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• e+e- ® f sf~3 µb
  W = mf = 1019.4 MeV
• BR(f ® K0K0)   ~ 34%
• ~106 neutral kaon pairs per 
pb-1 produced in an 
antisymmetric quantum state  
with JPC = 1-- :

Entangled neutral kaons at a f-factory
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KLOE and KLOE-2 at the Frascati f-factory DAFNE
KLOE detector DAFNE e+e- collider
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KLOE-2
KLOE

KLOE + KLOE-2 data sample:
     ~ 8 fb-1 ⇒ 2.4 × 1010 ϕ’s produced
     ~ 8 x109 KSKL pairs   
     ~ 3 x108 h’s
     ⇒ the largest sample ever collected at 
          the ϕ(1020) peak in e+e- collisions

KLOE-2:  Lint ~ 5.5 fb-1 
KLOE:  Lint ~ 2.5 fb-1 
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KLOE and KLOE-2 at the Frascati f-factory DAFNE

Lead/scintillating 
fiber calorimeter

drift chamber; 4 m diameter × 3.3 m length
90% He - 10% isobutane gas mixture 

KLOE detector
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sE/E @ 5.7% /ÖE(GeV)
st    @ 54 ps /ÖE(GeV) Å 50 ps

s(p⊥)/p⊥ ≃ 0.4 %    sxy ≃ 150 µm   sz ≃ 2 mm

Superconducting coil   B = 0.52 T 

KLOE-2
KLOE

KLOE + KLOE-2 data sample:
     ~ 8 fb-1 ⇒ 2.4 × 1010 ϕ’s produced
     ~ 8 x109 KSKL pairs   
     ~ 3 x108 h’s
     ⇒ the largest sample ever collected at 
          the ϕ(1020) peak in e+e- collisions

KLOE-2:  Lint ~ 5.5 fb-1 
KLOE:  Lint ~ 2.5 fb-1 

DAFNE e+e- collider
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EPR correlations in entangled neutral kaons
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EPR correlations in entangled neutral kaons

f p
p

p
p t2 t1

Same final state for both kaons: f1 = f2 = p+p-
(this specific channel is suppressed by CP viol.
|h+-|2=|A(KL->p+p-)/A(KS->p+p-)|2 ~ |e|2 ~ 10-6 )
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no simultaneous decays 
(Dt=0) in the same
final state due to the
fully destructive 
quantum interference
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EPR correlations in entangled neutral kaons
Same final state for both kaons: f1 = f2 = p+p-
(this specific channel is suppressed by CP viol.
|h+-|2=|A(KL->p+p-)/A(KS->p+p-)|2 ~ |e|2 ~ 10-6 )



A. Di Domenico Testing Quantum Mechanics at colliders – 3 December 2024 – Roma Tre University

€ 

i =
1
2

K 0 K 0 − K 0 K 0[ ]

Dt/tS

I(
D

t) 
(a

.u
)

Dt=|t1-t2|

no simultaneous decays 
(Dt=0) in the same
final state due to the
fully destructive 
quantum interference

EPR correlation:

f p
p

p
p t2=t1 t1

f p
p

p
p t2 t1

8

EPR correlations in entangled neutral kaons
Same final state for both kaons: f1 = f2 = p+p-
(this specific channel is suppressed by CP viol.
|h+-|2=|A(KL->p+p-)/A(KS->p+p-)|2 ~ |e|2 ~ 10-6 )
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EPR correlations in entangled neutral kaons
Same final state for both kaons: f1 = f2 = p+p-
(this specific channel is suppressed by CP viol.
|h+-|2=|A(KL->p+p-)/A(KS->p+p-)|2 ~ |e|2 ~ 10-6 )

This is the EPR-like
paradox pointed out
by Lee and Yang (1960)
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The EPR correlation 
suggested a simple test 
of quantum coherence 
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ζ00 = 0    →    QM
ζ00 =1    →    total decoherence

Decoherence parameter:

(also known as Furry's hypothesis 
or spontaneous factorization) 
W.Furry, PR 49 (1936) 393

Bertlmann, Grimus, Hiesmayr PR D60 (1999) 114032
Bertlmann, Durstberger, Hiesmayr  PRA 68 012111 (2003)
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The EPR correlation 
suggested a simple test 
of quantum coherence 
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Decoherence parameter:

(also known as Furry's hypothesis 
or spontaneous factorization) 
W.Furry, PR 49 (1936) 393

Bertlmann, Grimus, Hiesmayr PR D60 (1999) 114032
Bertlmann, Durstberger, Hiesmayr  PRA 68 012111 (2003)

The EPR correlation 
suggested a simple test 
of quantum coherence 



A. Di Domenico Testing Quantum Mechanics at colliders – 3 December 2024 – Roma Tre University

0 2 4 6 8 10 12
)

S
t t (D

0

200

400

600

800

1000

) St
Ev

en
ts

/(1
 

    

Data 
Regeneration 
e+e-→ 4π 
Signal fit

f ®KSKL®p+p- p+p- : test of quantum coherence

KLOE-2 JHEP 04 (2022) 059
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CP violating process:
terms z00/|h+-|2 with |h+-|2 ~ |e|2 ~ 10-6 
=> high sensitivity to z00 ;
CP violation in kaon mixing acts as 
amplification mechanism

𝜁!"! = −0.5 ± 8.0#$%$ ± 3.7#&#$ ×10'(
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In the B-meson system, BELLE coll.
(PRL 99 (2007) 131802) obtains:

057.0029.0
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±=Bz

f ®KSKL®p+p- p+p- : test of quantum coherence

KLOE-2 JHEP 04 (2022) 059
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CP violating process:
terms z00/|h+-|2 with |h+-|2 ~ |e|2 ~ 10-6 
=> high sensitivity to z00 ;
CP violation in kaon mixing acts as 
amplification mechanism

𝜁!"! = −0.5 ± 8.0#$%$ ± 3.7#&#$ ×10'(
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CP violating process:
terms z00/|h+-|2 with |h+-|2 ~ |e|2 ~ 10-6 
=> high sensitivity to z00 ;
CP violation in kaon mixing acts as 
amplification mechanism

𝜁!"! = −0.5 ± 8.0#$%$ ± 3.7#&#$ ×10'(

Possible decoherence due quantum gravity 
effects (apparent loss of unitarity) implying
also CPT violation => modified Liouville – von 
Neumann equation for the density matrix of the 
kaon system depends on a CPTV parameter g
[ J. Ellis et al. PRD53 (1996) 3846 ]

𝛾 = 1.3 ± 9.4#$%$ ± 4.2#&#$ ×10'))	GeV

In this scenario g can be at most: 
𝑂 ⁄𝑚!

" 𝑀#$%&'! = 2×10(")	𝐺𝑒𝑉

KLOE-2 result
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Entanglement as a tool for discrete symmetries tests

From past to future
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Entangled neutral kaons
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Entangled neutral kaons

f

t1

KS  (KL)
 

t1

(KS)  KL
 



A. Di Domenico Testing Quantum Mechanics at colliders – 3 December 2024 – Roma Tre University

f

t1

K0
p+l-n

t1

K0

20

Entangled neutral kaons
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Entangled neutral kaons
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K0(Dt)

Entangled neutral kaons
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PAST

K0(Dt)

Entangled neutral kaons
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K0(Dt)

PAST FUTURE

Entangled neutral kaons
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K0(Dt)

PAST FUTURE
The past (kaon decay at t1) tags
the future partner kaon state at t2
before its decay;
THE RELEVANT TIME DEPENDENCE
HERE IS IN Dt=t2-t1 
i.e. from the preparation of the tagged
state until its decay

Entangled neutral kaons
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PAST FUTURE

Entangled neutral kaons

The past (kaon decay at t1) tags
the future partner kaon state at t2
before its decay;
THE RELEVANT TIME DEPENDENCE
HERE IS IN Dt=t2-t1 
i.e. from the preparation of the tagged
state until its decay
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PAST FUTURE

Entangled neutral kaons



A. Di Domenico Testing Quantum Mechanics at colliders – 3 December 2024 – Roma Tre University

3p0
K0

Dt=t2-t1

K-
f

t1

K0
p+l-n

t1

28

PAST FUTURE

2. the projection of the state |i(t = t1)i onto the orthogonal pair |K?
9f1i|K9f1i, filtered by the126

decay f1, times the decay amplitude of the state |K?
9f1i into the f1 channel;127

3. the time evolution of the surviving (single) kaon state |K9f1i from time t = t1 to time t = t2;128

4. the projection at time t = t2 of the evolved state |K9f1(�t)i onto the state |K?
9f2i filtered129

by the decay f2, times the decay amplitude of the state |K?
9f2i into the f2 channel.130

These steps straightforwardly lead to the calculation of the observable double differential decay131

rate by factorising the amplitudes as follows:132

I(f1, t1; f2, t2)TH =
��hf2|T |K?

9f2ihK
?
9f2 |K9f1(�t)ihf1|T |K?

9f1ihK
?
9f1K9f1 |i(t = t1)i

��2

=
1

2
e��t1P

�
K9f1(0) ! K?

9f2(�t)
� ��hf2|T |K?

9f2ihf1|T |K
?
9f1i

��2

= e��t1 C12 {|⌘1|2e��S�t + |⌘2|2e��L�t

�2|⌘1||⌘2|e�
(�S+�L)

2 �t cos[�m�t+ �1 � �2]} (15)

with133

��hK?
9f1K9f1 |i(t = t1)i

��2 = 1

2
e��t1 (16)

and the probability associated to the transition K9f1 ! K?
9f2 defined as30, 31:134

P
�
K9f1(0) ! K?

9f2(�t)
�
=

��hK?
9f2 |K9f1(�t)i

��2 . (17)

One can easily verify that the TH approach is fully consistent with the LY approach:135

I(f1, t1; f2, t2)TH = I(f1, t1; f2, t2)LY ⌘ I(f1, t1; f2, t2) . (18)

9

QM calculation of double decay intensity:
two alternatives
(I) Time History approach (TH), from past to future

state (5): (i) the generic interference region and (ii) the
decoherence region, with the relative weight of the KS
component negligible when the following condition is
satisfied:

jη1je−ΔΓΔt=2 ≪ 1 ½KL − tag": ð6Þ

At long enough Δt—depending on what f1 was—the
living partner is always a jKLi. This property is well
understood, and it has been used in the past in order to have
KL beams “for all practical purposes” (FAPP) in Bell’s
terminology [59].

B. Time history (TH)

It is worth it to point out that the result (5) for the living
partner is in agreement with the EPR instantaneous
information due to the first decay when following the time
history of strange entanglement, which we are now going to
study in detail.
We first notice that in the case of decay processes, any

initial state has some probability per unit time to decay to a
given decay channel f except that with zero probability. In
particular, the linear combination,

jK↛fi ¼ N↛f½jKLi − ηfjKSi"; ð7Þ

having a vanishing decay amplitude hfjTjK↛fi ¼ 0, can-
not decay to f. This state is the one tagged for the
unmeasured particle as a consequence of the projection
imposed by the decay of the observed particle. For the first
decay to f1 at time t1, the tagged state of the surviving
partner is given by Eq. (7), with f ¼ f1. In other words, the
measured decay on one side prepares, in the quantum
mechanical sense, its partner on the other side as a single
kaon particle at a starting time t ¼ t1. Then the jK↛fi state
freely evolves in time—and in this sense, the information is
from past to future—until its decay time at t2; see Eq. (4).
We may ask whether this information constrains the past
state of the decayed particle at t1, which was undefined in
the entangled system. This is a question that, for different
scenarios, is being debated in the literature—see, for
example, Refs. [66–69]. In our case, any state linearly
independent to Eq. (7), orthogonal or not, leads to the same
decay probability. This “filtering identity” [70] is saying
that the orthogonal component jK⊥

↛fi is filtered from the
past undefined state by the decay. The decay acts as a
filtering measurement and, for calculation purposes, it is

convenient to rewrite the entangled state at t1, in terms of
these two orthogonal states, as

jii ¼ 1ffiffiffi
2

p fjK⊥
↛fijK↛fi − jK↛fijK⊥

↛fig: ð8Þ

In this way, we may use the concept of transition proba-
bilities at the different relevant times in the history of the
system.
In summary, four sequential steps are present in the time

history of the entangled state jii:
(1) The time evolution of the state jii from time t ¼ 0 to

time t ¼ t1, with definite total width Γ;
(2) The projection of the state jiðt ¼ t1Þi onto the

orthogonal pair jK⊥
↛f1

ijK↛f1i, filtered by the decay
f1, times the decay amplitude of the state jK⊥

↛f1
i

into the f1 channel;
(3) The time evolution of the surviving (single) kaon

state jK↛f1i from time t ¼ t1 to time t ¼ t2;
(4) The projection at time t ¼ t2 of the evolved state

jK↛f1ðΔtÞi onto the state jK⊥
↛f2

i filtered by the
decay f2, times the decay amplitude of the state
jK⊥

↛f2
i into the f2 channel.

These steps straightforwardly lead to the calculation of the
observable double differential decay rate by factorizing the
amplitudes as follows:

Iðf1; t1;f2; t2ÞTH ¼ jhf2jTjK⊥
↛f2

ihK⊥
↛f2

jK↛f1ðΔtÞi

× hf1jTjK⊥
↛f1

ihK⊥
↛f1

K↛f1 jiðt ¼ t1Þij2:

ð9Þ

One can easily verify that the TH approach is fully
consistent with the LY approach [71]: Iðf1; t1; f2; t2ÞTH ¼
Iðf1; t1; f2; t2ÞLY ≡ Iðf1; t1; f2; t2Þ.

