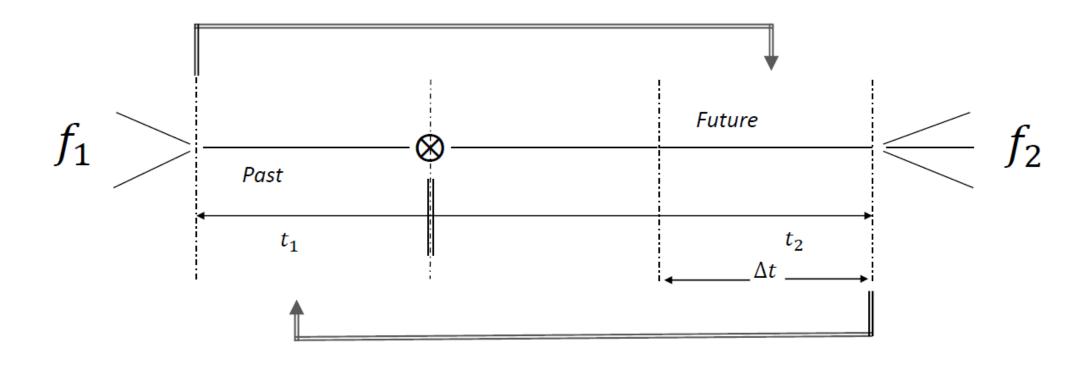
Testing quantum mechanics at colliders

3 December 2024 Roma Tre Università

TIME vs. REALITY: Back from the Future in Flavour Entaglement


Jose.bernabeu@uv.es

What is THE NOVELTY beyond Entanglement in Quantum Optics?

- $ightharpoonup \Delta$ F = 2 Mixing $(K^0 \overline{K^0}, B^0 \overline{B^0}, ...)$
- CP Violation Mixing Decay InterferenceDecay
- Non-Trivial Time Evolution: Anton Zeilinger
 Production ⇒ Entangled ⇒ Interference ⇒ Decoherence
 with rich distinct information from one or double decay on the three regimes
- > States with definite Mass and Lifetime $\lambda = M i\Gamma/2$, $\Delta M \neq 0$, $\Delta \Gamma \neq 0$ are those with **definite Time Evolution**.
- \triangleright Existence of B-Factory and Φ -Factory Facilities

- I. TIME HISTORY of Entangled System: from Production to its fate
- TIME REVERSAL in Δt for unstable particles

- II. POST-TAG of Past-decayed state: Entanglement times t₁
- K_s TAG

NOVEL EFFECTS

- (1) As a **Tool** for the BYPASS of (otherwise) NO-GO THEOREMS
 - 1.1 The Conundrum of Time Reversal and CPT for Unstable Particles
 - 1.2 What is a K_s experimentally?
- (2) The discovery of new quantum phenomena:

SURVIVING CORRELATION - IN - TIME FROM FUTURE TO PAST

It comes definite from measurement in the future t_2 , when the system is no-longer entangled, to the state –depending on t_2 (!?) - of the partner in the past t_1 , before its decay when it was entangled and "unspeakable".

It is asymmetric compared to the correlation from past to future.

If EPR \rightarrow Spooky Action at a Distance \rightarrow Bell Theorem \rightarrow end of Hidden Variables and proof of "Lack of Local Realism" \rightarrow Quantum Information,

then \rightarrow What about the novel correlation - in - time? \rightarrow Spooky Action to the Past \rightarrow ???

