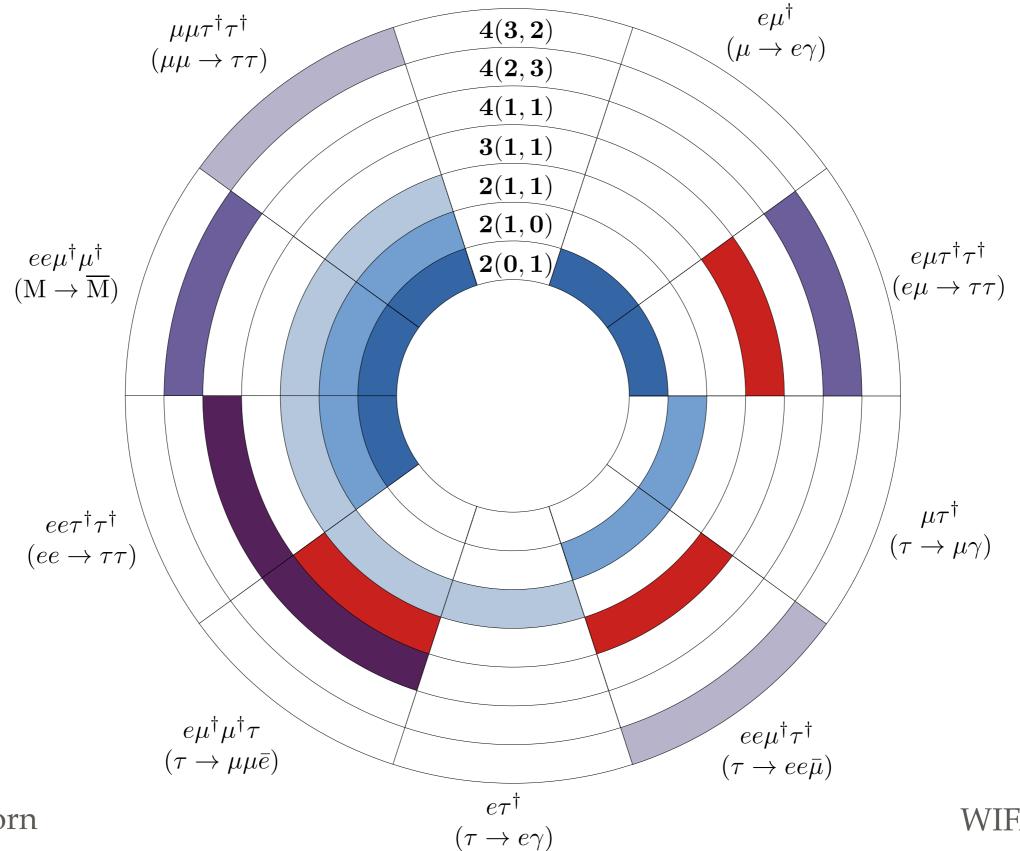
e.g.
$$e\mu$$



• Consider SMEFT operators up to dimension 6, i.e. $d_{\ell} \le 6$

C. Hagedorn

Coloured segments indicate allowed flavour structures



C. Hagedorn

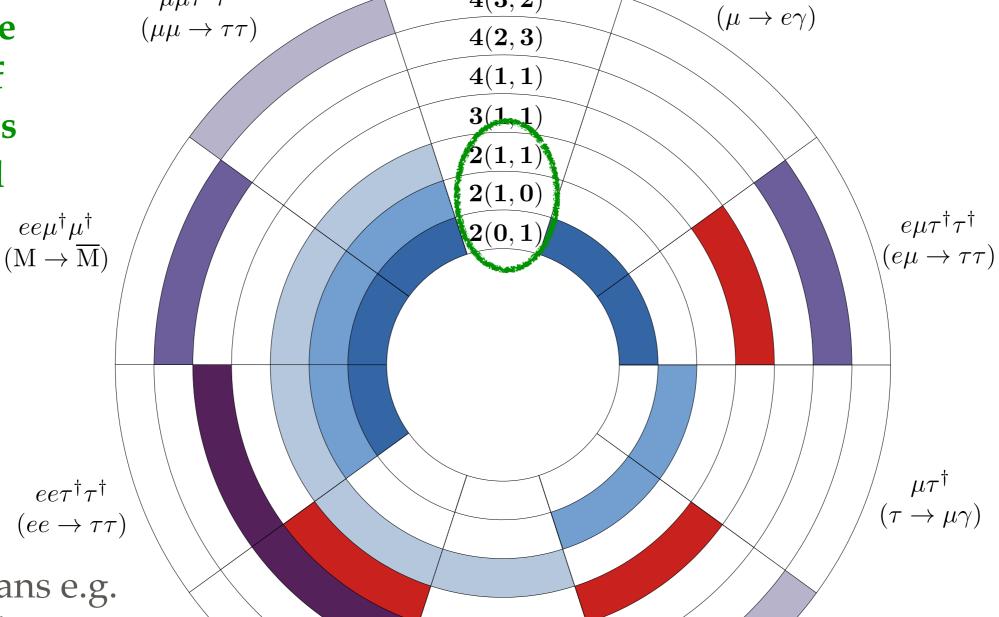
WIFAI 2025

 $\mu\mu\tau^{\dagger}\tau^{\dagger}$

Coloured segments indicate allowed flavour structures

 $e\mu^{\dagger}$

up to five types of processes allowed



4(3, 2)

2(0,1) means e.g.