III. FROM FUTURE TO PAST

As already pointed out, the state (5) evaluated from
expression (4) in the LY approach coincides with the state
jK↛f1i of the surviving kaon after the first decay in the TH
approach. The t1, t2 symmetry of the correlated state in the
LY approach—Eq. (2)—with no special role of one of the
two decay times, demands the exploration of its implica-
tions when projecting it instead onto the f2 channel at time
t2. With this information, the resulting past decayed state at
time t1 is

jKð1Þðt ¼ t1Þi ¼ hf2jTjit1;t2i ¼
Nffiffiffi
2

p hf2jTjKSife−iλSt1 ½η2e−iλLt2 jKSi" − e−iλLt1 ½e−iλSt2 jKLi"g: ð10Þ

CAN FUTURE OBSERVATION OF THE LIVING PARTNER POST- … PHYS. REV. D 105, 116004 (2022)

116004-3

(4)  (3)             (2)   (1)

Double decay intensity calculation
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PAST FUTURE
QM calculation of double decay intensity:
two alternatives
(I) Time History approach (TH), from past to future

state (5): (i) the generic interference region and (ii) the
decoherence region, with the relative weight of the KS
component negligible when the following condition is
satisfied:

jη1je−ΔΓΔt=2 ≪ 1 ½KL − tag": ð6Þ

At long enough Δt—depending on what f1 was—the
living partner is always a jKLi. This property is well
understood, and it has been used in the past in order to have
KL beams “for all practical purposes” (FAPP) in Bell’s
terminology [59].

B. Time history (TH)

It is worth it to point out that the result (5) for the living
partner is in agreement with the EPR instantaneous
information due to the first decay when following the time
history of strange entanglement, which we are now going to
study in detail.
We first notice that in the case of decay processes, any

initial state has some probability per unit time to decay to a
given decay channel f except that with zero probability. In
particular, the linear combination,

jK↛fi ¼ N↛f½jKLi − ηfjKSi"; ð7Þ

having a vanishing decay amplitude hfjTjK↛fi ¼ 0, can-
not decay to f. This state is the one tagged for the
unmeasured particle as a consequence of the projection
imposed by the decay of the observed particle. For the first
decay to f1 at time t1, the tagged state of the surviving
partner is given by Eq. (7), with f ¼ f1. In other words, the
measured decay on one side prepares, in the quantum
mechanical sense, its partner on the other side as a single
kaon particle at a starting time t ¼ t1. Then the jK↛fi state
freely evolves in time—and in this sense, the information is
from past to future—until its decay time at t2; see Eq. (4).
We may ask whether this information constrains the past
state of the decayed particle at t1, which was undefined in
the entangled system. This is a question that, for different
scenarios, is being debated in the literature—see, for
example, Refs. [66–69]. In our case, any state linearly
independent to Eq. (7), orthogonal or not, leads to the same
decay probability. This “filtering identity” [70] is saying
that the orthogonal component jK⊥
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past undefined state by the decay. The decay acts as a
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system.
In summary, four sequential steps are present in the time
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(4) The projection at time t ¼ t2 of the evolved state
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i filtered by the
decay f2, times the decay amplitude of the state
jK⊥

↛f2
i into the f2 channel.

These steps straightforwardly lead to the calculation of the
observable double differential decay rate by factorizing the
amplitudes as follows:

Iðf1; t1;f2; t2ÞTH ¼ jhf2jTjK⊥
↛f2

ihK⊥
↛f2

jK↛f1ðΔtÞi

× hf1jTjK⊥
↛f1

ihK⊥
↛f1

K↛f1 jiðt ¼ t1Þij2:

ð9Þ

One can easily verify that the TH approach is fully
consistent with the LY approach [71]: Iðf1; t1; f2; t2ÞTH ¼
Iðf1; t1; f2; t2ÞLY ≡ Iðf1; t1; f2; t2Þ.

III. FROM FUTURE TO PAST

As already pointed out, the state (5) evaluated from
expression (4) in the LY approach coincides with the state
jK↛f1i of the surviving kaon after the first decay in the TH
approach. The t1, t2 symmetry of the correlated state in the
LY approach—Eq. (2)—with no special role of one of the
two decay times, demands the exploration of its implica-
tions when projecting it instead onto the f2 channel at time
t2. With this information, the resulting past decayed state at
time t1 is

jKð1Þðt ¼ t1Þi ¼ hf2jTjit1;t2i ¼
Nffiffiffi
2

p hf2jTjKSife−iλSt1 ½η2e−iλLt2 jKSi" − e−iλLt1 ½e−iλSt2 jKLi"g: ð10Þ
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PAST FUTURE
QM calculation of double decay intensity:
two alternatives
(I) Time History approach (TH), from past to future

state (5): (i) the generic interference region and (ii) the
decoherence region, with the relative weight of the KS
component negligible when the following condition is
satisfied:
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We may ask whether this information constrains the past
state of the decayed particle at t1, which was undefined in
the entangled system. This is a question that, for different
scenarios, is being debated in the literature—see, for
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convenient to rewrite the entangled state at t1, in terms of
these two orthogonal states, as

jii ¼ 1ffiffiffi
2

p fjK⊥
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↛fig: ð8Þ
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Any deviation from Ri,CPT=1 constitutes a violation of CPT-symmetry

One can define the following ratios of probabilities:

CPT symmetry test

33

Direct test of CPT symmetry in neutral kaon transitions
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J. Bernabeu et al. / Nuclear Physics B 868 (2013) 102–119 107

Table 2
Possible comparisons between CP-conjugated transitions and the associated
time-ordered decay products in the experimental φ-factory scheme.

Reference CP-conjugate

Transition Decay products Transition Decay products

K0 → K+ ("−,ππ) K̄0 → K+ ("+,ππ)

K0 → K− ("−,3π0) K̄0 → K− ("+,3π0)

K̄0 → K+ ("+,ππ) K0 → K+ ("−,ππ)

K̄0 → K− ("+,3π0) K0 → K− ("−,3π0)

Table 3
Possible comparisons between CPT -conjugated transitions and the associated
time-ordered decay products in the experimental φ-factory scheme.

Reference CPT -conjugate

Transition Decay products Transition Decay products

K0 → K+ ("−,ππ) K+ → K̄0 (3π0,"−)

K0 → K− ("−,3π0) K− → K̄0 (ππ,"−)

K̄0 → K+ ("+,ππ) K+ → K0 (3π0,"+)

K̄0 → K− ("+,3π0) K− → K0 (ππ,"+)

R3($t) = P
[
K̄0(0) → K+($t)

]
/P

[
K+(0) → K̄0($t)

]
,

R4($t) = P
[
K̄0(0) → K−($t)

]
/P

[
K−(0) → K̄0($t)

]
. (15)

The measurement of any deviation from the prediction

R1($t) = R2($t) = R3($t) = R4($t) = 1 (16)

imposed by T invariance is a signal of T violation. This outcome will be highly rewarding as a
model-independent and a direct observation of T violation.

If we express two generic orthogonal bases {KX, K̄X} and {KY, K̄Y}, which in our case corre-
spond to {K0, K̄0} or {K+,K−}, as follows:

|KX〉 = XS |KS〉 + XL|KL〉, (17)

|K̄X〉 = X̄S |KS〉 + X̄L|KL〉, (18)

|KY〉 = YS |KS〉 + YL|KL〉, (19)

|K̄Y〉 = ȲS |KS〉 + ȲL|KL〉, (20)

the generic quantum mechanical expression for the probabilities entering in Eqs. (15) is given
by

P
[
KX(0) → KY($t)

]
=

∣∣〈KY
∣∣KX($t)

〉∣∣2

= 1
|detY |2

∣∣e−iλS$tXSȲL − e−iλL$tXLȲS

∣∣2

= 1
|detY |2

{
e−ΓS$t |XSȲL|2 + e−ΓL$t |XLȲS |2

− 2e− (ΓS+ΓL)
2 $t$

(
ei$m$tXSȲLX'

LȲ '
S

)}
, (21)

of the pair is totally antisymmetric and can be written in terms of any pair of orthogonal
states, e.g. K0 and K̄0, or K+ and K�, as:

|ii =
1
p
2
{|K0

i|K̄0
i � |K̄0

i|K0
i} =

1
p
2
{|K+i|K�i � |K�i|K+i} . (3.1)

Thus, exploiting the perfect anticorrelation of the state implied by eq. (3.1), which remains
unaltered until one of the two kaons decays, it is possible to have a “flavor-tag”or a “CP-tag”,
i.e. to infer the flavor (K0 or K̄0) or the CP (K+ or K�) state of the still alive kaon by
observing a specific flavor decay1 (`� or `+) or CP decay (⇡⇡ or 3⇡0) of the other (and
first decaying) kaon in the pair. For instance, the transition K0

! K+ and its associated
probability P

⇥
K0(0) ! K+(�t)

⇤
corresponds to the observation of a `� decay at a proper

time t1 of the opposite K̄0 and a ⇡⇡ decay at a later proper time t2 = t1+�t, with �t > 0.
In other words, the `� decay of a kaon on one side prepares, in the quantum mechanical
sense, the opposite (if undecayed) kaon in the state |K0

i at a starting time t = 0. The |K0
i

state freely evolves in time until its ⇡⇡ decay filters it in the state |K+i at a time t = �t.
In this way one can experimentally access all the four reference transitions listed in

Table 1, and their T , CP and CPT conjugated transitions. It can be easily checked that
the three conjugated transitions correspond to different categories of events; therefore the
comparisons between reference vs conjugated transitions correspond to independent T , CP
and CPT tests.

Reference T -conjug. CP-conjug. CPT -conjug.
K0

! K+ K+ ! K0 K̄0
! K+ K+ ! K̄0

K0
! K� K� ! K0 K̄0

! K� K� ! K̄0

K̄0
! K+ K+ ! K̄0 K0

! K+ K+ ! K0

K̄0
! K� K� ! K̄0 K0

! K� K� ! K0

Table 1. Scheme of possible reference transitions and their associated T , CP or CPT conjugated
processes accessible at a �-factory.

For the CPT symmetry test one can define the following ratios of probabilities:

R1,CPT (�t) = P
⇥
K+(0) ! K̄0(�t)

⇤
/P

⇥
K0(0) ! K+(�t)

⇤

R2,CPT (�t) = P
⇥
K0(0) ! K�(�t)

⇤
/P

⇥
K�(0) ! K̄0(�t)

⇤

R3,CPT (�t) = P
⇥
K+(0) ! K0(�t)

⇤
/P

⇥
K̄0(0) ! K+(�t)

⇤

R4,CPT (�t) = P
⇥
K̄0(0) ! K�(�t)

⇤
/P

⇥
K�(0) ! K0(�t)

⇤
. (3.2)

The measurement of any deviation from the prediction Ri,CPT (�t) = 1 imposed by CPT

invariance is a signal of CPT violation.
It is worth noting that for �t = 0:

R1,CPT (0) = R2,CPT (0) = R3,CPT (0) = R4,CPT (0) = 1 (3.3)
1In the following the semileptonic decays ⇡+`�⌫ or ⇡�`+⌫̄ are denoted as `� and `+, respectively.

– 4 –

J. Bernabeu, A.D.D., P. Villanueva, JHEP 10 (2015) 139
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Direct test of T symmetry in neutral kaon transitions 

Any deviation from Ri=1 constitutes a violation of T-symmetry

One can define the following ratios of probabilities:

T symmetry test

J. Bernabeu, A.D.D., P. Villanueva: NPB 868 (2013) 102
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   CPT and T tests with neutral 
kaons 

•  Observables (for Δt >> τS): T and CPT sensitive 

12 P.Gauzzi 60 LNF SC meeting 

•  First direct test with kaons, model independent  

[J.Bernabeu, A.Di Domenico,  
P.Villanueva-Perez:NPB868(2013)102, 
                            JHEP1510(2015)139]  
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T, CP, CPT tests in neutral kaon transitions at KLOE
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Explicit calculations in the Wgner-Weisskopf framework for not too large negative �t and

to first order in small parameters, taking into account direct CP violation (✏0), and possible
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Explicit calculations in the Wgner-Weisskopf framework for not too large negative �t and

to first order in small parameters, taking into account direct CP violation (✏0), and possible
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Corresponding to study the following processes at KLOE:
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and the following relations among the D factors:

DT ,2 = (1 + 4<y)⇥DCPT (1.17)

DT ,4 = (1� 4<y)⇥DCPT (1.18)

DCP,2 = (1 + 4<y) (1.19)

DCP,4 = (1� 4<y) . (1.20)

1.1 KLOE results

Analysing a data sample collected at DA�NE corresponding to ⇠ 1.7fb�1
, the KLOE

collaboration obtained the preliminary results for all ratios above in the limit �t � ⌧S , and

the double ratios (see Fig.1):
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Summary of the analysis
● Event selection of K

S
K

L
→πe±ν 3π0 and K

S
K

L
→π+π– πe±ν done with the following parameters:

● Event selection efficiencies estimated with data and 4 independent control samples:

● exception: efficiency of a cut on d
PCA

 vs. ΔE(π,e) was based on MC

● T-violation sensitive observables were obtained 
with the following result: 

● problems:

● a “slope” in R
2
(Δt)

● large systematic effects also due to 
certain K

S
→πeν selection cuts

Process total ε
SIG

S/B

K
S
K

L
→πe±

ν 3π0 ~ 13 % 33.5

K
S
K

L
→π+π– πe±

ν ~ 15 % 64.5

KSKL⌅⇧0⇧0 ⇧e KSKL ⌅ ⇧+⇧– 3⇧0 KS⌅ ⇧e Klcrash KS⌅⇧+⇧-Klcrash

K
S
K

L 
→ ⇧e±� 3⇧0 KSKL ⌅ ⇧+⇧– ⇧e±� 
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T, CP, CPT tests in neutral kaon transitions at KLOE

• Analysed data L=1.7 fb-1

• Four processes studied:
ϕ→KSKL→πe±ν 3π0 and π+π− πe±ν
in the asympotic regime: Δ𝑡 ≫ 𝜏*
• Time of flight technique to identify
semileptonic decays

• residual background subtraction for πe±ν 3π0 channel
• MC selection efficiencies corrected from data with 4 independent control samples

sample.