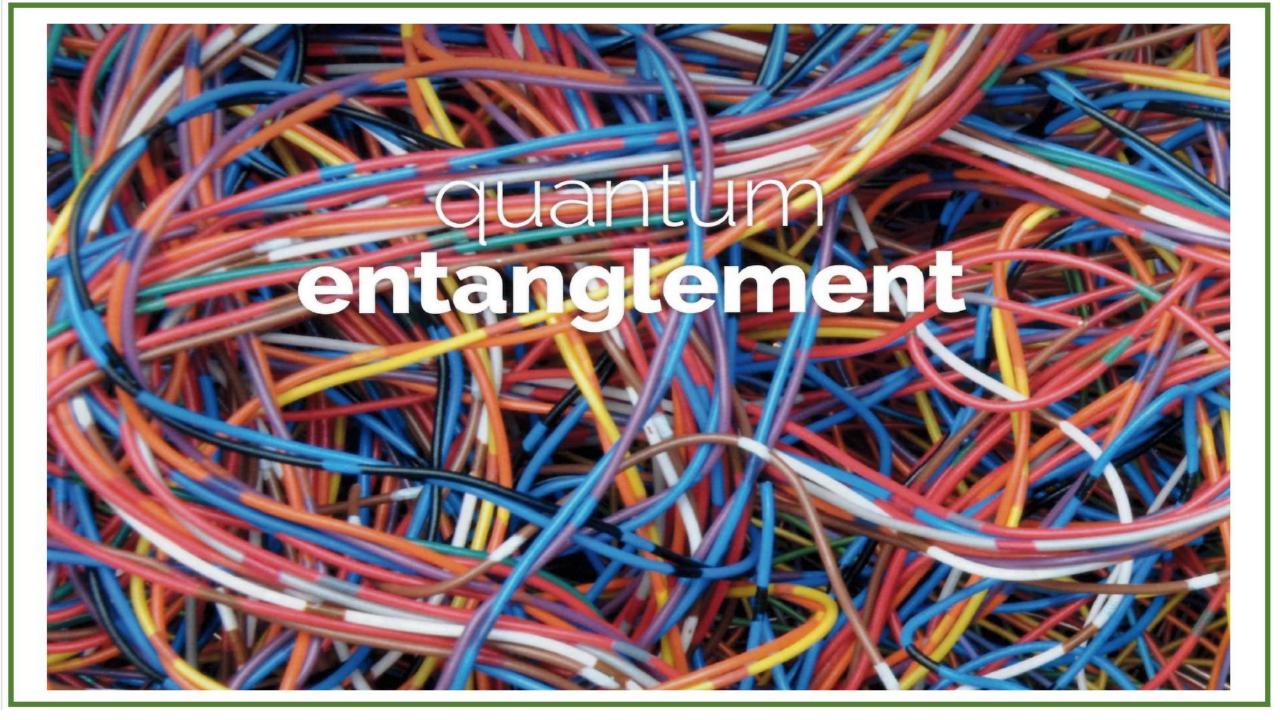
OUTLINE

- > Entangled two-body C=- neutral meson system
- > Time Evolution and "Survival" probalility: the Total Width
- \succ The state $|K_{\rightarrow f}\rangle$ not decaying to f. **The K_L tag**
- ➤ The Conundrum of **Time Reversal** —and CPT- **for Unstable Particles**: NO-GO and its Bypass (in 1999): **The Conceptual Basis**

- From the observation of second decay f_2 at t_2 to the partner state before its decay at t_1 . SURPRISE of the "initial" state depending on t_2 .
- > The K_s tag
- > Conclusion: An epistemological open question

ENTANGLED C = - neutral meson system

 \blacktriangleright Actually existing at DA ϕ NE with $\Phi \to K^0 \, \overline{K}^0$,


at BABAR and BELLE with $\Upsilon(4S) \longrightarrow B^0 \, \bar{B}^0$

$$C\mathcal{P} = + \Rightarrow |i(t=0)\rangle = \frac{1}{\sqrt{2}}\{|K^0\rangle|\overline{K}^0\rangle - |\overline{K}^0\rangle|K^0\rangle\}$$

with particle 1 decaying at t_1 , particle 2 decaying at $t_2 > t_1$

- Fiven With Mixing, $|i(t)\rangle$ does not generate any K^0 K^0 , nor \overline{K}^0 \overline{K}^0 , due to antisymetry (not valid for symmetric C=+!)
- ➤ Time Evolution → definite in terms of non-orthogonal eigenstates of the non-normal Hamiltonian