$$e^{\pm} \rightarrow e^{\pm}$$

$$\mu^{\pm} \rightarrow \mu^{\pm}$$

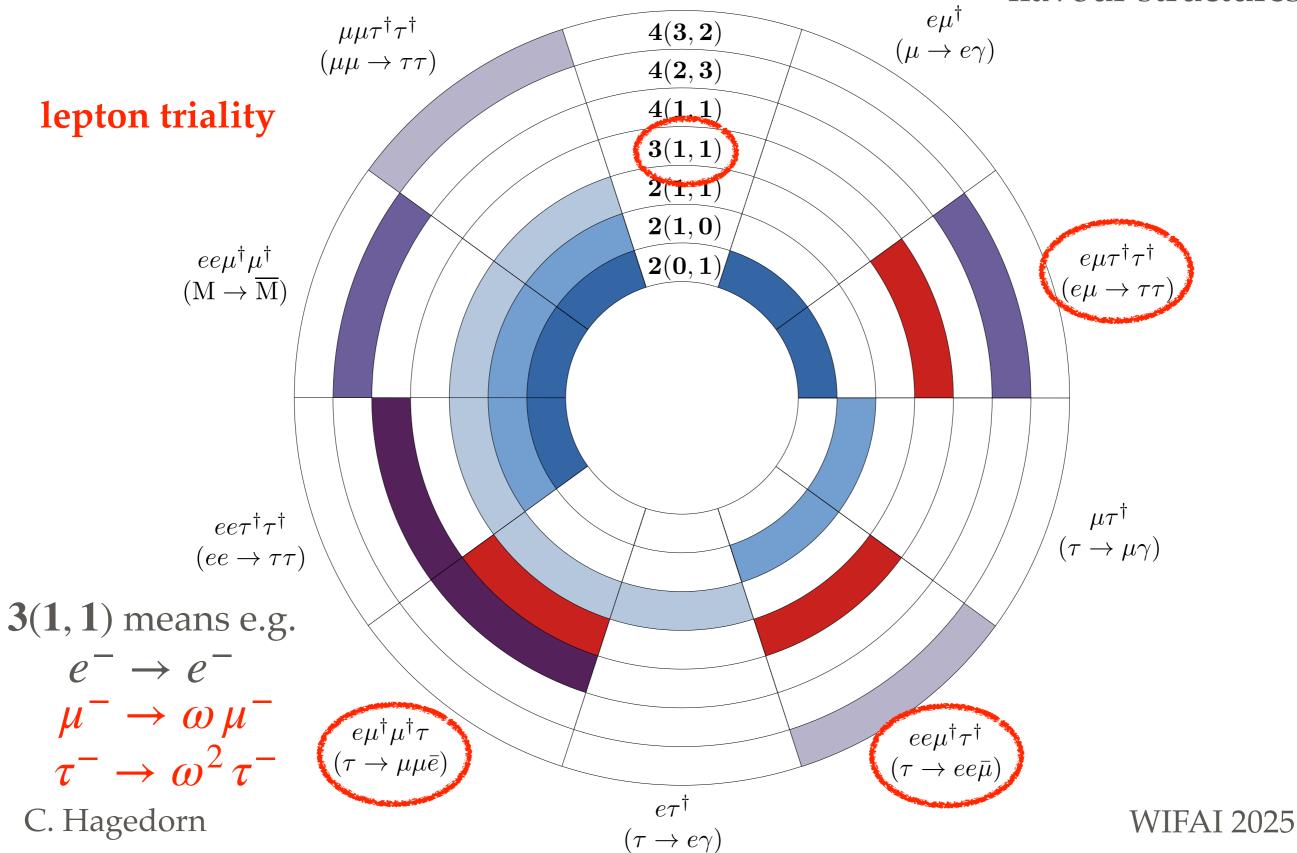
$$\tau^{\pm} \rightarrow -\tau^{\pm}$$

C. Hagedorn

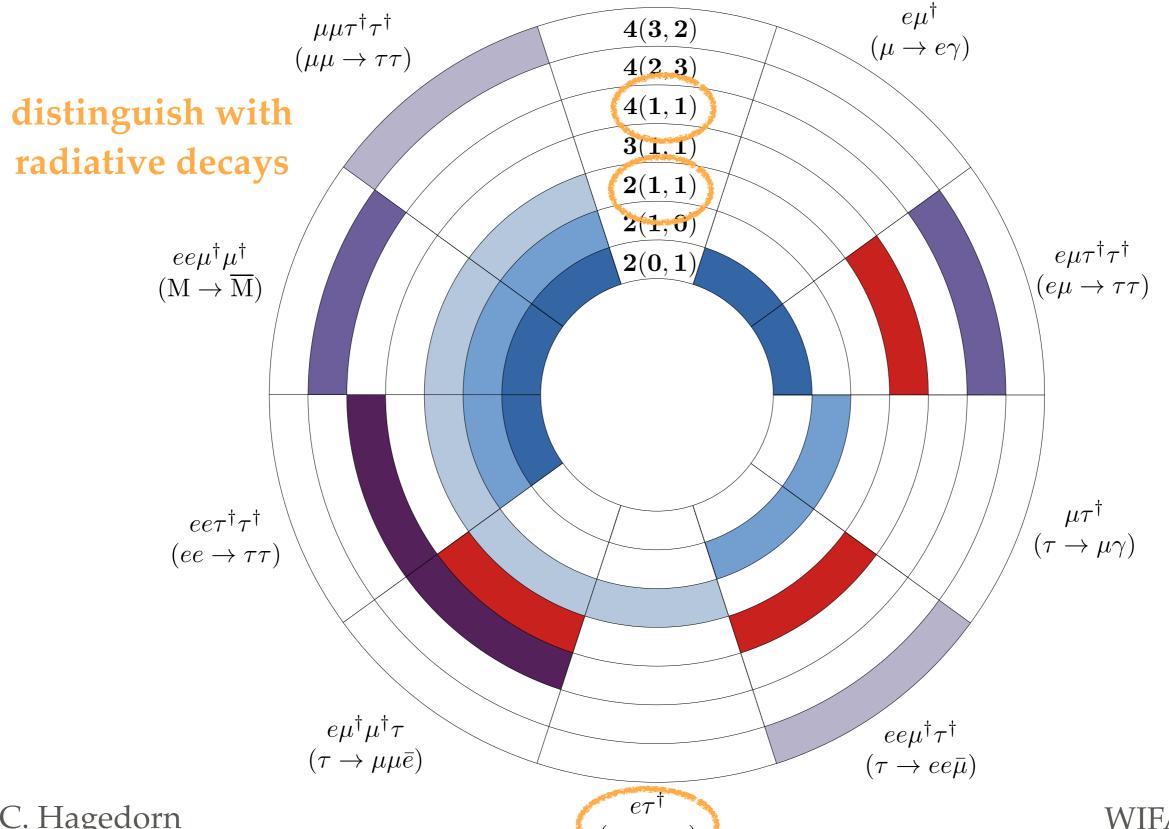
$$e\tau^{\dagger} \\ (\tau \to e\gamma)$$