4. Ratios of double kaon decay rates

Figure 5 presents a summary of the data distributions for the 4 charge sub-

samples of two event classes entering the probability ratios along with their

corresponding total identification e�ciencies obtained as described in Sec. 3.3.
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Figure 5: Left column: Intensities of double kaon decays as a function of the di↵erence of kaon

proper decay times for the two studied classes of processes and two lepton charge subsamples.

Right column: corresponding total event identification e�ciencies.

The T and CPT-violation sensitive single ratios defined in ... were evaluated

in subsequent intervals of the di↵erence of kaons’ proper decay times �t. Each

point of the single ratio graphs presented in Fig. 6 is defined through the counts

of the respective double kaon decays Ni and N 0
i in the i-th interval of �t and

their corresponding event identification e�ciencies "i and "0i as:

Ri ⌘ R(�ti) =
Ni

N 0
i

"0i
"i

1

D
, (4)

where D is the factor described in Sec. 1.

Due to the limited statistics of the process entering the numerator of the

ratios, constant level of the single ratios was evaluated in the range of high and

9

Measured double kaon decay intensities

⇡+⇡� events. Afterwards, about 12% of the event sample was constituted by the

KS ! ⇡0⇡0 and KL ! ⇡e⌫ processes where the KS decay along with additional

EMC clusters was misidentified as an early KL ! 3⇡0 decay. This background

was discriminated by removing events containing more than 1 EMC cluster for

which R/(cTclu) > 0.9 where R is the cluster-IP distance (corresponding to

photons emitted close to the IP).
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Figure 2: Distribution of di↵erences between particle time of flight recorded and expected

from track properties for tracks identified as pion and electron/positron for MC-simulated

KS ! ⇡±e⌥⌫ events (left) and all data events (right). Events inside the region marked with

black solid line are accepted.

The remaining background (in the order of decreasing contribution) is com-

posed of:

• KS ! ⇡+⇡� with imperfect track reconstruction,

• KS ! ⇡+⇡� ! ⇡µ⌫ decay chain where one of the charged pions decays

into a muon and a neutrino before entering the DC,

• radiative KS ! ⇡+⇡�� decays dominated by inner bremsstrahlung [6, 7].

As all these events are characterized by a pion or muon DC track misidenti-

fied as e+/e�, two particle binary classifiers based on Artificial Neural Net-

works (ANNs) (using Multilayer Perceptron from the TMVA package [8]) and

acting on an ensemble constituted by a DC track and its associated EMC cluster

were prepared for e/⇡ and µ/⇡ discrimination in subsequent steps. Classifica-

tion was based on the di↵erent structure of electromagnetic showers caused in

5

MC KS signal Data
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Figure 6: Ratios of double decay rates of entangled K0K̄0 pairs as defined in ... for the T-

violation sensitive (left) and CPT-violation sensitive (right) cases. Dashed lines denote levels

obtained with the fit.

Figure 7: Top: Ratio of the rates of (⇡+⇡�)(⇡±e⌥⌫) events with a positron and an electron

sensitive to CP-violation e↵ects. Bottom: Double ratio of CPT-violation sensitive double

kaon decay rates as defined in .... Dashed lines denote levels obtained with the fit.
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KLOE-2 result
PLB 845 (2023) 138164

First T and CPT test in kaon transitions

T/CPT Tests with ; → üôü† → ° djd¢£, dd d¢£

19

TBD

RT
2 = 0.991 ±0.017stat ± 0.014syst ± 0.012D,

RT
4 = 1.015 ±0.018stat ± 0.015syst ± 0.012D,

RCPT
2 = 1.004 ±0.017stat ± 0.014syst ± 0.012D,

RCPT
4 = 1.002 ±0.017stat ± 0.015syst ± 0.012D,

RCP
2 = 0.992 ±0.028stat ± 0.019syst,

RCP
4 = 1.00665 ±0.00093stat ± 0.00089syst,

RT
2 /R

T
4 = 0.979 ±0.028stat ± 0.019syst,

RCPT
2 /RCPT

4 = 1.005 ±0.029stat ± 0.019syst.
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Fig. 5. Left column: Rates of double kaon decays as a function of !t for the two studied classes of processes and two lepton charge subsamples. Right column: corresponding 
εS E L(!t) efficiencies.

Table 3
Systematic uncertainties on all of the symmetry test observables. In case of R2,CP and R4,CP, each ratio is obtained using 
only one class of events and thus not affected by effects of selection of the other class. The uncertainty of the D factor 
comprises both statistical and systematic errors.

Effect R2,T R4,T R2,CPT R4,CPT D RT,CP D RCPT R2,CP R4,CP
× 10−3 × 10−3 × 10−3 × 10−3 × 10−3 × 10−3 × 10−3 × 10−3

Background model 2.74 4.62 2.79 4.43 4.43 4.41 4.37 –
Efficiency smoothing 2.46 5.31 2.43 5.26 6.70 6.83 6.76 0.17
!t bin width 8.00 5.00 7.50 5.50 9.00 9.00 8.90 0.03
Fit range 7.33 8.88 7.32 8.84 7.95 7.60 7.78 0.41

Effects of cuts in the K1K2 → (πeν)(3π0) selection
K1 vertex location cuts 0.57 2.31 0.58 2.27 2.36 2.41 2.39 –
M(π ,π ) cut 2.48 1.34 2.52 1.31 1.56 1.63 1.60 –
TOF cuts 6.08 5.32 6.19 5.23 6.40 6.58 6.49 –
e/π /µ classification 4.78 4.40 4.85 4.33 9.33 9.59 9.46 –

Effects of cuts in the K1K2 → (π+π−)(πeν) selection
K1 vertex location cuts 0.007 0.004 0.004 0.007 0.004 0.004 – 0.005
M(π ,π ) and |$p| cuts 2.14 1.68 1.67 2.17 0.70 0.72 – 0.74
m2

+ + m2
− cut 1.48 1.32 1.31 1.49 0.20 0.21 – 0.21

TOF cuts 2.14 1.68 1.67 2.17 0.70 0.72 – 0.74

Total systematic uncertainty 14 15 14 15 19 19 19 0.89
D factor total uncertainty 12 12 12 12 – – – –

R2,T = 0.991 ± 0.017stat ± 0.014syst ± 0.012D , (26)

R4,T = 1.015 ± 0.018stat ± 0.015syst ± 0.012D , (27)

R2,CPT = 1.004 ± 0.017stat ± 0.014syst ± 0.012D , (28)

R4,CPT = 1.002 ± 0.017stat ± 0.015syst ± 0.012D , (29)

R2,CP = 0.992 ± 0.028stat ± 0.019syst , (30)

R4,CP = 1.00665 ± 0.00093stat ± 0.00089syst , (31)

D RT,CP = R2,T/R4,T = 0.979 ± 0.028stat ± 0.019syst , (32)

D RCPT = R2,CPT/R4,CPT = 1.005 ± 0.029stat ± 0.019syst . (33)

A comparison of these results with expected values (assuming 
CPT invariance, the validity of the !S = !Q rule, and T violation 

extrapolated from observed CP violation in the mixing [28]) is pre-
sented in Fig. 10. Each ratio measurement should be regarded as 
an independent symmetry test on its own. However a correlation 
among them is present because the same transitions are used in 
different tests, as can be easily deduced from Eqs. (3), (4), (5).

For the T and CPT single ratios a total relative error of 2.5% is 
reached, while for the double ratios (19) and (20) the total error 
increases to 3.5%, with the advantage of improved sensitivity to 
violation effects, and of independence from the D factor. The mea-
surement of the single ratio R4,CP benefits of highly allowed decay 
rates for the involved channels, reaching an error of 0.13%.

All tests with single ratios assume the validity of the !S = !Q
rule and CPT invariance in semileptonic decay, as specified in 

8
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Further studies of the properties of entanglement for
neutral K mesons

From future to past



A. Di Domenico Testing Quantum Mechanics at colliders – 3 December 2024 – Roma Tre University

3p0
K0

Dt=t2-t1

K-
f

t1

K0
p+l-n

t1

39

PAST FUTURE

2. the projection of the state |i(t = t1)i onto the orthogonal pair |K?
9f1i|K9f1i, filtered by the126

decay f1, times the decay amplitude of the state |K?
9f1i into the f1 channel;127

3. the time evolution of the surviving (single) kaon state |K9f1i from time t = t1 to time t = t2;128

4. the projection at time t = t2 of the evolved state |K9f1(�t)i onto the state |K?
9f2i filtered129

by the decay f2, times the decay amplitude of the state |K?
9f2i into the f2 channel.130

These steps straightforwardly lead to the calculation of the observable double differential decay131

rate by factorising the amplitudes as follows:132

I(f1, t1; f2, t2)TH =
��hf2|T |K?

9f2ihK
?
9f2 |K9f1(�t)ihf1|T |K?

9f1ihK
?
9f1K9f1 |i(t = t1)i

��2

=
1

2
e��t1P

�
K9f1(0) ! K?

9f2(�t)
� ��hf2|T |K?

9f2ihf1|T |K
?
9f1i

��2

= e��t1 C12 {|⌘1|2e��S�t + |⌘2|2e��L�t

�2|⌘1||⌘2|e�
(�S+�L)

2 �t cos[�m�t+ �1 � �2]} (15)

with133

��hK?
9f1K9f1 |i(t = t1)i

��2 = 1

2
e��t1 (16)

and the probability associated to the transition K9f1 ! K?
9f2 defined as30, 31:134

P
�
K9f1(0) ! K?

9f2(�t)
�
=

��hK?
9f2 |K9f1(�t)i

��2 . (17)

One can easily verify that the TH approach is fully consistent with the LY approach:135

I(f1, t1; f2, t2)TH = I(f1, t1; f2, t2)LY ⌘ I(f1, t1; f2, t2) . (18)
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QM calculation of double decay intensity:
two alternatives
(I) Time History approach (TH), from past to future

state (5): (i) the generic interference region and (ii) the
decoherence region, with the relative weight of the KS
component negligible when the following condition is
satisfied:

jη1je−ΔΓΔt=2 ≪ 1 ½KL − tag": ð6Þ

At long enough Δt—depending on what f1 was—the
living partner is always a jKLi. This property is well
understood, and it has been used in the past in order to have
KL beams “for all practical purposes” (FAPP) in Bell’s
terminology [59].

B. Time history (TH)

It is worth it to point out that the result (5) for the living
partner is in agreement with the EPR instantaneous
information due to the first decay when following the time
history of strange entanglement, which we are now going to
study in detail.
We first notice that in the case of decay processes, any

initial state has some probability per unit time to decay to a
given decay channel f except that with zero probability. In
particular, the linear combination,

jK↛fi ¼ N↛f½jKLi − ηfjKSi"; ð7Þ

having a vanishing decay amplitude hfjTjK↛fi ¼ 0, can-
not decay to f. This state is the one tagged for the
unmeasured particle as a consequence of the projection
imposed by the decay of the observed particle. For the first
decay to f1 at time t1, the tagged state of the surviving
partner is given by Eq. (7), with f ¼ f1. In other words, the
measured decay on one side prepares, in the quantum
mechanical sense, its partner on the other side as a single
kaon particle at a starting time t ¼ t1. Then the jK↛fi state
freely evolves in time—and in this sense, the information is
from past to future—until its decay time at t2; see Eq. (4).
We may ask whether this information constrains the past
state of the decayed particle at t1, which was undefined in
the entangled system. This is a question that, for different
scenarios, is being debated in the literature—see, for
example, Refs. [66–69]. In our case, any state linearly
independent to Eq. (7), orthogonal or not, leads to the same
decay probability. This “filtering identity” [70] is saying
that the orthogonal component jK⊥

↛fi is filtered from the
past undefined state by the decay. The decay acts as a
filtering measurement and, for calculation purposes, it is

convenient to rewrite the entangled state at t1, in terms of
these two orthogonal states, as

jii ¼ 1ffiffiffi
2

p fjK⊥
↛fijK↛fi − jK↛fijK⊥

↛fig: ð8Þ

In this way, we may use the concept of transition proba-
bilities at the different relevant times in the history of the
system.
In summary, four sequential steps are present in the time

history of the entangled state jii:
(1) The time evolution of the state jii from time t ¼ 0 to

time t ¼ t1, with definite total width Γ;
(2) The projection of the state jiðt ¼ t1Þi onto the

orthogonal pair jK⊥
↛f1

ijK↛f1i, filtered by the decay
f1, times the decay amplitude of the state jK⊥

↛f1
i

into the f1 channel;
(3) The time evolution of the surviving (single) kaon

state jK↛f1i from time t ¼ t1 to time t ¼ t2;
(4) The projection at time t ¼ t2 of the evolved state

jK↛f1ðΔtÞi onto the state jK⊥
↛f2

i filtered by the
decay f2, times the decay amplitude of the state
jK⊥

↛f2
i into the f2 channel.