$$\begin{aligned} \left| K_{S,L} \right\rangle \alpha \left[\left(1 + \epsilon_{S,L} \right) \left| K^0 \right\rangle \right. & \pm \left(1 - \epsilon_{S,L} \right) \left| \overline{K}^0 \right\rangle \right], \\ \mathscr{L} \mathcal{P} \longrightarrow \left\langle K_S \middle| K_L \right\rangle \right. & \simeq \epsilon_L + \epsilon_S^*, \\ \epsilon &= (\epsilon_S + \epsilon_L)/2 \longrightarrow \mathcal{T}, \qquad \delta = (\epsilon_S - \epsilon_L)/2 \longrightarrow \mathscr{LP} T \end{aligned}$$

TIME EVOLUTION $|i(t)\rangle$

- > The entangled state is **non-separable** in parts:
- (i) "which is which" is not defined;
- (ii) the two parts are not definite: any two linerally independent combinations. Only the state $|i\rangle$ is definite: the state of each part is "unspeakable".
- > The time evolution, written as

$$|i(t=0)\rangle = N/\sqrt{2} \left\{ |K_S\rangle \ |K_L\rangle - |K_L\rangle |K_S\rangle \right\} \ , \ |N|^2 = (1 - |\langle K_S|K_L\rangle|^2)^{-1} \Rightarrow |i(t)\rangle = e^{-i(\lambda_S + \lambda_L)t} \ |i(t=0)\rangle = (1 - |\langle K_S|K_L\rangle|^2)^{-1} \Rightarrow |i(t)\rangle = e^{-i(\lambda_S + \lambda_L)t} \ |i(t=0)\rangle = (1 - |\langle K_S|K_L\rangle|^2)^{-1} \Rightarrow |i(t)\rangle = e^{-i(\lambda_S + \lambda_L)t} \ |i(t=0)\rangle = (1 - |\langle K_S|K_L\rangle|^2)^{-1} \Rightarrow |i(t)\rangle = e^{-i(\lambda_S + \lambda_L)t} \ |i(t=0)\rangle = (1 - |\langle K_S|K_L\rangle|^2)^{-1} \Rightarrow |i(t)\rangle = e^{-i(\lambda_S + \lambda_L)t} \ |i(t=0)\rangle = (1 - |\langle K_S|K_L\rangle|^2)^{-1} \Rightarrow |i(t)\rangle = e^{-i(\lambda_S + \lambda_L)t} \ |i(t=0)\rangle = (1 - |\langle K_S|K_L\rangle|^2)^{-1} \Rightarrow |i(t)\rangle = e^{-i(\lambda_S + \lambda_L)t} \ |i(t=0)\rangle = (1 - |\langle K_S|K_L\rangle|^2)^{-1} \Rightarrow |i(t)\rangle = e^{-i(\lambda_S + \lambda_L)t} \ |i(t=0)\rangle = e^{-i(\lambda_S + \lambda_L)t} \ |i(t=0)\rangle = (1 - |\langle K_S|K_L\rangle|^2)^{-1} \Rightarrow |i(t)\rangle = e^{-i(\lambda_S + \lambda_L)t} \ |i(t=0)\rangle = e^{-i(\lambda_S + \lambda$$

The Survival Probability $P(t_1) = \|i(t = t_1)\|^2 = e^{-\Gamma t_1}$, Total Width $\Gamma = \Gamma_S + \Gamma_L$

 $|i(t)\rangle$ is unaltered, it reamains the same: NO INTEREST BEFORE THE FIRST DECAY. The considered observable has been the **Double Decay Rate Intensity** I (f_1 , f_2 ; Δt)!

- > Careful! P(t₁) iff nothing else is observed in the future
- ➤ How to inquire in the "unspeakable" regime ?