WIFAI 2025

Coloured segments indicate allowed flavour structures



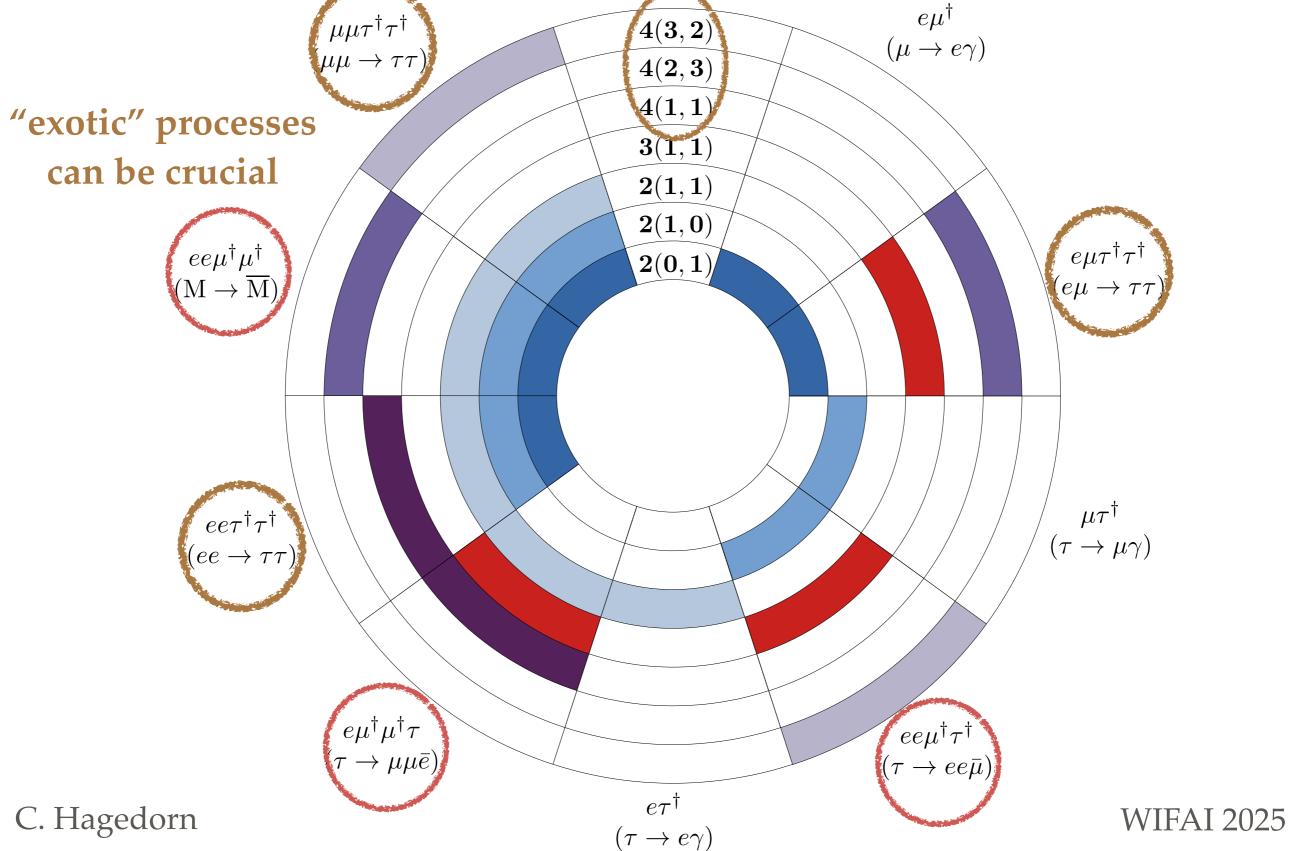
Coloured segments indicate allowed flavour structures



C. Hagedorn

WIFAI 2025

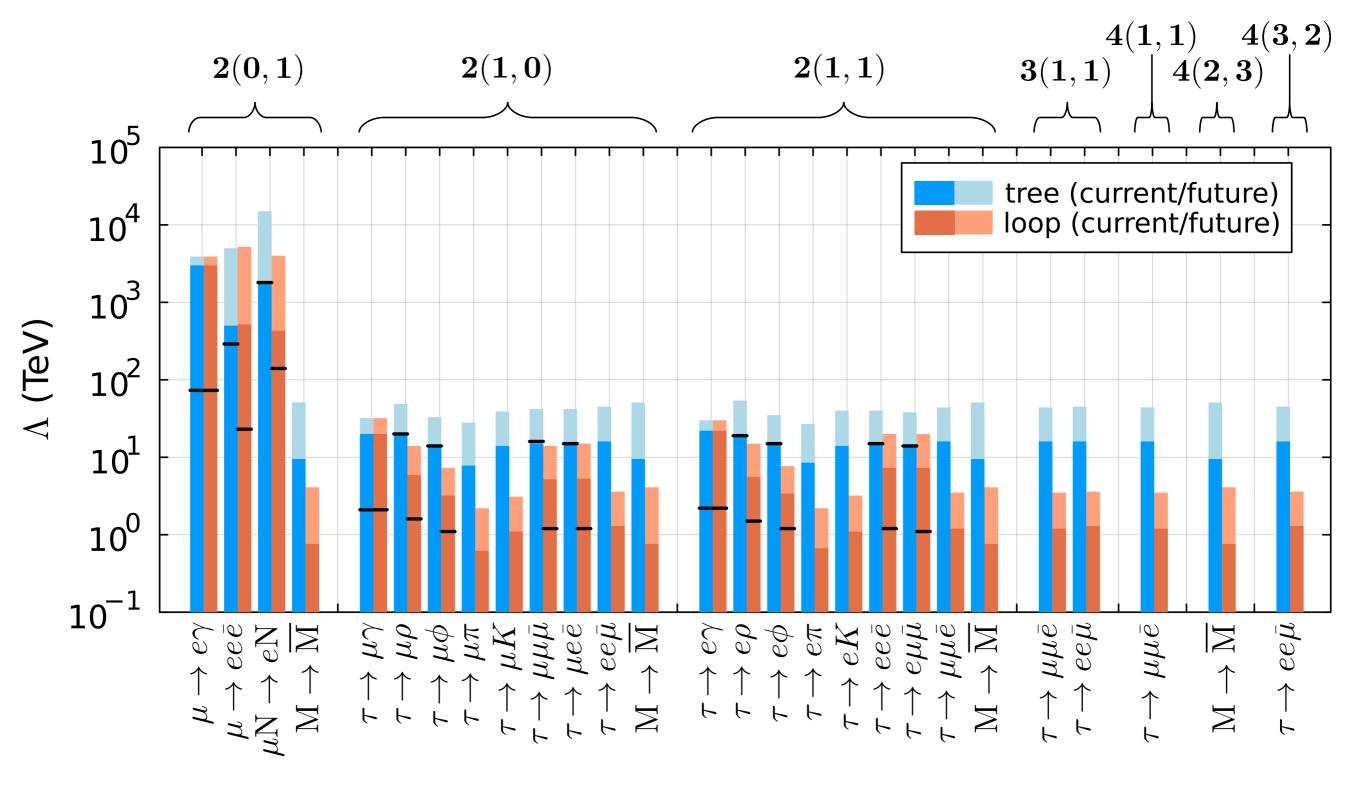
Coloured segments indicate allowed flavour structures