These steps straightforwardly lead to the calculation of the
observable double differential decay rate by factorizing the
amplitudes as follows:

Iðf1; t1;f2; t2ÞTH ¼ jhf2jTjK⊥
↛f2

ihK⊥
↛f2

jK↛f1ðΔtÞi

× hf1jTjK⊥
↛f1

ihK⊥
↛f1

K↛f1 jiðt ¼ t1Þij2:

ð9Þ

One can easily verify that the TH approach is fully
consistent with the LY approach [71]: Iðf1; t1; f2; t2ÞTH ¼
Iðf1; t1; f2; t2ÞLY ≡ Iðf1; t1; f2; t2Þ.

III. FROM FUTURE TO PAST

As already pointed out, the state (5) evaluated from
expression (4) in the LY approach coincides with the state
jK↛f1i of the surviving kaon after the first decay in the TH
approach. The t1, t2 symmetry of the correlated state in the
LY approach—Eq. (2)—with no special role of one of the
two decay times, demands the exploration of its implica-
tions when projecting it instead onto the f2 channel at time
t2. With this information, the resulting past decayed state at
time t1 is

jKð1Þðt ¼ t1Þi ¼ hf2jTjit1;t2i ¼
Nffiffiffi
2

p hf2jTjKSife−iλSt1 ½η2e−iλLt2 jKSi" − e−iλLt1 ½e−iλSt2 jKLi"g: ð10Þ
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QM calculation of double decay intensity:
two alternatives
(II) T.D. Lee and C.N. Yang (LY) two decay times state formalism (1961) 
[see e.g. T.Day PR121, 1204 (1961), D. Inglis RMP 33, 1 (1961) ]
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with |N |2 = (1� |hKS|KLi|2)�1 ' 1 . As a consequence, the entangled state |ii at any time t after71

its production remains unaltered, even in presence of K0 � K̄0 mixing:72

|i(t)i =
Np
2
{|KSie�i�St|KLie�i�Lt � |KLie�i�Lt|KSie�i�St}

= e�i(�S+�L)t|ii . (4)

If nothing is registered after the observation of the first decay at time t1 (i.e. integrating over73

all subsequent decays at times t2 of particle-2), the survival probability of the entangled state is74

necessarily characterised by the total width � = �S + �L of the system:75

P (t1) = k |i(t = t1)i k2 = e��t1 . (5)

This property holds only for the C = �1 antisymmetric state, but not for the C = +176

symmetric state in which the time evolution would induce K0K0 and K̄0K̄0 terms due to K0 � K̄0
77

mixing by weak interactions.78

Two decay times state formalism (LY) Following the LY approach of the two decay times entan-79

gled state (4), the correlated state of the two partners decaying at times t1 and t2 can be formally80

written as19–22:81

|it1,t2i =
Np
2
{|KSie�i�St1 |KLie�i�Lt2 � |KLie�i�Lt1 |KSie�i�St2} . (6)

The two decay times formalism defines in the combined two terms of the entangled state (4) what82

one calls particle 1 – the first one to decay – and particle 2 – the second one to decay. The (formal)83

use as evolution times is justified because they are disjoint and there is no overlap between them:84

5

t1 before, and t2 after, the performed measurement and its associated projection. Accordingly, the85

decay amplitude of the initial state |ii to channel f1 at time t1 for particle-1 and channel f2 at time86

t2 for particle-2, and the corresponding observable double differential decay rate I(f1, t1; f2, t2)87

can be readily calculated24:88

I(f1, t1; f2, t2)LY = |hf1(t1)f2(t2)|T |i(t)i|2 = |hf1f2|T |it1,t2i|
2

=

����
Np
2
{hf1|T |KSihf2|T |KLie�i�St1e�i�Lt2 � hf1|T |KLihf2|T |KSie�i�Lt1e�i�St2}

����
2

= C12{|⌘1|2e��Lt1��St2 + |⌘2|2e��St1��Lt2

�2|⌘1||⌘2|e�
(�S+�L)

2 (t1+t2) cos[�m(t2 � t1) + �1 � �2]} , (7)

with hfi|T |KSi and hfi|T |KLi the decay amplitudes to the fi channel of KS and KL, and89

⌘i ⌘ |⌘i|ei�i =
hfi|T |KLi
hfi|T |KSi

, (8)

90

C12 =
|N |2

2
|hf1|T |KSihf2|T |KSi|2 . (9)

As a corollary of the above approach one can notice that at an intermediate step of the cal-91

culation – after the first decay at time t1 – the state of the surviving kaon (particle-2) immediately92

before its decay at time t2 is expressed as:93

|K(2)(t = t2)i = hf1|T |it1,t2i

=
Np
2
{hf1|T |KSie�i�St1e�i�Lt2 |KLi � hf1|T |KLie�i�Lt1e�i�St2 |KSi}

=
Np
2
hf1|T |KSie�i(�S+�L)t1

⇥
e�i�L�t|KLi � ⌘1e

�i�S�t|KSi
⇤
. (10)
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= e�i(�S+�L)t|ii . (4)

If nothing is registered after the observation of the first decay at time t1 (i.e. integrating over73

all subsequent decays at times t2 of particle-2), the survival probability of the entangled state is74

necessarily characterised by the total width � = �S + �L of the system:75

P (t1) = k |i(t = t1)i k2 = e��t1 . (5)

This property holds only for the C = �1 antisymmetric state, but not for the C = +176

symmetric state in which the time evolution would induce K0K0 and K̄0K̄0 terms due to K0 � K̄0
77

mixing by weak interactions.78

Two decay times state formalism (LY) Following the LY approach of the two decay times entan-79
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use as evolution times is justified because they are disjoint and there is no overlap between them:84
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2. the projection of the state |i(t = t1)i onto the orthogonal pair |K?
9f1i|K9f1i, filtered by the126

decay f1, times the decay amplitude of the state |K?
9f1i into the f1 channel;127

3. the time evolution of the surviving (single) kaon state |K9f1i from time t = t1 to time t = t2;128

4. the projection at time t = t2 of the evolved state |K9f1(�t)i onto the state |K?
9f2i filtered129

by the decay f2, times the decay amplitude of the state |K?
9f2i into the f2 channel.130

These steps straightforwardly lead to the calculation of the observable double differential decay131

rate by factorising the amplitudes as follows:132

I(f1, t1; f2, t2)TH =
��hf2|T |K?

9f2ihK
?
9f2 |K9f1(�t)ihf1|T |K?

9f1ihK
?
9f1K9f1 |i(t = t1)i

��2

=
1

2
e��t1P

�
K9f1(0) ! K?

9f2(�t)
� ��hf2|T |K?

9f2ihf1|T |K
?
9f1i

��2

= e��t1 C12 {|⌘1|2e��S�t + |⌘2|2e��L�t

�2|⌘1||⌘2|e�
(�S+�L)

2 �t cos[�m�t+ �1 � �2]} (15)

with133

��hK?
9f1K9f1 |i(t = t1)i

��2 = 1

2
e��t1 (16)

and the probability associated to the transition K9f1 ! K?
9f2 defined as30, 31:134

P
�
K9f1(0) ! K?

9f2(�t)
�
=

��hK?
9f2 |K9f1(�t)i

��2 . (17)

One can easily verify that the TH approach is fully consistent with the LY approach:135

I(f1, t1; f2, t2)TH = I(f1, t1; f2, t2)LY ⌘ I(f1, t1; f2, t2) . (18)

9

TH and LY approaches 
are fully equivalent
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Can Future post-tag the Past?

FUTURE
If past tags the future, the t1 , t2 symmetry 
of the correlated state in the LY approach 
demands the exploration of the question: 
can future post-tag the past?
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Can Future post-tag the Past?

FUTUREPAST

The future (kaon decay at t2) post-tags
the past partner kaon state at t1,before the 
decay, when it was entangled !

If past tags the future, the t1 , t2 symmetry 
of the correlated state in the LY approach 
demands the exploration of the question: 
can future post-tag the past?
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Can Future post-tag the Past?
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FUTURE

From future to past

As already pointed out, the state (11) evaluated from expression (10) in the LY approach coincides
with the state |K9f1i of the surviving kaon after the first decay in the TH approach. The t1, t2
symmetry of the correlated state in the LY approach – Eq.(6) – with no special role of one of the two
decay times, demands the exploration of its implications when projecting it onto the f2 channel at
time t2. The resulting past decayed state at time t1 is:

|K(1)(t = t1)i =hf2|T |it1,t2i

=
Np
2
{hf2|T |KLie�i�Lt2e�i�St1 |KSi � hf2|T |KSie�i�St2e�i�Lt1 |KLi}

=
Np
2
hf2|T |KSi{e�i�St1

⇥
⌘2 e�i�Lt2 |KSi

⇤
� e�i�Lt1

⇥
e�i�St2 |KLi

⇤
} .

(19)

Expression (19) corresponds to the state of the decayed kaon (particle-1) immediately before its decay
at time t1, once t2 and f2 are fixed – the future “fate” of its partner. Keeping t2 and f2 fixed – the
observation – and varying the first decay time t1, it corresponds to the single kaon evolved state, before
the first decay, from time t = 0 to time t = t1 of the state

|K(1)(t = 0)i = N1{⌘2e�i�Lt2 |KSi � e�i�St2 |KLi} , (20)

with N1 a suitable renormalization factor. Contrary to eq.(11) which is independent on the past t1
decay time, eq.(20) shows a dependence not only on the decay channel f2, but also on the future t2
decay time.

This is a striking result which clearly involves an information transfer from the future observation
at time t2 to the past, inferring the initial kaon state before its first decay at t1, therefore tagging it
during the time evolution of the entangled state |ii described by eq.(4) when the state of particle-1
(and particle-2) should have been undefined in the absence of any observation. We insist that the
post-diction implied by Eq.(19) is not an artefact of the formalism but a factual observable accessible
to experimental studies and thus it is fully physical. The reader may check, for consistency, that the
particular case of t1 = t2 leads to the state |K(1)(t = t1 = t2)i not decaying to f2, as demanded by
antisymmetry.

The interference and decoherence regimes: the KS tag

As a counterpart of the observability of the pre-dicted Eq. (10) through the t2 time distribution of the
second decay, once the first decay to the f1 decay channel at t1 is fixed, the t1 time distribution of the
first decay as post-dicted in Eq. (19) is also observable, once the second decay channel f2 and the decay
time t2 are fixed. As function of t1, two di↵erent regimes can be identified: the generic interference
region, in which the t2 dependence of eq.(20) is apparent, and the decoherence region, in which the
relative weight of the KL component is negligible. Decoherence is reached for large �t satisfying the
condition:

e����t/2/|⌘2| ⌧ 1 [KS-tag] , (21)

consistent with having a pure KS beam before the first decay. Due to CP violation and the non-
orthogonality of the stationary states hKL|KSi 6= 0, there is no decay channel able to tag either
KS or KL on an event-by-event basis. While it is relatively easy to prepare FAPP pure KL beams,
fulfilment of condition (21) constitutes the only known FAPP method to actually post-pare a KS beam
(i.e. the short-lived stationary state) with arbitrary high purity (depending on �t and ⌘2), preparation

6

If past tags the future, the t1 , t2 symmetry 
of the correlated state in the LY approach 
demands the exploration of the question: 
can future post-tag the past?

The future (kaon decay at t2) post-tags
the past partner kaon state at t1,before the 
decay, when it was entangled !
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Can Future post-tag the Past?

FUTUREPAST

PAST

FUTURE

From future to past

As already pointed out, the state (11) evaluated from expression (10) in the LY approach coincides
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|K(1)(t = t1)i =hf2|T |it1,t2i

=
Np
2
{hf2|T |KLie�i�Lt2e�i�St1 |KSi � hf2|T |KSie�i�St2e�i�Lt1 |KLi}

=
Np
2
hf2|T |KSi{e�i�St1

⇥
⌘2 e�i�Lt2 |KSi

⇤
� e�i�Lt1

⇥
e�i�St2 |KLi

⇤
} .

(19)

Expression (19) corresponds to the state of the decayed kaon (particle-1) immediately before its decay
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with N1 a suitable renormalization factor. Contrary to eq.(11) which is independent on the past t1
decay time, eq.(20) shows a dependence not only on the decay channel f2, but also on the future t2
decay time.

This is a striking result which clearly involves an information transfer from the future observation
at time t2 to the past, inferring the initial kaon state before its first decay at t1, therefore tagging it
during the time evolution of the entangled state |ii described by eq.(4) when the state of particle-1
(and particle-2) should have been undefined in the absence of any observation. We insist that the
post-diction implied by Eq.(19) is not an artefact of the formalism but a factual observable accessible
to experimental studies and thus it is fully physical. The reader may check, for consistency, that the
particular case of t1 = t2 leads to the state |K(1)(t = t1 = t2)i not decaying to f2, as demanded by
antisymmetry.