FIRST DECAY $f_1 \rightarrow TAGGING$ AND FILTERING

>Any state can decay to f, but that with zero probability

$$|K_{\to f}\rangle = N_{\to f}[K_L\rangle - \eta_f |K_S\rangle]; \qquad \eta_f = \frac{\langle f| \ T \ |K_L\rangle}{\langle f| \ T \ |K_S\rangle}$$

> If you observe the first decay to f_1 at t_1 , proyecting $|i(t=t_1)\rangle$ to f_1 , the **living partner** (2) corresponds to the pure state

$$|K^{(2)}(t=t_1)\rangle = |K_{\leftrightarrow f_1}\rangle \iff TAG \ of \ (2)$$

This fact was always recognized for "flavour tag": First decay to $| \cdot (| \cdot |) \rightarrow$ Partner tagged to $\overline{K}^0(K^0)$. It is, however, valid in general as stated!

> What for the decayed state (1)? The state before decay was undefined.

Written as a superposition of $|K_{\rightarrow f}\rangle$ and its orthogonal $|K_{\rightarrow f}^{\perp}\rangle$

Decay to
$$f_1 \Rightarrow |K^{\perp}_{+f_1}\rangle$$
 FILTERED for (1)

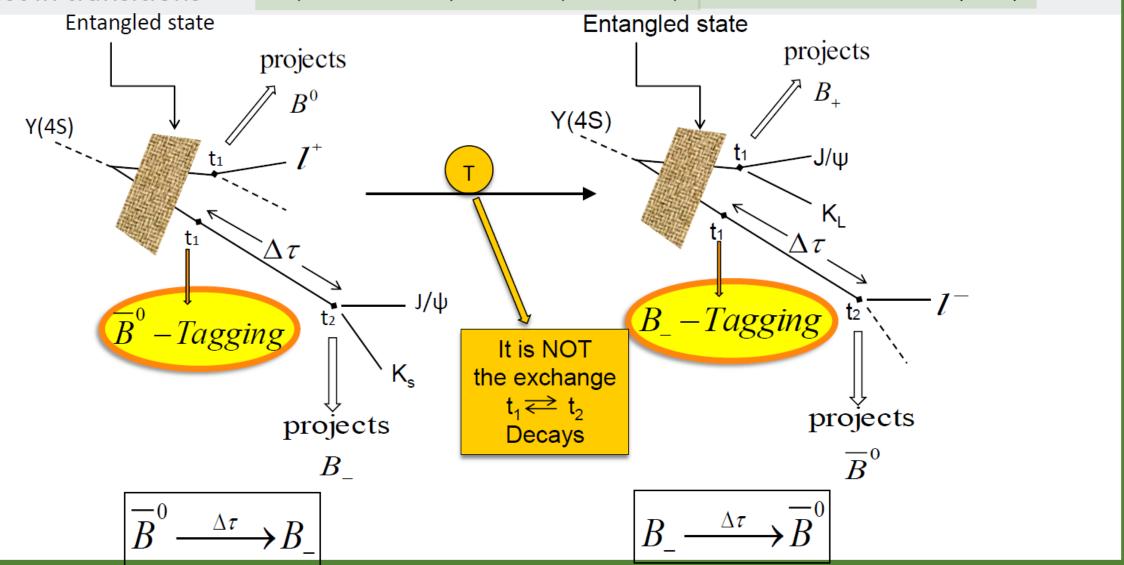
Decay Rate given by the **decay probability** to f_1 of $|K_{+}^{\perp}f_1\rangle \equiv$ **FILTERING IDENTITY**

Δt HISTORY OF THE LIVING PARTNER

- The subsequent Δt evolution of particle (2) and its decay to f_2 are definite from the prepared tagged state.
- For $\Delta t \le few \ \tau_s$, one has an interference patern, because no decay channel due to CP Violation projects either K_s or K_L !
- ightharpoonup For long enough Δt , one has **Decoherence** $K_L tag \Leftrightarrow |\eta_1| e^{-\Delta \Gamma \Delta t/2} \ll 1$ with a quantitative purity of the K_L -state
- \triangleright The observable is the **Double Decay Rate, the Intensity** I(f_1 , f_2 ; Δt). Tagging of the living partner at t_1 and Filtering of its state in its Decay to f_2 at t_2

allows to talk of Δt Transition Probability $P\left(K_{\to f1} \xrightarrow{\Delta t} K_{\to f2}^{\perp}\right)$

"independent of the decay" and connected to I(f_1 , f_2 ; Δt).