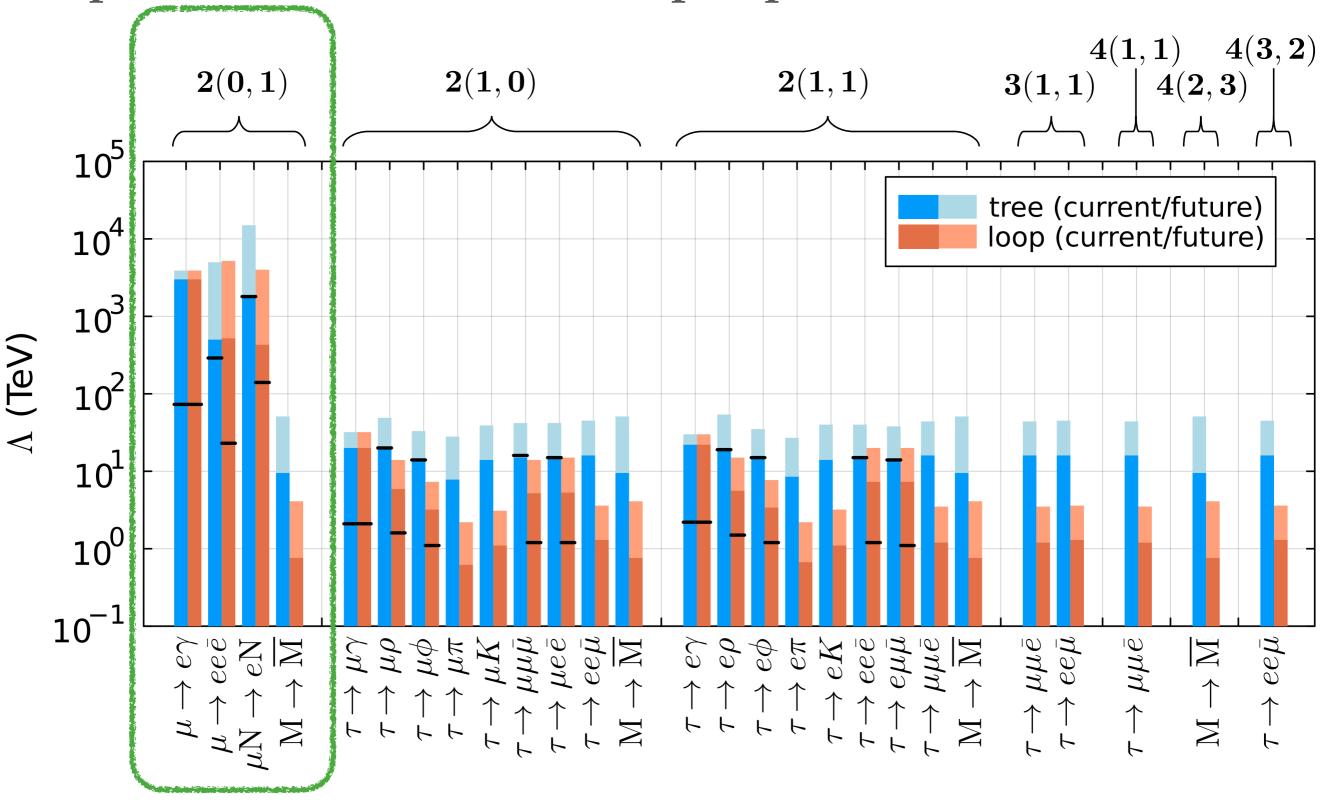
- Confront the results with current and future experimental limits
- Distinguish between low-energy cLFV experiments and possible cLFV searches at high-energy colliders
- In order to derive limits on the New Physics scale Λ make (theory-inspired) assumptions on origin of Wilson coefficients (WCs), e.g. $\underbrace{C}_{\Lambda 2} (\overline{\ell}_{\mu} \gamma_{\nu} \ell_{e}) (\overline{\ell}_{\mu} \gamma^{\nu} \ell_{e})$

- Consider up to three scenarios inspired by typical UV completions
 - Scenario 1: Tree-level new physics contributions all allowed WCs are set to $C_x = 1$ apart from the ones of the dipole operator $C_d = \frac{e}{16 \pi^2} \approx 0.002$
 - Scenario 2: One-loop new physics contributions all WCs are set to $C_x = \frac{1}{16 \pi^2} \approx 0.006$ and $C_d = \frac{e}{16 \pi^2} \approx 0.002$
 - Scenario 3: Dipole operators suppressed by Yukawa coupling meaning $C_d = \frac{\sqrt{2}(m_e)e}{16 \pi^2 v}$

(formulae, see e.g. Calibbi/Marcano/Roy ('21))



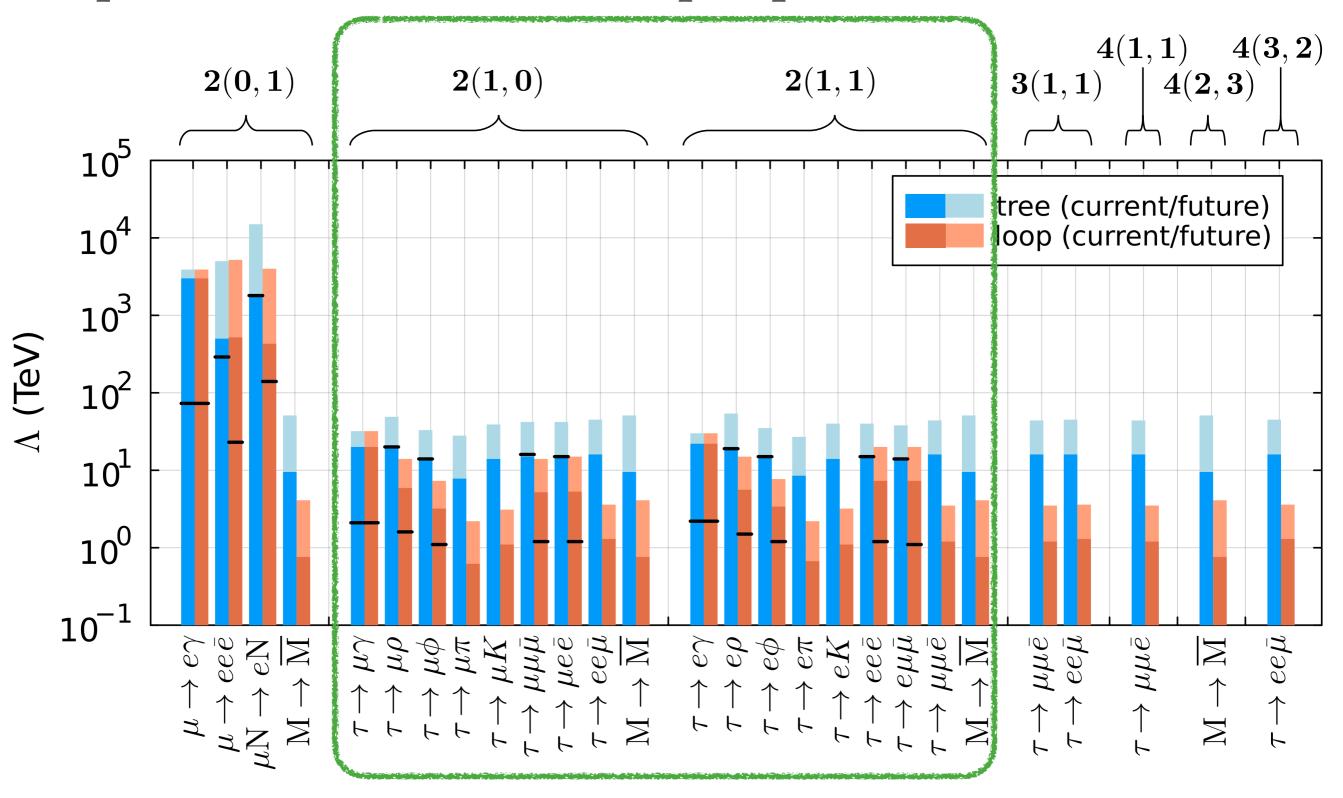
No RG running. No matching of SMEFT to LEFT.



No RG running. No matching of SMEFT to LEFT.