The interference and decoherence regimes: the KS tag

As a counterpart of the observability of the pre-dicted Eq. (10) through the t2 time distribution of the
second decay, once the first decay to the f1 decay channel at t1 is fixed, the t1 time distribution of the
first decay as post-dicted in Eq. (19) is also observable, once the second decay channel f2 and the decay
time t2 are fixed. As function of t1, two di↵erent regimes can be identified: the generic interference
region, in which the t2 dependence of eq.(20) is apparent, and the decoherence region, in which the
relative weight of the KL component is negligible. Decoherence is reached for large �t satisfying the
condition:

e����t/2/|⌘2| ⌧ 1 [KS-tag] , (21)

consistent with having a pure KS beam before the first decay. Due to CP violation and the non-
orthogonality of the stationary states hKL|KSi 6= 0, there is no decay channel able to tag either
KS or KL on an event-by-event basis. While it is relatively easy to prepare FAPP pure KL beams,
fulfilment of condition (21) constitutes the only known FAPP method to actually post-pare a KS beam
(i.e. the short-lived stationary state) with arbitrary high purity (depending on �t and ⌘2), preparation
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The explicit dependence on the future time t2, and the other unique features of neutral 
kaons with respect to other physical systems, like DG ≠0 and <KL|KS>≠0, naturally lead to this 
peculiar quantum effect: 
a definite time correlation (not symmetric comparing “from past to future” to “from future to 
past”) between the outcome at a given future time of the observed decay and the state of the 
unobserved partner in the past, at entanglement time. 

Post-tagging: summary

The state of the last decaying particle (particle-2) is tagged (prepared) at 𝑡 = 𝑡+	as:

a state which depends on 𝜂+ of particle-1. 

From past to future:

From future to past:
The state of the first decaying particle (particle-1) is post-tagged at 𝑡 = 0	 as:

Keeping t1 and f1 fixed – the observation – and renormalising the state at time t2 = t1, it corre-94

sponds to the evolution from time t1 to time t2 of the pure state95

|K(2)(t = t1)i = N2 [|KLi � ⌘1|KSi] , (11)

with N2 a suitable normalization factor. This is precisely the state of the living particle-2 which96

cannot decay to f1, as a result of the projection by the decay of particle-1 at t1 as a filtering97

measurement – see eqs.(13) and (14) below.98

It is worth noting here that due to �� = �S � �L 6= 0 two regimes can be identified in the99

time evolution of state (11): (i) the generic interference region and (ii) the decoherence region,100

with the relative weight of the KS component negligible when the following condition is satisfied:101

|⌘1|e����t/2 ⌧ 1 [KL-tag]. (12)

At long enough �t – depending on what f1 was – the living partner is always a |KLi. This property102

is well understood and it has been used in the past in order to have KL beams “for all practical103

purposes” (FAPP) in Bell’s terminology23.104

Time history (TH) It is worth to point out that the result (11) for the living partner is in agreement105

with the EPR instantaneous information due to the first decay when following the time history of106

strange entanglement, which we are now going to study in detail.107

We first notice that in the case of decay processes, any initial state has some probability per108

unit time to decay to a given decay channel f except that with zero probability. In particular the109
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decay at time t1, once t2 and f2 are fixed – the future “fate” of its partner. Keeping t2 and f2 fixed153

– the observation – and varying the first decay time t1, it corresponds to the single kaon evolved154

state, before the first decay, from time t = 0 to time t = t1 of the state155

|K(1)(t = 0)i = N1{⌘2e�i�Lt2 |KSi � e�i�St2 |KLi} , (20)

with N1 a suitable renormalization factor. Contrary to eq.(11) which is independent on the past t1156

decay time, eq.(20) shows a dependence not only on the decay channel f2, but also on the future t2157

decay time.158

This is a striking result which clearly involves a correlation-in-time from the future obser-159

vation at time t2 to the past, inferring the initial kaon state before its first decay at t1, therefore160

tagging it during the time evolution of the entangled state |ii described by eq.(4) when the state of161

particle-1 (and particle-2) should have been undefined in the absence of any observation. We insist162

that the post-diction implied by Eq.(19) is not an artefact of the formalism but a factual observable163

accessible to experimental studies and thus it is fully physical. In a time history from future to164

past, the future observation at time t2 tags particle-1 at the time t1 = t2 into the state proportional165

to {⌘2|KSi � |KLi}, the state not decaying to f2. Keeping t2 and ⌘2 fixed – the observation –, the166

backward evolution of the tagged state to t1 < t2 leads to Eq.(19).167

The interference and decoherence regimes: the KS tag As a counterpart of the observability of168

the pre-dicted Eq. (10) through the t2 time distribution of the second decay, once the first decay169

to the f1 decay channel at t1 is fixed, the t1 time distribution of the first decay as post-dicted in170

Eq. (19) is also observable, once the second decay channel f2 and the decay time t2 are fixed. As171

11

a state which depends on 𝜂" and 𝒕𝟐 of particle-2.  

J. Bernabeu and A.D.D., Phys. Rev. D 105, 116004 (2022) 
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The explicit dependence on the future time t2, and the other unique features of neutral 
kaons with respect to other physical systems, like DG ≠0 and <KL|KS>≠0, naturally lead to this 
peculiar quantum effect: 
a definite time correlation (not symmetric comparing “from past to future” to “from future to 
past”) between the outcome at a given future time of the observed decay and the state of the 
unobserved partner in the past, at entanglement time. 
KS tag: due to CP violation 𝐾$ 𝐾* ≠ 0 , the time correlation “from future to past” with condition 

⁄𝒆( ⁄𝜟𝜞𝜟𝒕 𝟐 𝜼𝟐 ≪ 𝟏 is the only known method to post-tag a KS beam with arbitrary high purity.

The state of the last decaying particle (particle-2) is tagged (prepared) at 𝑡 = 𝑡+	as:

a state which depends on 𝜂+ of particle-1. 

From past to future:

From future to past:
The state of the first decaying particle (particle-1) is post-tagged at 𝑡 = 0	 as:

Keeping t1 and f1 fixed – the observation – and renormalising the state at time t2 = t1, it corre-94

sponds to the evolution from time t1 to time t2 of the pure state95

|K(2)(t = t1)i = N2 [|KLi � ⌘1|KSi] , (11)

with N2 a suitable normalization factor. This is precisely the state of the living particle-2 which96

cannot decay to f1, as a result of the projection by the decay of particle-1 at t1 as a filtering97

measurement – see eqs.(13) and (14) below.98

It is worth noting here that due to �� = �S � �L 6= 0 two regimes can be identified in the99

time evolution of state (11): (i) the generic interference region and (ii) the decoherence region,100

with the relative weight of the KS component negligible when the following condition is satisfied:101

|⌘1|e����t/2 ⌧ 1 [KL-tag]. (12)

At long enough �t – depending on what f1 was – the living partner is always a |KLi. This property102

is well understood and it has been used in the past in order to have KL beams “for all practical103

purposes” (FAPP) in Bell’s terminology23.104

Time history (TH) It is worth to point out that the result (11) for the living partner is in agreement105

with the EPR instantaneous information due to the first decay when following the time history of106

strange entanglement, which we are now going to study in detail.107

We first notice that in the case of decay processes, any initial state has some probability per108

unit time to decay to a given decay channel f except that with zero probability. In particular the109
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decay at time t1, once t2 and f2 are fixed – the future “fate” of its partner. Keeping t2 and f2 fixed153

– the observation – and varying the first decay time t1, it corresponds to the single kaon evolved154

state, before the first decay, from time t = 0 to time t = t1 of the state155

|K(1)(t = 0)i = N1{⌘2e�i�Lt2 |KSi � e�i�St2 |KLi} , (20)

with N1 a suitable renormalization factor. Contrary to eq.(11) which is independent on the past t1156

decay time, eq.(20) shows a dependence not only on the decay channel f2, but also on the future t2157

decay time.158

This is a striking result which clearly involves a correlation-in-time from the future obser-159

vation at time t2 to the past, inferring the initial kaon state before its first decay at t1, therefore160

tagging it during the time evolution of the entangled state |ii described by eq.(4) when the state of161

particle-1 (and particle-2) should have been undefined in the absence of any observation. We insist162

that the post-diction implied by Eq.(19) is not an artefact of the formalism but a factual observable163

accessible to experimental studies and thus it is fully physical. In a time history from future to164

past, the future observation at time t2 tags particle-1 at the time t1 = t2 into the state proportional165

to {⌘2|KSi � |KLi}, the state not decaying to f2. Keeping t2 and ⌘2 fixed – the observation –, the166

backward evolution of the tagged state to t1 < t2 leads to Eq.(19).167

The interference and decoherence regimes: the KS tag As a counterpart of the observability of168

the pre-dicted Eq. (10) through the t2 time distribution of the second decay, once the first decay169

to the f1 decay channel at t1 is fixed, the t1 time distribution of the first decay as post-dicted in170

Eq. (19) is also observable, once the second decay channel f2 and the decay time t2 are fixed. As171

11

a state which depends on 𝜂" and 𝒕𝟐 of particle-2.  

J. Bernabeu and A.D.D., Phys. Rev. D 105, 116004 (2022) 
see Bernabeu’s talk

Post-tagging: summary
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The explicit dependence on the future time t2, and the other unique features of neutral 
kaons with respect to other physical systems, like DG ≠0 and <KL|KS>≠0, naturally lead to this 
peculiar quantum effect: 
a definite time correlation (not symmetric comparing “from past to future” to “from future to 
past”) between the outcome at a given future time of the observed decay and the state of the 
unobserved partner in the past, at entanglement time. 
KS tag: due to CP violation 𝐾$ 𝐾* ≠ 0 , the time correlation “from future to past” with condition 

⁄𝒆( ⁄𝜟𝜞𝜟𝒕 𝟐 𝜼𝟐 ≪ 𝟏 is the only known method to post-tag a KS beam with arbitrary high purity.

The state of the last decaying particle (particle-2) is tagged (prepared) at 𝑡 = 𝑡+	as:

a state which depends on 𝜂+ of particle-1. 

From past to future:

From future to past:
The state of the first decaying particle (particle-1) is post-tagged at 𝑡 = 0	 as:

Keeping t1 and f1 fixed – the observation – and renormalising the state at time t2 = t1, it corre-94

sponds to the evolution from time t1 to time t2 of the pure state95

|K(2)(t = t1)i = N2 [|KLi � ⌘1|KSi] , (11)

with N2 a suitable normalization factor. This is precisely the state of the living particle-2 which96

cannot decay to f1, as a result of the projection by the decay of particle-1 at t1 as a filtering97

measurement – see eqs.(13) and (14) below.98

It is worth noting here that due to �� = �S � �L 6= 0 two regimes can be identified in the99

time evolution of state (11): (i) the generic interference region and (ii) the decoherence region,100

with the relative weight of the KS component negligible when the following condition is satisfied:101

|⌘1|e����t/2 ⌧ 1 [KL-tag]. (12)

At long enough �t – depending on what f1 was – the living partner is always a |KLi. This property102

is well understood and it has been used in the past in order to have KL beams “for all practical103

purposes” (FAPP) in Bell’s terminology23.104

Time history (TH) It is worth to point out that the result (11) for the living partner is in agreement105

with the EPR instantaneous information due to the first decay when following the time history of106

strange entanglement, which we are now going to study in detail.107

We first notice that in the case of decay processes, any initial state has some probability per108

unit time to decay to a given decay channel f except that with zero probability. In particular the109
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decay at time t1, once t2 and f2 are fixed – the future “fate” of its partner. Keeping t2 and f2 fixed153

– the observation – and varying the first decay time t1, it corresponds to the single kaon evolved154

state, before the first decay, from time t = 0 to time t = t1 of the state155

|K(1)(t = 0)i = N1{⌘2e�i�Lt2 |KSi � e�i�St2 |KLi} , (20)

with N1 a suitable renormalization factor. Contrary to eq.(11) which is independent on the past t1156

decay time, eq.(20) shows a dependence not only on the decay channel f2, but also on the future t2157

decay time.158

This is a striking result which clearly involves a correlation-in-time from the future obser-159

vation at time t2 to the past, inferring the initial kaon state before its first decay at t1, therefore160

tagging it during the time evolution of the entangled state |ii described by eq.(4) when the state of161

particle-1 (and particle-2) should have been undefined in the absence of any observation. We insist162

that the post-diction implied by Eq.(19) is not an artefact of the formalism but a factual observable163

accessible to experimental studies and thus it is fully physical. In a time history from future to164

past, the future observation at time t2 tags particle-1 at the time t1 = t2 into the state proportional165

to {⌘2|KSi � |KLi}, the state not decaying to f2. Keeping t2 and ⌘2 fixed – the observation –, the166

backward evolution of the tagged state to t1 < t2 leads to Eq.(19).167

The interference and decoherence regimes: the KS tag As a counterpart of the observability of168

the pre-dicted Eq. (10) through the t2 time distribution of the second decay, once the first decay169

to the f1 decay channel at t1 is fixed, the t1 time distribution of the first decay as post-dicted in170

Eq. (19) is also observable, once the second decay channel f2 and the decay time t2 are fixed. As171

11

a state which depends on 𝜂" and 𝒕𝟐 of particle-2.  