TR-ASYMMETRY: CONCEPTUAL BASIS FOR BYPASSING NO-GO

- ightharpoonup Neutral Mesons $K^0-\overline{K}^0$, $B^0-\overline{B}^0$ are UNSTABLE and the Decay is irreversible.
- T and CPT, ANTIUNITARITY!, need however the exchange of initial and final states →NO-GO.
 L. Wolfenstein, PRL 1999: "The T-reverse of a decaying state is not a physical state".
- ➤ **BYPASS** M. C. Banuls, J. B., PLB 1999, NPB 2000 → Do not include the Decay Products in your Asymmetry, write it in terms of Meson States and the Decay should not be an essential ingredient for getting a non-vanishing value:
- Use the Decay as a Quantum Filtering Measurement of the Meson State ONLY: Orthogonal to Non-Decay State.
- 2) Quantum ENTANGLEMENT: Quantum Information from the First Decay to the (still alive) Partner for the Preparation of the initial Meson State: Non-Decay State if Antisymmetric entangled system.
- The test of Symmetries is made in the Time Evolution of the Partner from the first to the second decay.
 - L. Wolfenstein, IJMP E 1999: "It appears to be a true TRV Effect"

WHAT IS T-TRANSFORMATION EXPERIMENTALLY?

The problem is in the preparation and filtering of the appropriate initial and final meson states for a T-test in transitions

J.B., Martinez Vidal, Villanueva, JHEP 2012, COVER PAGE RMP vol. 87 (2015)

POST-TAG TO THE PAST DECAYED STATE

- \gt In the entangled $|i(t)\rangle$ state, there is no privilege of one of the decay times \gt Study the implications of observing the second decay to f_2 at time t_2
- The partner $K^{(1)}(t=t_2)$ is tagged

$$\left|K^{(1)}(t=t_2)\right\rangle = N_1\{\eta_2|K_s\rangle - |K_L\rangle\}$$

which has not been observed! But it decayed at time t₁<t₂

Fixing the observation (η_2, t_2) and evolving t_1 from t_1 =0 to t_1 = t_2 , its past state

had to be

$$|K^{(1)}(t=0)\rangle = N[\eta_2 e^{-i\lambda_L t_2} |K_S\rangle - e^{-i\lambda_S t_2} |K_L\rangle]$$

DOUBLE SURPRISE! Not only there is a post-tag of the initial state, it depends on when the second decay will be observed.

OBSERVABILITY OF "BACK FROM THE FUTURE" EFFECT

- \triangleright Entaglement times $t_1 < t_2$
- \triangleright Decay t_1 -time distribution to $f_1=f_2=f$, at different fixed t_2

$$\begin{aligned} \left| \langle f | T | K^{(1)}(t_1) \rangle \right|_{t_2}^2 &= \mathcal{N} \left\{ e^{-\Gamma_S t_1} + |\rho|^2 e^{-\Gamma_L t_1} \right. \\ &- 2 (\mathcal{R} \rho) e^{-\Gamma t_1/2} \cos(\Delta m) t_1 \\ &- 2 (\mathcal{I} \rho) e^{-\Gamma t_1/2} \sin(\Delta m) t_1 \right\} ; \end{aligned}$$

$$\Gamma = \Gamma_S + \Gamma_L;$$

- QM post-diction $ho(t_2) = e^{-i(\lambda_S \lambda_L)t_2}$.
- ➤ Extract the relative PROBABILITY AMPLITUDE

THE K_s-TAG

Decoherence is reached for large Δt before the observation of the second decay

$$e^{-\Delta\Gamma\Delta t/2}/|\eta_2| \ll 1$$

leading to a pure Ks-beam

- Most rewarding: \mathcal{L}^p and $\langle K_L | K_S \rangle \neq 0 \rightarrow \text{No decay channel able to tag either K}_1$ or K_s
- After 58 years of CPV: this POST-TAG condition in times is the only way to study rare K_s -decays. Compare with 60 year history of K_L decays!
- \triangleright Example: Difference of charge Asymmetries $A_1 A_5 \rightarrow$ Direct test of CPT!