C. Hagedorn

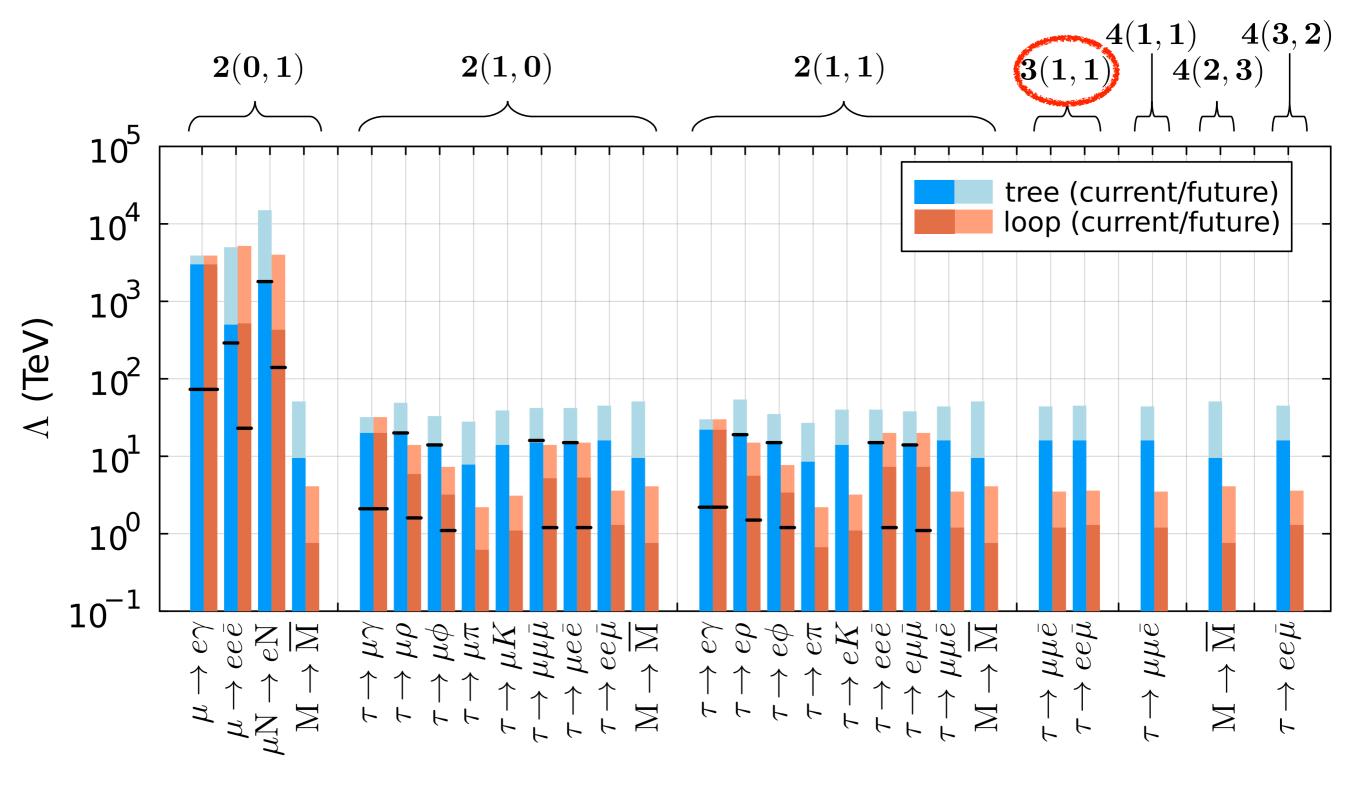
WIFAI 2025



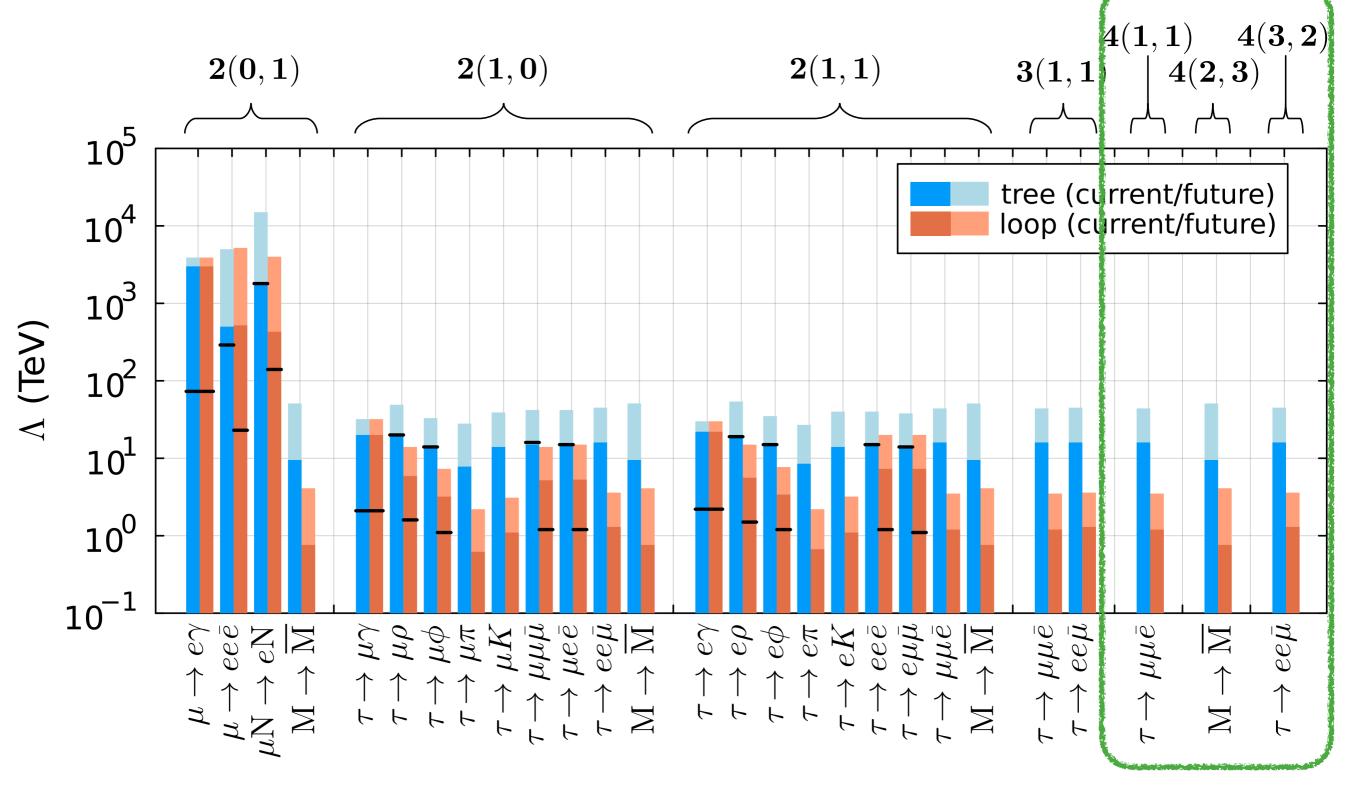
C. Hagedorn

No RG running. No matching of SMEFT to LEFT.

lepton triality



No RG running. No matching of SMEFT to LEFT.