J. Bernabeu and A.D.D., Phys. Rev. D 105, 116004 (2022) 
see Bernabeu’s talk

Back from the future

Post-tagging: summary
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| C𝐾 + 𝑡+ = 0 =𝒩 ⟩|𝐾. − 𝜌 𝑡) ⟩|𝐾/

⟨𝑓| C𝐾 + 𝑡+
)
= 𝒩 ) ⟩⟨𝑓|𝐾. 𝑡+ − 𝜌 𝑡) ⟩⟨𝑓|𝐾/ 𝑡+ )

                      = 𝒩 ) 	I

J
𝑒'0!$" + 𝜌 𝑡) )	𝑒'0#$" −

	 −2𝑒'
$!%$#
& $" ℜ𝜌 𝑡) cos Δ𝑚	𝑡+ + ℑ𝜌 𝑡) sin Δ𝑚	𝑡+

post-tagged state:

𝜌 𝑡) 	= 𝑒'1 2!'2# $&

t2 (tS)
ℜ𝜌 𝑡!

in the case f = f1 = f2   at fixed t2:

ℑ𝜌 𝑡!

see Bernabeu’s talk

Parametrization of the “Back from the future” effect

Experimentally t2 is averaged on
a bin width  =>  e.g. bin width ½ tS
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This quantum effect is directly observable at KLOE/KLOE-2
e.g. in the channel f ®KSKL®p+p- p+p- to maximize the effect

“Back from the future”: observable effects

Distributions normalized to unity at t1=0
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This quantum effect is directly observable at KLOE/KLOE-2

I(t1) with t2 >> t1 and 𝜂*' , ΔΓ
such that the KS post-tag condition 
is fulfilled => 
definite width: GS    i.e. a KS state

e.g. in the channel f ®KSKL®p+p- p+p- to maximize the effect

Distributions normalized to unity at t1=0

DECOHERENCE REGIME

“Back from the future”: observable effects
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This quantum effect is directly observable at KLOE/KLOE-2

I(t1) with t2 >> t1 and 𝜂*' , ΔΓ
such that the KS post-tag condition 
is fulfilled => 
definite width: GS    i.e. a KS state

e.g. in the channel f ®KSKL®p+p- p+p- to maximize the effect

Distributions normalized to unity at t1=0

DECOHERENCE REGIME

“Back from the future”: observable effects

𝜌 𝑡) = 0
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This quantum effect is directly observable at KLOE/KLOE-2

I(t1) with t2 >> t1 and 𝜂*' , ΔΓ
such that the KS post-tag condition 
is fulfilled => 
definite width: GS    i.e. a KS state

e.g. in the channel f ®KSKL®p+p- p+p- to maximize the effect

Distributions normalized to unity at t1=0

DECOHERENCE REGIME

I(t1) with t2=3tS   ( > t1 )
KS post-tag condition 
is NOT fulfilled => no definite width

INTERFERENCE REGIME

“Back from the future”: observable effects

𝜌 𝑡) = 0
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This quantum effect is directly observable at KLOE/KLOE-2

I(t1) with t2 >> t1 and 𝜂*' , ΔΓ
such that the KS post-tag condition 
is fulfilled => 
definite width: GS    i.e. a KS state

e.g. in the channel f ®KSKL®p+p- p+p- to maximize the effect

Distributions normalized to unity at t1=0

DECOHERENCE REGIME

I(t1) with t2=3tS   ( > t1 )
KS post-tag condition 
is NOT fulfilled => no definite width

INTERFERENCE REGIME

“Back from the future”: observable effects

ℜ𝜌 𝑡!  ≈ 0.03
ℑ𝜌 𝑡!  ≈ 0.22

𝜌 𝑡) = 0
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Decoherence regime: 𝑡" > 30𝜏*

56

“Back from the future” effect at KLOE-2
• Analysed data: 1.7 fb-1   - selection of 𝑲𝑺𝑲𝑳 → 𝝅3𝝅(𝝅3𝝅( events 
  as for search for decoherence/CPTV effects
  [KLOE-2 - JHEP 04 (2022) 059]; 
• Fit of t1 distribution with QM theory taking into account resolution 
  and efficiency through a 4-dimensional smearing matrix 
  (𝑡+,5678	, 𝑡+,689:, 𝑡"	5678	, 𝑡",689:);
• Negligible background from 𝑒3𝑒( → 4𝜋 process and regeneration 
  on beam pipe;
• histogram normalization as single fit parameter.

Interference regime: 2.5𝜏* < 𝑡" < 3𝜏*

𝜒! = 3.4/5 𝜒! = 2.0/5

𝑡1/𝜏.𝑡1/𝜏.

KLOE-2 PRELIMINARY
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“Back from the future” effect at KLOE-2
• normalizing the distributions to unity at t1=0, we get a first evidence of the effect 

KLOE-2 PRELIMINARY
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• The analysis to extract the r parameter as a function of t2 is being finalized
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Conclusions
• The entanglement of neutral kaon pairs at a f-factory has unique features.
• Search for decoherence and CPT violation effects in f ®KSKL®p+p- p+p- at KLOE/KLOE-2 => 

stringent limits on model parameters (quantum gravity inspired), in some cases with a precision 
reaching the interesting Planck’s scale region.

FROM PAST TO FUTURE:
• Exploiting the maximal entanglement of the initial state for the necessary exchange of in and out 

states, it is possible to directly test T and CPT in transition processes.
• The KLOE-2 collaboration performed the first direct test of T and CPT in neutral kaon transitions with 

a precision of few percent on the corresponding observables.
• No CPT violation observed, T violation at limit, CP violation is observed with a significance of 5.2σ.

FROM FUTURE TO PAST: 
• Novel time quantum correlation effect in the entangled kaon system [PRD 105, 116004 (2022)].
• This surprising “Back from the future” effect is fully observable at KLOE/KLOE-2 and

naturally leads to the tagging of the KS state, and to the definition of new observables.
• A preliminary analysis of the f->KSKL -> p+p-p+p- events with KLOE data shows a first evidence of 

this effect. Finalization of the analysis to extract the r parameter as a function of t2.
• The Back from the future effect cannot be a causal influence, independently of time-like or space-like 

intervals. This result seems to confirm the counterintuitive feature of time in quantum mechanics, and 
goes beyond other phenomena, like delayed choice experiments with entangled photon systems, that 
are stationary at all times, and have the result independent on whether the choice is made in the past 
or in the future.
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Thank you!
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SPARE SLIDES
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€ 

Ψ = a K 0 + b K 0

€ 

i ∂
∂t
Ψ t( ) =HΨ t( )

H is the effective hamiltonian (non-hermitian), decomposed into a Hermitian 
part (mass matrix M) and an anti-Hermitian part (i/2 decay matrix G) :

Diagonalizing the effective Hamiltonian:

€ 

λS,L = mS,L −
i
2
ΓS,L

€ 

KS,L t( ) = e− iλS ,L t KS,L 0( )

€ 

KS,L =
1

2 1+ εS,L( )
1+εS,L( ) K 0 ± 1−εS,L( ) K 0[ ]

=
1

1+ εS,L( )
K1,2 +εS,L K2,1[ ]

eigenvalues
eigenstates: physical states 

tS ~ 90 ps tL ~ 51 ns

€ 

H =M −
i
2
Γ =

m11 m12
m21 m22

$ 

% 
& 

' 

( 
) −

i
2
Γ11 Γ12
Γ21 Γ22

$ 

% 
& 

' 

( 
) 

small CP impurity ~2 x 10-3

|K1,2> are
CP=±1 states

€ 

KL →ππ violates CP

€ 

KS KL ≅εS
∗ +εL ≠ 0
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K0 and K0 can decay to common final 
states due to weak interactions:
strangeness oscillations

K 0                       K 0

2p

3p

The neutral kaon two-level oscillating system in a nutshell
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€ 

δ =
H11 −H22

2 λS − λL( )
=
1
2

m
K 0
−m

K 0( ) − i 2( ) ΓK 0
−Γ

K 0( )
Δm + iΔΓ/2

 

 ε LS de ±=,

€ 

Δm = mL −mS    ,      ΔΓ = ΓS −ΓL
Δm = 3.5 ×10−15  GeV
ΔΓ≈ ΓS ≈ 2Δm = 7 ×10−15  GeV

ε =
H12 −H21

2 λS −λL( )
=
−iℑM12 −ℑΓ12 2
Δm+ iΔΓ / 2

 

• d ≠ 0 implies CPT violation 
• e ≠ 0 implies T violation
• e ≠ 0 or d ≠ 0 implies CP violation

012 =GÁ(with a phase convention               )

CPT violation:

CP violation: T violation:

62

KS,L ∝ 1+εS,L( ) K 0 ± 1−εS,L( ) K 0#
$

%
&

The neutral kaon two-level oscillating system in a nutshell



A. Di Domenico Testing Quantum Mechanics at colliders – 3 December 2024 – Roma Tre University

€ 

δ =
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=
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K 0
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K 0( ) − i 2( ) ΓK 0
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Δm + iΔΓ/2

 

 ε LS de ±=,
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Δm = mL −mS    ,      ΔΓ = ΓS −ΓL
Δm = 3.5 ×10−15  GeV
ΔΓ≈ ΓS ≈ 2Δm = 7 ×10−15  GeV

ε =
H12 −H21

2 λS −λL( )
=
−iℑM12 −ℑΓ12 2
Δm+ iΔΓ / 2

 

• d ≠ 0 implies CPT violation 
• e ≠ 0 implies T violation
• e ≠ 0 or d ≠ 0 implies CP violation

012 =GÁ(with a phase convention               )

CPT violation:

CP violation: T violation:
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KS,L ∝ 1+εS,L( ) K 0 ± 1−εS,L( ) K 0#
$

%
&

huge amplification factor!!

The neutral kaon two-level oscillating system in a nutshell
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<m>
(GeV)

Dm
(GeV)

<G>
(GeV)

DG/2
(GeV)

K0 0.5 3x10-15 3x10-15 3x10-15

D0 1.9 6x10-15 2x10-12 1x10-14

B0d 5.3 3x10-13 4x10-13 O(10-15)
(SM prediction)

B0s 5.4 1x10-11 4x10-13 3x10-14

neutral kaons vs other oscillating meson systems 

64



A. Di Domenico Testing Quantum Mechanics at colliders – 3 December 2024 – Roma Tre University

i ∝ K 0 K 0 − K 0 K 0( )+ω K 0 K 0 + K 0 K 0( )

In presence of decoherence and CPT violation induced by quantum gravity (CPT operator 
“ill-defined”) the definition of the particle-antiparticle states could be modified. This in turn 
could induce a breakdown of the correlations imposed by Bose statistics (EPR correlations) 
to the kaon state:

[Bernabeu, et al. PRL 92 (2004) 131601, NPB744 (2006) 180].

f ®KSKL®p+p- p+p- : CPT violation in entangled K states

at most one 
expects:

35
2

2 10~10 -- Þ»÷÷
ø

ö
çç
è

æ
DG

= ww PLANCKMEO

The maximum sensitivity to w is expected for f1=f2=p+p- (terms: |w|/|h+-|) 
All CPTV effects induced by QG (a,b,g,w) could be simultaneously disentangled.

In some microscopic models of space-time foam arising from non-critical string theory 
[Bernabeu, Mavromatos, Sarkar PRD 74 (2006) 045014] : 54 1010~ -- ÷w

I(p+p-, p+p-;Dt)  (a.u.)

Dt/tS

€ 

ω = 3 ×10−3

φω = 0
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In presence of decoherence and CPT violation induced by quantum gravity (CPT operator 
“ill-defined”) the definition of the particle-antiparticle states could be modified. This in turn 
could induce a breakdown of the correlations imposed by Bose statistics (EPR correlations) 
to the kaon state:

[Bernabeu, et al. PRL 92 (2004) 131601, NPB744 (2006) 180].

f ®KSKL®p+p- p+p- : CPT violation in entangled K states

at most one 
expects:

35
2

2 10~10 -- Þ»÷÷
ø

ö
çç
è

æ
DG

= ww PLANCKMEO

The maximum sensitivity to w is expected for f1=f2=p+p- (terms: |w|/|h+-|) 
All CPTV effects induced by QG (a,b,g,w) could be simultaneously disentangled.

In some microscopic models of space-time foam arising from non-critical string theory 
[Bernabeu, Mavromatos, Sarkar PRD 74 (2006) 045014] : 54 1010~ -- ÷w

I(p+p-, p+p-;Dt)  (a.u.)

Dt/tS

€ 

ω = 3 ×10−3

φω = 0
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€ 

i ∝ K 0 K 0 − K 0 K 0( ) +ω K 0 K 0 + K 0 K 0( )
∝ KS KL − KL KS( ) +ω KS KS − KL KL( )
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f ®KSKL®p+p- p+p- : CPT violation in entangled K states

The fit with I(p+p-,p+p-;Dt,w) yields (1.7 fb-1):

In the B system:  

Alvarez, Bernabeu, Nebot JHEP 11 (2006) 087 
(see also Bernabeu et al, EPJC (2017) 77:865) 

C.L. 95%at     0100.00084.0 £Â£- w

67

KLOE-2 JHEP 04 (2022) 059

ℜ𝜔 = −2.3!".$%".&
𝑠𝑡𝑎𝑡 ± 0.6𝑠𝑦𝑠𝑡 ×10!'