CONCLUSION

- \succ Entanglement in particle anti-particle system $M^0-\overline{M}^0$
- NOVEL EFFECTS Tools for Particle Physics

 Quantum Phenomena
- ➤ Solution for NO GO's

 TR for Unstable Particles

 K_s tag
- ➤ POST-TAG of the past-decayed state depending on what and when measurement on the partner in the future.
- ➤In Classical and Quantum Physics, Time is a parameter to describe the evolving definite reality, not an observable.
- With the surviving correlation-in-time, Einstein would claim:
 "A Spooky Action to the Past"

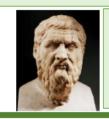
NO (UNKNOWN) CAUSAL EFFECT

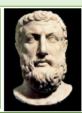
- CAUSAL INFLUENCE says that the cause must precede the effect according to ALL inertial observers, so that for the Post-Tag effect in the entangled K-mesons system –in which there are both time-like and space- like intervals,
- If the Interval is time-like, future is future for all observers → the future to past "influence" is NOT CAUSAL.
- If the Interval is space-like, there could be observers exhanging future and past, BUT the
 two events could only connect with a signal velocity higher than the speed of light → this
 "influence" is NOT CAUSAL.
- ➤ Then, independent of the space-time interval between the future observation in CM of the second decay and the past state of the partner, "the Post-Tag correlation in time" effect CANNOT BE A CAUSAL INFLUENCE.
- ➤ Whereas the EPR correlation between observables NEEDS a space-like interval to ensure no causal influence, the Post-Tag effect cannot be a causal influence for ALL cases → no loopholes. This is an additional argument, besides the fact that TIME IS NOT AN OBSERVABLE, to skate that the Post-Tag effect goes beyond the EPR correlation.

FOR PHILOSOPHERS EPISTEMOLOGY

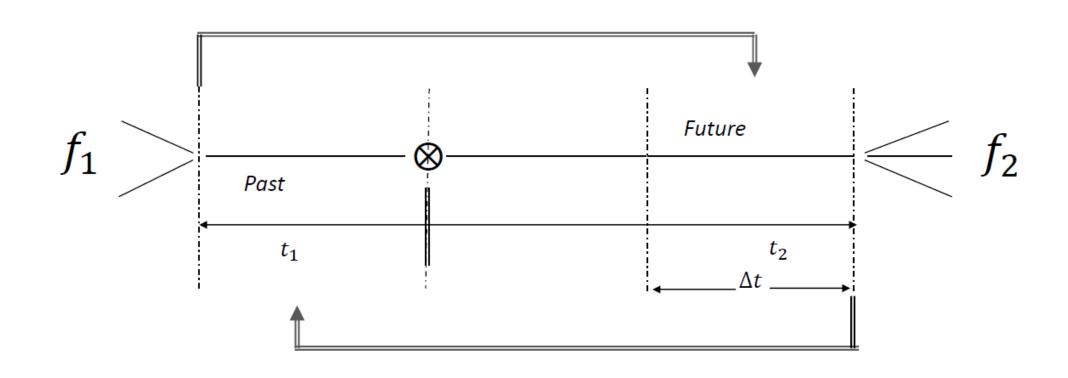
Physics -> QM correctly describes the behaviour of nature when it is observed

Scientific Methodology


Philosophy > What QM says about nature's reality?


- Spooky Action at a Distance
- EPR Correlation-Bell Theorem
- Lack of Local Realism

- Spooky Action to the Past
- Surviving Correlation-in-time
- Lack of Instant Realism


(x,t) is not a definite, separate event \longrightarrow Role of time in QM?

TIME versus REALITY
Heraclitus vs. Parmenides

THANK YOU VERY MUCH FOR YOUR ATTENTION