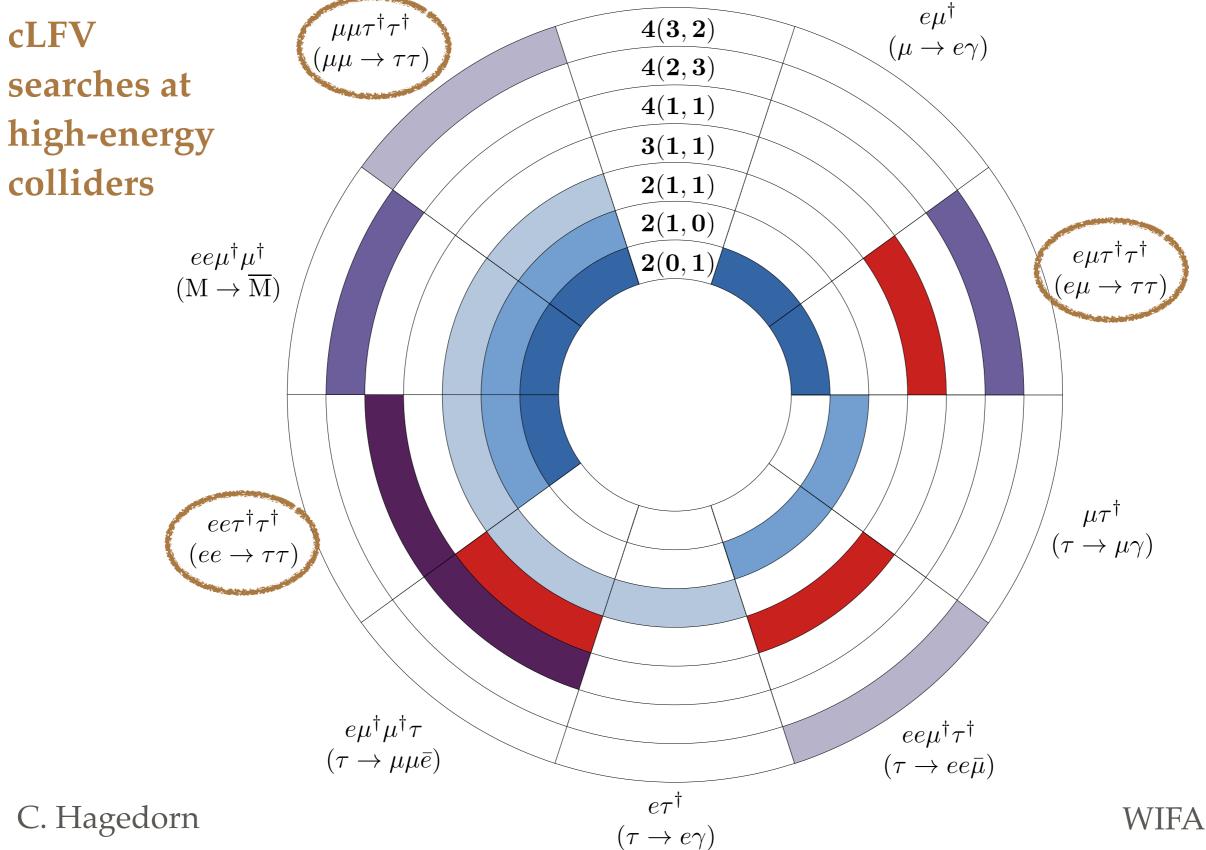


C. Hagedorn

No RG running. No matching of SMEFT to LEFT.

WIFAI 2025

Coloured segments indicate allowed flavour structures



C. Hagedorn

WIFAI 2025

Test SMEFT operators with same sign tau leptons via scattering

$$e^{\pm}e^{\pm} \to \tau^{\pm}\tau^{\pm}$$
, $e^{\pm}\mu^{\pm} \to \tau^{\pm}\tau^{\pm}$, $\mu^{\pm}\mu^{\pm} \to \tau^{\pm}\tau^{\pm}$

• With proposed experiment μ TRISTAN testable Hamada et al. ('22)

$$\sigma(\mu^+\mu^+ \to \tau^+\tau^+) = \frac{s}{2\pi} \frac{|C_x|^2}{\Lambda^4} \simeq 25 \,\text{fb} \, \left(\frac{\sqrt{s}}{2 \,\text{TeV}}\right)^2 \left(\frac{10 \,\text{TeV}}{\Lambda/\sqrt{|C_x|}}\right)^4$$

For $\sqrt{s} = 2$ TeV and $C_x = 1$ limit on New Physics scale is

$$\Lambda \approx 30 \, \text{TeV}$$

see e.g. Fridell/Kitano/Takai ('23)

• Other possible probe are four-body Z boson decays, e.g. $Z \to \tau \tau \bar{e} \bar{e}$, but constraints on Λ are (very) weak

see e.g. Heeck/Sokhashvili ('24)

Beyond this study

What is not included?

- Breaking effects of residual symmetry G_e (shifts in flavon VEVs, cross-talk between different symmetry breaking sectors, etc.)
 - → consequences
 - e.g. in case of lepton triality $\tau \to \mu \mu \bar{\mu}$ becomes allowed, but its BR should be more suppressed than BR($\tau \to \mu \mu \bar{e}$)

Beyond this study

What is not included?

- Breaking effects of residual symmetry G_e (shifts in flavon VEVs, cross-talk between different symmetry breaking sectors, etc.)
- Effects arising from concrete model realisation
 - ightarrow consequences e.g. in case of lepton triality BR ($au
 ightarrow \mu\mu\bar{e}$) \gg BR ($au
 ightarrow ee\bar{\mu}$) in SUSY version of well-known A_4 model see e.g. Muramatsu/Nomura/Shimizu ('16) but conclusion depends on whether certain flavon components mix or not see e.g. Pascoli/Zhou ('16)

Summary

- Derived selection rules for cLFV processes arising from residual symmetry $G_e = Z_N$ with $N \le 8$
- Focussing on SMEFT operators with dimension six or less all possible flavour charge assignments turn out to be equivalent to one for $G_e = Z_N$ with $N \le 4$
- If the flavour charges of e and μ are different, $\mu \rightarrow e$ transitions are forbidden
- If so, experimental constraints on cLFV tau lepton decays and muonium to antimuonium conversion, $M \to \overline{M}$, are crucial, see $G_e = Z_3$ and $G_e = Z_4$

Outlook

- Consider concrete models with studied residual group G_e
- Analyse SMEFT operators with lepton number violation
- Apply same logic to quark sector and discuss quark flavour violation
 - Use G_e also for up and down quarks; potentially with the same flavour charge assignment
 - Or assume different residual symmetries for up and down quarks that in general also differ from G_e

Many thanks for your attention!

