‘@_s’ Queen Mary

University of London

A connection between quantum
computing and collider physics

Chris White

Based on arXiv:2406.07321 with Martin White

XXVI Roma Tre Topical Seminar on Subnuclear Physics



Overview

Which quantities from
Quantum Information /
Computing could be useful for
collider physics?

Brief introduction to Quantum Computing / Information.

The property of magic of quantum states.

A new playground for magic: top quarks at the Large Hadron Collider.

What might this be useful for?



Motivation

 In recent years, many people have looked at high energy tests of quantum
theory.

* One such test involves entanglement (e.g. Bell inequalities) of top quarks at
the LHC (Afik, de Nova; Dong, Gongcalves, Kong, Navarro; Fabbrichesi, Floreanini, Panizzo; Aoude,
Madge, Maltoni, Mantani, Severi, Boschi, Sioli; Aguilar-Saavedra, Casas).

« Entanglement is not the only special property of quantum states.

» Lots of other things are studied in Quantum Computation / Information theory,
for interesting reasons...

...might these also be useful in high energy physics?



A bit of quantum computing

* In quantum computers, classical bits (with values {0,1}) are replaced by

qubits:
) = |0) + 5|1)

\\ Orthogonal
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states

where the complex coefficients satisfy |a|? + |5]? = 1.

 Example: a spin-1/2 particle is a single “qubit”, where the above states are
spin states.

* For multi-qubit systems, a choice of basis states is
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Quantum computers

Quantum computers take qubits, and subject them to unitary transformations.

We can draw circuit diagrams, with fancy symbols to represent the
transformations (“quantum gates”):

— * These are the equivalent of logic
I gates in classical computers...

I e ...and change the quantum state
at each intermediate step.

The gates have names like Hadamard, phase, CNOT, Pauli etc.

We will not need the precise details.



Why use quantum computers?

Quantum computers are expected to vastly outperform classical computers.
Naively, this is due to quantum superposition and entanglement.

However, this not quite true.

To see why, we need the concept of a stabiliser state.

These are states that give a simple spectrum for Pauli string operators:
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Pauli matrix Identity matrix
acting on qubit a acting on qubit a

Can make such states by acting on |0) ® |0) ® ... ® |0) with Hadamard, phase,
CNOT and Pauli gates.



The Gottesman-Knill theorem
. Given a state |¥) , We can consider the Pauli spectrum
spec(|v)) = {(W|PlY), P €Pp}

(i.e. expectation values of each Pauli string).

Stabiliser states have 2n values +1 or -1, and the rest zero.

These states are important because of the Gottesman-Knill theorem:

For every guantum computer containing
stabiliser states only, there is a classical
computer that is just as efficient! <

Stabiliser states include certain maximally entangled states.

Something other than entanglement is needed for efficient quantum computers!



Magic

* The “something else” has been called magic in the literature...

...and basically means “non-stabiliserness” of a quantum state.

Different definitions exist. We use Stabilizer Renyi Entropies: (Leone, Oliviero,

Hamma)
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Each (integer) g corresponds to a higher moment of the Pauli spectrum.

The magic is additive, vanishes for stabiliser states, and is crucial for making
fault-tolerant quantum computers.

In what follows, examining g=2 is enough: the Second Stabilizer Renyi
Entropy (SSRE).



Magic vs. Entanglement

Magic can be low when entanglement is high.
Conversely, one can have non-zero magic when entanglement is zero.

This does not contradict the previous statement about computational
advantage.

Whether quantum computers are faster is a statement about algorithms or
circuits.

The Gottesman-Knill theorem implies relevant circuits should have entangled
states and magic states somewhere.

The states do not have to be both entangled and magic at all times.

The relationship between entanglement and magic is an ongoing research area.



Magic at colliders?

« So far, magic has been looked at in condensed matter systems, including in
numerical studies.

|t has been studied in nuclear physics (Robin, Savage)...

e ...and has even been used to try to explain the origin of spacetime! (Goto,
Nosaka, Nozaki).

* High energy colliders such as the LHC have become popular for performing
tests of entanglement.

* This suggests they can also be used to study magic!

* A good process to look at is that of top quark pair production.



Are top quarks magic?
* (Anti-)top quarks are produced in pairs at the LHC...
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 ...such that the final state is a two-qubit system!

 However, the final state is a mixed state (superposition of many different pure
states), where the SM tells us what this is in principle.

* Mixed states can be described in terms of their density matrix:

P = Z pili) (il Probability of being
0

in state /




Top quark spin density matrix

e On general grounds, the top quark spin density matrix has decomposition:
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« The Fano coefficients {A".B;*,C{;} depend on the top quark kinematics...

 ...as well as the basis relating spin directions (1,2,3) to physical space.

A common choice is the helicity basis.



The helicity basis

* In the helicity basis, one chooses an axis
parallel to the top quark direction and two
transverse directions (Baumgart, Tweedie).

» Each Fano coefficient is then a function of
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* In the helicity basis, one chooses an axis parallel to the top quark direction and
two transverse directions (Baumgart, Tweedie).

~

. The coefficients A’, B'=, é{’j are related to the total cross-section, (anti-)top
polarisation and spin correlations respectively. At LO in the SM:
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Magic for mixed states

We can also define the normalised Fano coefficients:
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Then the SSRE can be corrected for mixed states (Leone, Oliviero, Hamma), and yields
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This can then be calculated for top quarks, given that we have all the ingredients!

It can also be extracted from experimental measurements of the coefficients.



Results: parton level 4 99

We can now see how magic
top quarks are! &
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The magic is concentrated
away from extreme
kinematic limits (e.g.
threshold, high energy).
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It is known that the top quark final state becomes separable and / or maximally
entangled in these regions.

These happen to be stabiliser states, and hence the magic vanishes.

Magic offers more information than entanglement, as expected.



Results: hadron level

« Can also calculate results for proton initial 7

states, upon which some regions of zero

magic disappeatr. B
 This is not surprising: combining different 02

channels leads to more of a mixed state,

which can increase the magic. ’
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« Other increases in magic are observed
after averaging over scattering angles.
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What’s the use?

Top quarks provide a system in which magic can be produced and studied...

...and is tuneable using event selection.

Might it provide useful insights into how to make magic in other systems?

Can one use magic as a useful observable for new physics?

* Or strengthen the dialogue between Quantum Computing / Collider Physics?




Conclusions

Magic is a property of quantum states that distinguishes computational
advantage over classical computers.

It might also be useful for collider physics systems.

We have shown that top quark pairs are naturally magic...

...and that this provides complementary information to entanglement alone.

Our results create new links between Quantum Computation / Collider
Physics.

This is just a start - there is much more that can be done.



Open Questions

« Can magic be a useful probe of BSM physics? (Aoude, Banks, White?)

« What about the other Rényi entropies? Are these useful?

« How about magic in other collider processes?

 Are there useful insights for Quantum Computation / Information theory?

» What other quantities or concepts from QC / Ql are useful for colliders, and
vice versa?