ℑ𝜔 = −4.1!(.)%(.*
𝑠𝑡𝑎𝑡 ± 0.9𝑠𝑦𝑠𝑡 ×10!'

𝜔 =	 4.7 ± 2.9𝑠𝑡𝑎𝑡 ± 1.0𝑠𝑦𝑠𝑡 ×10!'
𝜙+ =	−2.1 ± 0.2𝑠𝑡𝑎𝑡 ± 0.1𝑠𝑦𝑠𝑡	 rad

BR 𝜙 → 𝐾,𝐾, , 𝐾-𝐾- < 2.4×10!.
  at 90% C.L.
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3-10´

|w|
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2wf
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68% CL
Best Fit
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w
Im
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𝜔 ) =
BR 𝜙 → 𝐾.𝐾. , 𝐾/𝐾/
BR 𝜙 → 𝐾.𝐾/ 	

from
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Decoherence and CPT violation
Possible decoherence due quantum gravity effects (BH evaporation) 
(apparent loss of unitarity):
Black hole information loss paradox  => 
Possible decoherence near a black hole.

68

S. Hawking (1975)

Hawking [1] suggested that at a microscopic level, in a quantum gravity picture, 
non-trivial space-time fluctuations (generically space-time foam) could give rise 
to decoherence effects, which would necessarily entail a violation of CPT [2]. 

Modified Liouville – von Neumann equation for the density matrix of the kaon system with 3 
new CPTV parameters a,b,g [3]:

!ρ t( ) = −iHρ + iρH +

QM
! "## $## + L ρ;α,β,γ( ) extra term inducing

decoherence:
pure state => mixed state

[1] Hawking, Comm.Math.Phys.87 (1982) 395; [2] Wald, PR D21 (1980) 2742; [3] Ellis et. al, NP B241 (1984) 381; Ellis, 
Mavromatos et al. PRD53 (1996)3846; Handbook on kaon interferometry [hep-ph/0607322], 
M. Arzano PRD90 (2014) 024016 => Theories with Planck scale deformed symmetries can induce decoherence 

  

“like candy rolling on the 
tongue”  J. Wheeler 
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Decoherence and CPT violation
Possible decoherence due quantum gravity effects (BH evaporation) 
(apparent loss of unitarity):
Black hole information loss paradox  => 
Possible decoherence near a black hole.

69

S. Hawking (1975)

Hawking [1] suggested that at a microscopic level, in a quantum gravity picture, 
non-trivial space-time fluctuations (generically space-time foam) could give rise 
to decoherence effects, which would necessarily entail a violation of CPT [2]. 

Modified Liouville – von Neumann equation for the density matrix of the kaon system with 3 
new CPTV parameters a,b,g [3]:

!ρ t( ) = −iHρ + iρH +

QM
! "## $## + L ρ;α,β,γ( )

“like candy rolling on the 
tongue”  J. Wheeler 

[1] Hawking, Comm.Math.Phys.87 (1982) 395; [2] Wald, PR D21 (1980) 2742; [3] Ellis et. al, NP B241 (1984) 381; Ellis, 
Mavromatos et al. PRD53 (1996)3846; Handbook on kaon interferometry [hep-ph/0607322], 
M. Arzano PRD90 (2014) 024016 => Theories with Planck scale deformed symmetries can induce decoherence 
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at most (e.g., in non-critical string models):
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f ®KSKL®p+p- p+p- : decoherence and CPT violation

The fit with I(p+p-,p+p-;Dt,g) gives (L=1.7 fb-1):

In the complete positivity hypothesis  
a = g ,     b = 0      
=>  only one independent parameter: g€ 

α = −0.5 ± 2.8( ) ×10−17  GeV
β = 2.5 ± 2.3( ) ×10−19  GeV
γ = 1.1± 2.5( ) ×10−21  GeV

CPLEAR PLB 364, 239 (1999)

Study of time evolution of single kaons 
decaying in p+p- and semileptonic final state

single
kaons

entangled
kaons

70

KLOE-2 JHEP 04 (2022) 059

𝛾 = 1.3 ± 9.4/010 ± 4.2/2/0 ×10!((	GeV
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e+e-→ 4π 
Signal fit

high sensitivity due to a double amplification 
mechanism => terms: g/(DG |h+-|2) 
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f ®KSKL®p+p- p+p- : decoherence & CPTV limits

71

KLOE-2 JHEP 04 (2022) 059

𝜁343 = −0.5 ± 8.0𝑠𝑡𝑎𝑡 ± 3.7𝑠𝑦𝑠𝑡 ×1056
𝜁78 = 0.1 ± 1.6𝑠𝑡𝑎𝑡 ± 0.7𝑠𝑦𝑠𝑡 ×1059
𝛾 = 1.3 ± 9.4𝑠𝑡𝑎𝑡 ± 4.2𝑠𝑦𝑠𝑡 ×10599	GeV
ℜ𝜔 = −2.35:.;<:.=

𝑠𝑡𝑎𝑡 ± 0.6𝑠𝑦𝑠𝑡 ×105>

ℑ𝜔 = −4.159.?<9.@
𝑠𝑡𝑎𝑡 ± 0.9𝑠𝑦𝑠𝑡 ×105>

𝜔 =	 4.7 ± 2.9𝑠𝑡𝑎𝑡 ± 1.0𝑠𝑦𝑠𝑡 ×105>
𝜙A =	−2.1 ± 0.2𝑠𝑡𝑎𝑡 ± 0.1𝑠𝑦𝑠𝑡	 rad

BR 𝜙 → 𝐾,𝐾, , 𝐾-𝐾- < 2.4×10!.
  at 90% C.L.

J
H
E
P
0
4
(
2
0
2
2
)
0
5
9

δζSL δζ00̄ δγ δ!ω δ"ω δ|ω| δφω

·102 ·107 ·1021GeV ·104 ·104 ·104 (rad)
Cut stability 0.56 2.9 0.33 0.53 0.65 0.78 0.07
4π background 0.37 1.9 0.22 0.32 0.19 0.32 0.04
Regeneration 0.17 0.9 0.10 0.06 0.63 0.58 0.05
∆t resolution 0.18 0.9 0.10 0.15 0.09 0.15 0.02

Input phys. const. 0.04 0.2 0.02 0.03 0.09 0.07 0.01
Total 0.71 3.7 0.42 0.64 0.93 1.04 0.10

Table 1. Systematic uncertainties on all decoherence and CPT -violating parameters.

For the decoherence parameters ζSL, ζ00̄, and γ they are:

ζSL = (0.1± 1.6stat ± 0.7syst) · 10−2 with χ2/dof = 11.2/10 ,
ζ00̄ = (−0.05± 0.80stat ± 0.37syst) · 10−6 with χ2/dof = 11.2/10 ,

γ = (0.13± 0.94stat ± 0.42syst) · 10−21GeV with χ2/dof = 11.2/10 .

The high precision of the ζ00̄ result with respect to ζSL can be intuitively explained by
considering that the overall decay, in which both kaons decay into π+π−, is suppressed by
CP violation. In quantum mechanics this conclusion is independent on the basis used in the
calculation of the decay intensity (1.2), while in case of a decoherence mechanism it depends
on the basis into which the initial state tends to factorize. The decay KSKL → π+π−π+π−

is still suppressed by CP violation, while the decay K0K̄0 ∝ (KLKS − KSKL + KSKS −
KLKL) → π+π−π+π− has a contribution from KSKS → π+π−π+π− that it is not CP
suppressed, and is copious in the region at ∆t ≈ 0. Consequently a larger sensitivity on
the ζ00̄ parameter is achieved.

The λ parameter derived from ζSL [16] is:

λ = (0.1± 1.2stat ± 0.5syst) · 10−16GeV .

As these parameters are constrained to be positive, the results can be translated into 90%
confidence level (C.L.) upper limits [43]:

ζSL < 0.030 ,
ζ00̄ < 1.4 · 10−6 ,

γ < 1.8 · 10−21GeV ,

λ < 2.2 · 10−16GeV .

The results on the complex ω parameter have been obtained by performing the fit in
Cartesian {!ω,"ω} coordinates:

!ω =
(
−2.3+1.9

−1.5stat ± 0.6syst
)
· 10−4 ,

"ω =
(
−4.1+2.8

−2.6stat ± 0.9syst
)
· 10−4 ,

– 13 –

𝜆 ≅ =!"
>!
= 0.1 ± 1.2𝑠𝑡𝑎𝑡 ± 0.5𝑠𝑦𝑠𝑡 ×10(+?	GeV

Systematic uncertainties
[improvement x2 wrt
KLOE PLB 642(2006) 315] 
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A. Di Domenico  Theory Meets Experiment: Finding Proposals Towards Testing Foundational Issues in Particle Physics,  28– 29 November 2012, Vienna 

The decoherence parameter ζ depends on the basis in which the 
spontaneous factorization mechanism is specified: 

€ 

i =
1
2

KS KL − KL KS[ ]      ⇒      KS KL     or   KL KS

         I∝ π +π−,π +π− T i
2
                 I∝ π +π− T KS π +π− T KL

2

€ 

i =
1
2

K 0 K 0 − K 0 K 0[ ]      ⇒      K 0 K 0     or   K 0 K 0

         I∝ π +π−,π +π− T i
2
                 I∝ π +π− T K 0 π +π− T K 0

2

€ 

ζ = 0  (QM)                            ζ =1 (total decoherence)

KSKL 
basis 

suppressed by CP violation  suppressed by CP violation  

€ 

K 0K 0 
basis

suppressed by CP violation  not suppressed by CP violation  

φ →KSKL→π+π� π+π�  : test of quantum coherence 

 => intuitive explanation of the high sensitivity to  

€ 

η+− =
π +π − T KL

π +π − T KS

~ 10−3

€ 

π +π− T K 0

π +π− T K 0
~ 1

f ®KSKL®p+p- p+p- : test of quantum coherence
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Direct CPT test in transitions 

• CPT  theorem holds for any QFT formulated on flat space-time which assumes: (1) 
Lorentz invariance (2) Locality (3) Unitarity

• Extension of CPT theorem to a theory of quantum gravity far from obvious (e.g. CPT 
violation appears in several QG models)

• Consequences of CPT symmetry: equality of masses, lifetimes, |q| and |µ| of a particle 
and its anti-particle.

• Is it possible to test the CPT symmetry directly in transition processes between kaon 
states, rather than comparing masses, lifetimes, or other intrinsic properties of particle 
and anti-particle states?

• CPT violating effects may not appear at first order in diagonal mass terms (survival 
probabilities) while they can manifest at first order in transitions (non-diagonal terms).

• Clean formulation required. Possible spurious effects induced by CP violation in the 
decay and/or a violation of the ∆S = ∆Q rule have to be well under control. Genuine 
effect must be independent of ∆Γ, i.e. not requiring the decay as an essential 
ingredient. 

Probing CPT:  J. Bernabeu, A.D.D., P. Villanueva, JHEP 10 (2015) 139
Time-reversal violation: J. Bernabeu, A.D.D., P. Villanueva, NPB 868 (2013) 102
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•The transformation of a system corresponding to the inversion of events in time, or 
reversed dynamics, with the formal substitution Dt → −Dt, is usually called ‘time 
reversal’, but a more appropriate name would actually be motion reversal.

•Exchange of in ↔ out states and reversal of all momenta and spins tests time 
reversal, i.e. the symmetry of the responsible dynamics for the observed process 
under time reversal (transformation implemented in QM by an antiunitary operator)

•Similarly for CPT tests: the exchange of in ↔ out states etc.. is required.

Time Reversal 

74
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4

Reference T -conjugate

Transition Decay products Transition Decay products

K0 � K+ (⇤�, ��) K+ � K0 (3�0, ⇤+)

K0 � K� (⇤�, 3�0) K� � K0 (��, ⇤+)

K̄0 � K+ (⇤+, ��) K+ � K̄0 (3�0, ⇤�)

K̄0 � K� (⇤+, 3�0) K� � K̄0 (��, ⇤�)

TABLE I: Possible comparisons between T -conjugated transitions and the associated time-ordered decay
products in the experimental ⇥-factory scheme.

Reference T -conjugate CP -conjugate CPT -conjugate

K0 � K0 /////////////K0 � K0 K̄0 � K̄0 K̄0 � K̄0

K0 � K̄0 K̄0 � K0 K̄0 � K0 /////////////K0 � K̄0

K0 � K+ K+ � K0 K̄0 � K+ K+ � K̄0

K0 � K� K� � K0 K̄0 � K� K� � K̄0

K̄0 � K0 K0 � K̄0 K0 � K̄0 /////////////K̄0 � K0

K̄0 � K̄0 /////////////K̄0 � K̄0 K0 � K0 K0 � K0

K̄0 � K+ K+ � K̄0 K0 � K+ K+ � K0

K̄0 � K� K� � K̄0 K0 � K� K� � K0

K+ � K0 K0 � K+ K+ � K̄0 K̄0 � K+

K+ � K̄0 K̄0 � K+ K+ � K0 K0 � K+

K+ � K+ K+ � K+ K+ � K+ K+ � K+

K+ � K� K� � K+ K+ � K� K� � K+

K� � K0 K0 � K� K� � K̄0 K̄0 � K�
K� � K̄0 K̄0 � K� K� � K0 K0 � K�
K� � K+ K+ � K� K� � K+ K+ � K�
K� � K� K� � K� K� � K� K� � K�

TABLE II: Possible comparisons between T -conjugated transitions and the associated time-ordered decay
products in the experimental ⇥-factory scheme.