Back-up slides

- Consider small $G_e = Z_N$ with $N \le 8$ (also discussed direct products)
- Are residuals of some discrete group that fits in U(3), maybe also SU(3)
- Take into account all possible flavour charge assignments (α, β, γ) ; also those where two flavours have the same charge,

e.g.
$$Q_{Z_N}(e^-) = 0$$
, $Q_{Z_N}(\mu^-) = 0$ and $Q_{Z_N}(\tau^-) = 1$

- → consequences
 - Flavour charge assignments that require embedding in U(3) are encountered,

e.g.
$$Q_{Z_3}(e^-)=0$$
, $Q_{Z_3}(\mu^-)=0$ and $Q_{Z_3}(\tau^-)=2$ in $G_e=Z_3$

• Also $G_e = Z_2$ is included in the search

C. Hagedorn

- Denote particular **flavour charge assignment** as $Z_N(\alpha, \beta, \gamma)$
- Labelling can be reduced with the two constraints to two parameters $\delta_1 = \beta \alpha$ and $\delta_2 = \gamma \beta$ and the constraint

$$0 \mod N = \delta_1 \Delta n_\mu + (\delta_1 + \delta_2) \Delta n_\tau$$

so we have $N(\delta_1, \delta_2)$

• $N(\delta_1, \delta_2)$ does not uniquely specify **flavour charge assignment**,

e.g.
$$\mathbb{Z}_3(0,0,1)$$
 $\mathbb{Z}_3(1,1,2)$ $\to 3(0,1)$ $\mathbb{Z}_3(2,2,0)$

- Denote particular **flavour charge assignment** as $Z_N(\alpha, \beta, \gamma)$
- Labelling can be reduced with the two constraints to two parameters $\delta_1 = \beta \alpha$ and $\delta_2 = \gamma \beta$ and the constraint

$$0 \mod N = \delta_1 \Delta n_\mu + (\delta_1 + \delta_2) \Delta n_\tau$$

so we have $N(\delta_1, \delta_2)$

- $N(\delta_1, \delta_2)$ does not uniquely specify **flavour charge assignment**
- At this stage e, μ and τ can be permuted
- We put flavour charge assignments compatible with SU(3) in **boldface**, but $N(\delta_1, \delta_2)$ does not mean all corresponding flavour charge assignments have this property,

e.g. **4(0, 1)** corresponds to $\mathbb{Z}_4(1, 1, 2)$, but also $\mathbb{Z}_4(0, 0, 1)$

Additional condition:

$$3\alpha + 2\delta_1 + \delta_2 = 0 \mod N$$

Output

Flavour		Flavour
charges	d_ℓ	structures
6(0,1)	3	$e\mu^\dagger$
	18	$\mu^6(au^\dagger)^6$
		$e\mu^5(au^\dagger)^6$
		$e^2\mu^4(au^\dagger)^6$
		$e^3\mu^3(au^\dagger)^6$
		$e^4 \mu^2 (au^\dagger)^6$
		$e^5\mu(au^\dagger)^6$
		$e^6(au^\dagger)^6$
6(1,1)	6	$e(\mu^\dagger)^2 au$
, ,	9	$e^3(au^\dagger)^3$
	12	$e^2\mu^2(au^\dagger)^4$
		$e^4(\mu^\dagger)^2(au^\dagger)^2$
	15	$e\mu^4(au^\dagger)^5$
		$e^5 (\mu^\dagger)^4 au^\dagger$
	18	$\mu^6(au^\dagger)^6$

Flavour charges	d_ℓ	Flavour structures
7(1, 2)	9	$e\mu^2(au^\dagger)^3$
(-,-)		$e^2(\mu^\dagger)^3 au$
		$e^3\mu^\dagger(au^\dagger)^2$
	15	$e(\mu^\dagger)^5 au^4$
		$e^{\hat{4}}\mu(au^{\dagger})^{5}$
		$e^{5}(\mu^{\dagger})^{4} au^{\dagger}$
	21	$\mu^7(au^\dagger)^7$
		$e^7(au^\dagger)^7$
		$e^7 (\mu^\dagger)^7$
8(0,1)	3	$e\mu^{\dagger}$
	24	$\mu^8(au^\dagger)^8$
		$e\mu^7(au^\dagger)^8$
		$e^2\mu^6(au^\dagger)^8$
		$e^3\mu^5(au^\dagger)^8$
		$e^4\mu^4(au^\dagger)^8$
		$e^{5}\mu^{3}(au^{\dagger})^{8}$
		$e^6\mu^2(au^\dagger)^8$

Allowed cLFV processes

Restrictions from single flavour structure

$$\begin{array}{lll} e\mu^{\dagger} - N(0,a) & ee\mu^{\dagger}\mu^{\dagger} - 2N(N,a) & ee\mu^{\dagger}\tau^{\dagger} - N(N-a,2a) \\ \mu\tau^{\dagger} - N(a,0) & \mu\mu\tau^{\dagger}\tau^{\dagger} - 2N(a,N) & e\mu^{\dagger}\mu^{\dagger}\tau - N(a,a) \\ e\tau^{\dagger} - N(a,N-a) & ee\tau^{\dagger}\tau^{\dagger} - 2N(a,N-a) & e\mu\tau^{\dagger}\tau^{\dagger} - N(2a,N-a) \end{array}$$

a is an integer

Allowed cLFV processes

Restrictions from single flavour structure

$$\begin{array}{lll} e\mu^{\dagger} - N(0,a) & ee\mu^{\dagger}\mu^{\dagger} - 2N(N,a) & ee\mu^{\dagger}\tau^{\dagger} - N(N-a,2a) \\ \mu\tau^{\dagger} - N(a,0) & \mu\mu\tau^{\dagger}\tau^{\dagger} - 2N(a,N) & e\mu^{\dagger}\mu^{\dagger}\tau - N(a,a) \\ e\tau^{\dagger} - N(a,N-a) & ee\tau^{\dagger}\tau^{\dagger} - 2N(a,N-a) & e\mu\tau^{\dagger}\tau^{\dagger} - N(2a,N-a) \end{array}$$

a is an integer

$M(S_1, S_2)$	Observable	Current (Λ in TeV)			Future (Λ in TeV)			
$N(\delta_1,\delta_2)$	Observable		Constraint	$\Lambda_{ m T}\left(\Lambda_{ m T\chi} ight)$	$\Lambda_{ m L}\left(\Lambda_{ m L}\chi ight)$	Constraint	$\Lambda_{ m T}$	$\Lambda_{ m L}$
2 (0 , 1)	$e\mu^\dagger$	${ m BR}(\mu o e\gamma)$	$1.5 \times 10^{-13} [53]$	3000 (73)	3000 (73)	$6 \times 10^{-14} \ [54]$	3900	3900
		$\mathrm{BR}(\mu o e e \bar{e})$	$1.0 \times 10^{-12} [55]$	500(290)	520(23)	$10^{-16} [56]$	5000	5200
		$CR(\mu Au \rightarrow e Au)$	$7 \times 10^{-13} \ [57]$	1800 (1800)	430 (140)	_	_	_
		$CR(\mu Al \rightarrow e Al)$	_	_	_	$6 \times 10^{-17} [58, 59]$	15000	4000
	$ee\mu^\dagger\mu^\dagger$	$P(M \to \overline{M})$	$8.2 \times 10^{-11} [61]$	9.5	0.76	$10^{-13} [62]$	51	4.1
2(1,0)	μau^\dagger	$BR(\tau \to \mu \gamma)$	$4.2 \times 10^{-8} $ [65]	20(2.1)	20(2.1)	$6.9 \times 10^{-9} $ [72]	32	32
		$BR(\tau \to \mu \rho)$	$1.7 \times 10^{-8} \ [66]$	21(20)	5.9(1.6)	$5.5 \times 10^{-10} \ [72]$	49	14
		$BR(au o\mu\phi)$	$2.3 \times 10^{-8} \ [66]$	14 (14)	3.2(1.1)	$8.4 \times 10^{-10} \ [72]$	33	7.3
		$BR(\tau \to \mu \pi)$	$1.1 \times 10^{-7} [63]$	7.8	0.62	$7.1 \times 10^{-10} \ [72]$	28	2.2
		$\mathrm{BR}(au o\mu K)$	$2.3 \times 10^{-8} [68]$	14	1.1	$4.0 \times 10^{-10} \ [72]$	39	3.1
		$BR(au o \mu\muar{\mu})$	$1.9 \times 10^{-8} \ [70]$	16 (16)	5.3(1.3)	$3.6 \times 10^{-10} \ [72]$	42	14
		$\mathrm{BR}(au o \mu e \bar{e})$	$1.8 \times 10^{-8} [69]$	15 (15)	5.3(1.2)	$2.9 \times 10^{-10} \ [72]$	42	15
	$ee\mu^\dagger\mu^\dagger$	$P(M \to \overline{M})$	8.2×10^{-11} [61]	9.5	0.76	$10^{-13} \ [62]$	51	4.1
	$ee\mu^\dagger au^\dagger$	$\mathrm{BR}(au o eear\mu)$	$1.5 \times 10^{-8} \ [69]$	16	1.3	$2.3 \times 10^{-10} \ [72]$	45	3.6

2(1,1)	$e \tau^{\dagger} \ \mathrm{BR}(\tau \to e \gamma)$	$3.3 \times 10^{-8} \ [67]$	22(2.2)	22(2.2)	$9.0 \times 10^{-9} $ [72]	30	30
	$\mathrm{BR}(au o e ho)$	$2.2 \times 10^{-8} \ [66]$	20(19)	5.6(1.5)	$3.8 \times 10^{-10} \ [72]$	54	15
	${ m BR}(au o e\phi)$	$2.0 \times 10^{-8} \ [66]$	15 (15)	3.4(1.2)	$7.4 \times 10^{-10} \ [72]$	35	7.7
	$\mathrm{BR}(au o e\pi)$	$8.0 \times 10^{-8} \ [64]$	8.5	0.67	$7.3 \times 10^{-10} \ [72]$	27	2.2
	$\mathrm{BR}(au o eK)$	$2.6 \times 10^{-8} [68]$	14	1.1	$4.0 \times 10^{-10} \ [72]$	40	3.2
	${ m BR}(au o eear e)$	$2.7 \times 10^{-8} \ [69]$	15 (15)	7.3(1.2)	$4.7 \times 10^{-10} \ [72]$	40	20
	$\mathrm{BR}(au o e\muar{\mu})$	$2.7 \times 10^{-8} \ [69]$	14 (14)	7.3(1.1)	$4.5 \times 10^{-10} \ [72]$	38	20
	$ee\mu^{\dagger}\mu^{\dagger} \ \mathrm{P}(\mathrm{M} o \overline{\mathrm{M}})$	$8.2 \times 10^{-11} \ [61]$	9.5	0.76	$10^{-13} \ [62]$	51	4.1
	$e\mu^{\dagger}\mu^{\dagger}\tau \ \mathrm{BR}(\tau \to \mu\mu\bar{e})$	$1.7 \times 10^{-8} \ [69]$	16	1.2	$2.6 \times 10^{-10} \ [72]$	44	3.5
${f 3}({f 1},{f 1})$	$e\mu^{\dagger}\mu^{\dagger}\tau \ \mathrm{BR}(\tau \to \mu\mu\bar{e})$	$1.7 \times 10^{-8} [69]$	16	1.2	$2.6 \times 10^{-10} \ [72]$	44	3.5
	$ee\mu^{\dagger}\tau^{\dagger} \ \mathrm{BR}(\tau \to ee\bar{\mu})$	$1.5 \times 10^{-8} [69]$	16	1.3	$2.3 \times 10^{-10} \ [72]$	45	3.6
${f 4(1,1)}$	$e\mu^{\dagger}\mu^{\dagger}\tau \ \mathrm{BR}(\tau \to \mu\mu\bar{e})$	$1.7 \times 10^{-8} \ [69]$	16	1.2	$2.6 \times 10^{-10} \ [72]$	44	3.5
4(2,3)	$ee\mu^{\dagger}\mu^{\dagger} \ P(M \to \overline{M})$	$8.2 \times 10^{-11} \ [61]$	9.5	0.76	$10^{-13} [62]$	51	4.1
4(3, 2)	$ee\mu^{\dagger}\tau^{\dagger} \ \mathrm{BR}(\tau \to ee\bar{\mu})$	$1.5 \times 10^{-8} \ [69]$	16	1.3	$2.3 \times 10^{-10} \ [72]$	45	3.6

$N(\delta_1,\delta_2)$		Oh a amara h l a	Current (Λ in	TeV)	Future (Λ in TeV)	
		Observable	Constraint	$\Lambda_{ m T}$	Constraint	$\Lambda_{ m T}$
${f 2}({f a},{f b})^{\ddagger},{f 4}({f 3},{f 2})$	$\mu\mu au^\dagger au^\dagger$	$\sigma(\mu^+\mu^+ \to \tau^+\tau^+)$	_	_	0.3 fb [83]	30
		$\mathrm{BR}(Z \to \tau \tau \bar{\mu} \bar{\mu})$	$2 \times 10^{-3} [31]$	0.001	$10^{-12} [31]$	0.25
${\bf 2(a,b)}^{\ddagger},{\bf 4(1,1)}$	$ee au^\dagger au^\dagger$	$\mathrm{BR}(Z \to \tau \tau \bar{e} \bar{e})$	$2 \times 10^{-3} [31]$	0.001	$10^{-12} [31]$	0.25
2 (0 , 1), 3 (1 , 1), 4 (2 , 3)	$e\mu au^\dagger au^\dagger$	$\mathrm{BR}(Z \to \tau \tau \bar{e} \bar{\mu})$	$2 \times 10^{-3} [31]$	0.001	$10^{-12} [31]$	0.21

 $^{^{\}ddagger}\,\mathbf{2}(\mathbf{a},\mathbf{b})$ stands for $\mathbf{2}(\mathbf{0},\mathbf{1}),\,\mathbf{2}(\mathbf{1},\mathbf{0})$ and $\mathbf{2}(\mathbf{1},\mathbf{1}).$