Reference T -conjugate CP -conjugate CPT -conjugate

K0 � K0 K0 � K0 K̄0 � K̄0 K̄0 � K̄0

K0 � K̄0 K̄0 � K0 K̄0 � K0 K0 � K̄0

K0 � K+ K+ � K0 K̄0 � K+ K+ � K̄0

K0 � K� K� � K0 K̄0 � K� K� � K̄0

K̄0 � K0 K0 � K̄0 K0 � K̄0 K̄0 � K0

K̄0 � K̄0 K̄0 � K̄0 K0 � K0 K0 � K0

K̄0 � K+ K+ � K̄0 K0 � K+ K+ � K0

K̄0 � K� K� � K̄0 K0 � K� K� � K0

K+ � K0 K0 � K+ K+ � K̄0 K̄0 � K+

K+ � K̄0 K̄0 � K+ K+ � K0 K0 � K+

K+ � K+ K+ � K+ K+ � K+ K+ � K+

K+ � K� K� � K+ K+ � K� K� � K+
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where the coefficient C(fX̄ , fY ), depending only on the final states fX̄ and fY , is given by:

C(fX̄ , fY ) =
1

2(ΓS + ΓL)

∣∣〈fX̄ |T |K̄X〉〈fY |T |KY〉
∣∣2 (3.7)

and P [KX(0) → KY(∆t)] is the generic KX → KY transition probability which contains

the ∆t time dependence only.

It’s worth noting that a similar expression can be easily formulated also for the case ∆t < 0:

I(fX̄ , fY ;∆t) = C(fX̄ , fY )× P
[
K̄Y(0) → K̄X(|∆t|)

]
. (3.8)

Therefore, at a φ-factory one can define the observable ratios:

Rexp
2,CPT(∆t) ≡ I("−, 3π0;∆t)

I(ππ, "−;∆t)
(3.9)

Rexp
4,CPT(∆t) ≡ I("+, 3π0;∆t)

I(ππ, "+;∆t)
, (3.10)

which are related to the Ri,CPT(∆t) ratios defined in eqs. (3.2) as follows, for ∆t ≥ 0:

Rexp
2,CPT(∆t) = R2,CPT(∆t)×DCPT

Rexp
4,CPT(∆t) = R4,CPT(∆t)×DCPT (3.11)

whereas for ∆t < 0 one has:

Rexp
2,CPT(∆t) = R1,CPT(|∆t|)×DCPT

Rexp
4,CPT(∆t) = R3,CPT(|∆t|)×DCPT , (3.12)

with DCPT the ratio of coefficients:

DCPT =
C("−, 3π0;∆t)

C(ππ, "−;∆t)
=

C("+, 3π0;∆t)

C(ππ, "+;∆t)
=

∣∣〈3π0|T |K−〉
∣∣2

|〈ππ|T |K+〉|2
(3.13)

that can be expressed, with a high degree of accuracy, at least O(10−7), as:

DCPT =
BR

(
KL → 3π0

)

BR (KS → ππ)

ΓL

ΓS
. (3.14)

The value of DCPT can be therefore evaluated from branching ratios and lifetimes,

but it is also directly measurable from the observable ratios (3.9) and (3.10), as it will be

discussed in detail in the next section.

The explicit expressions of ratios (3.9) and (3.10) (neglecting higher order terms in

small parameters and for not too large negative ∆t) are:

Rexp
2,CPT(∆t) =

P [K0(0) → K−(∆t)]

P [K−(0) → K̄0(∆t)]
×DCPT

' |1− 2δ|2
∣∣∣1 + 2δe−i(λS−λL)∆t

∣∣∣
2
×DCPT , (3.15)
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�t � 0:
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2,T(�t) = R2,T(�t)⇥DT

Rexp
4,T(�t) = R4,T(�t)⇥DT

Rexp
2,CP(�t) = R2,CP(�t)

Rexp
4,CP(�t) = R4,CP(�t)

Rexp
2,CPT(�t) = R2,CPT(�t)⇥D

Rexp
4,CPT(�t) = R4,CPT(�t)⇥D (10)

whereas for �t < 0 one has:

Rexp
2,T(�t) = R1,T(|�t|)⇥DT

Rexp
4,T(�t) = R3,T(|�t|)⇥DT

Rexp
2,CP(�t) = R1,CP(|�t|)

Rexp
4,CP(�t) = R3,CP(|�t|)

Rexp
2,CPT(�t) = R1,CPT(|�t|)⇥D

Rexp
4,CPT(�t) = R3,CPT(|�t|)⇥D (11)

with D a constant factor given by [10, 11, 22]:

D =
|h3⇡0

|T |K�i|
2

|h⇡+⇡�|T |K+i|
2 =

BR (KL ! 3⇡0)

BR (KS ! ⇡+⇡�)

�L

�S
. (12)

The last r.h.s. equality holds with a high degree of accuracy, at leastO(10�7).
The value of D can be therefore directly evaluated from branching ratios
and lifetimes of KS,L states. They were all directly measured by the KLOE
experiment with the highest precision [24, 25, 26, 27, 28], and we consistently
use them for the evaluation of D = (0.5076± 0.0059)⇥ 10�3.

A simple Monte Carlo simulation shows that in the case of KLOE and
KLOE-2 experiments with an integrated luminosity of O(10 fb�1) the statis-
tically most populated region is for �t � ⌧S, while the region for �t < 0 has
few or no events [10]. Therefore we define eight observables (six ratios and
two double ratios) that are in practice experimentally accessible at KLOE
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where the coefficient C(fX̄ , fY ), depending only on the final states fX̄ and fY , is given by:

C(fX̄ , fY ) =
1

2(ΓS + ΓL)

∣∣〈fX̄ |T |K̄X〉〈fY |T |KY〉
∣∣2 (3.7)

and P [KX(0) → KY(∆t)] is the generic KX → KY transition probability which contains

the ∆t time dependence only.

It’s worth noting that a similar expression can be easily formulated also for the case ∆t < 0:

I(fX̄ , fY ;∆t) = C(fX̄ , fY )× P
[
K̄Y(0) → K̄X(|∆t|)

]
. (3.8)

Therefore, at a φ-factory one can define the observable ratios:

Rexp
2,CPT(∆t) ≡ I("−, 3π0;∆t)

I(ππ, "−;∆t)
(3.9)

Rexp
4,CPT(∆t) ≡ I("+, 3π0;∆t)

I(ππ, "+;∆t)
, (3.10)

which are related to the Ri,CPT(∆t) ratios defined in eqs. (3.2) as follows, for ∆t ≥ 0:

Rexp
2,CPT(∆t) = R2,CPT(∆t)×DCPT

Rexp
4,CPT(∆t) = R4,CPT(∆t)×DCPT (3.11)

whereas for ∆t < 0 one has:

Rexp
2,CPT(∆t) = R1,CPT(|∆t|)×DCPT

Rexp
4,CPT(∆t) = R3,CPT(|∆t|)×DCPT , (3.12)

with DCPT the ratio of coefficients:

DCPT =
C("−, 3π0;∆t)

C(ππ, "−;∆t)
=

C("+, 3π0;∆t)

C(ππ, "+;∆t)
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∣∣〈3π0|T |K−〉
∣∣2

|〈ππ|T |K+〉|2
(3.13)

that can be expressed, with a high degree of accuracy, at least O(10−7), as:

DCPT =
BR

(
KL → 3π0

)

BR (KS → ππ)

ΓL

ΓS
. (3.14)

The value of DCPT can be therefore evaluated from branching ratios and lifetimes,

but it is also directly measurable from the observable ratios (3.9) and (3.10), as it will be

discussed in detail in the next section.

The explicit expressions of ratios (3.9) and (3.10) (neglecting higher order terms in

small parameters and for not too large negative ∆t) are:

Rexp
2,CPT(∆t) =

P [K0(0) → K−(∆t)]

P [K−(0) → K̄0(∆t)]
×DCPT

' |1− 2δ|2
∣∣∣1 + 2δe−i(λS−λL)∆t

∣∣∣
2
×DCPT , (3.15)
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The last r.h.s. equality holds with a high degree of accuracy, at leastO(10�7).
The value of D can be therefore directly evaluated from branching ratios
and lifetimes of KS,L states. They were all directly measured by the KLOE
experiment with the highest precision [24, 25, 26, 27, 28], and we consistently
use them for the evaluation of D = (0.5076± 0.0059)⇥ 10�3.

A simple Monte Carlo simulation shows that in the case of KLOE and
KLOE-2 experiments with an integrated luminosity of O(10 fb�1) the statis-
tically most populated region is for �t � ⌧S, while the region for �t < 0 has
few or no events [10]. Therefore we define eight observables (six ratios and
two double ratios) that are in practice experimentally accessible at KLOE
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Fig. 7. A zoom of the plots shown in Fig. 6 in the region 0 ⇤!t ⇤ 20 τS , which is statistically relevant for the KLOE-2
experiment at DA#NE.

The CPT test (Table 3) is more delicate because it is – in a sense – a null test: here we expect
no or very small violations. In this case one has the following definitions of the ratios, similarly
as for the T test:

R1,CPT (!t) = P
[
K0(0) → K+(!t)

]
/P

[
K+(0) → K̄0(!t)

]
,

R2,CPT (!t) = P
[
K0(0) → K−(!t)

]
/P

[
K−(0) → K̄0(!t)

]
,

R3,CPT (!t) = P
[
K̄0(0) → K+(!t)

]
/P

[
K+(0) → K0(!t)

]
,

R4,CPT (!t) = P
[
K̄0(0) → K−(!t)

]
/P

[
K−(0) → K0(!t)

]
. (A.2)

One expects that these ratios can be different from unity if δ #= 0. On the other hand, the presence
of direct CP violation can mimic CPT violation effects. In this case it can be shown that a
variation of ±10% in the absolute value of (η−1

3π0), or of ±10◦ in its phase, results in a maximum
deviation from unity of the observable ratios of about ±35%, in the region −20 τS ⇤!t ⇤ 5 τS .
Therefore, in this region, with the present experimental knowledge of (η−1

3π0), only observed
deviations larger than ±35% can be interpreted as a genuine violation of the CPT symmetry. On
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where the coefficient C(fX̄ , fY ), depending only on the final states fX̄ and fY , is given by:

C(fX̄ , fY ) =
1

2(ΓS + ΓL)

∣∣〈fX̄ |T |K̄X〉〈fY |T |KY〉
∣∣2 (3.7)

and P [KX(0) → KY(∆t)] is the generic KX → KY transition probability which contains

the ∆t time dependence only.

It’s worth noting that a similar expression can be easily formulated also for the case ∆t < 0:

I(fX̄ , fY ;∆t) = C(fX̄ , fY )× P
[
K̄Y(0) → K̄X(|∆t|)

]
. (3.8)

Therefore, at a φ-factory one can define the observable ratios:

Rexp
2,CPT(∆t) ≡ I("−, 3π0;∆t)

I(ππ, "−;∆t)
(3.9)

Rexp
4,CPT(∆t) ≡ I("+, 3π0;∆t)

I(ππ, "+;∆t)
, (3.10)

which are related to the Ri,CPT(∆t) ratios defined in eqs. (3.2) as follows, for ∆t ≥ 0:

Rexp
2,CPT(∆t) = R2,CPT(∆t)×DCPT

Rexp
4,CPT(∆t) = R4,CPT(∆t)×DCPT (3.11)

whereas for ∆t < 0 one has:

Rexp
2,CPT(∆t) = R1,CPT(|∆t|)×DCPT

Rexp
4,CPT(∆t) = R3,CPT(|∆t|)×DCPT , (3.12)

with DCPT the ratio of coefficients:

DCPT =
C("−, 3π0;∆t)

C(ππ, "−;∆t)
=

C("+, 3π0;∆t)

C(ππ, "+;∆t)
=

∣∣〈3π0|T |K−〉
∣∣2

|〈ππ|T |K+〉|2
(3.13)

that can be expressed, with a high degree of accuracy, at least O(10−7), as:

DCPT =
BR

(
KL → 3π0

)

BR (KS → ππ)

ΓL

ΓS
. (3.14)

The value of DCPT can be therefore evaluated from branching ratios and lifetimes,

but it is also directly measurable from the observable ratios (3.9) and (3.10), as it will be

discussed in detail in the next section.

The explicit expressions of ratios (3.9) and (3.10) (neglecting higher order terms in

small parameters and for not too large negative ∆t) are:

Rexp
2,CPT(∆t) =

P [K0(0) → K−(∆t)]

P [K−(0) → K̄0(∆t)]
×DCPT

' |1− 2δ|2
∣∣∣1 + 2δe−i(λS−λL)∆t

∣∣∣
2
×DCPT , (3.15)
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Explicit calculations in the Wgner-Weisskopf framework for not too large negative �t and

to first order in small parameters, taking into account direct CP violation (✏0), and possible

violations of CPT and/or the �S = �Q rule in semileptonic decays (y, x+, x�), yield:

Rexp
2,CPT (�t) =

P [eK0(0) ! K�(�t)]

P [eK�(0) ! K0̄(�t)]
⇥DCPT

= (1� 4<� + 4<x+ � 4<x�)
���1 +

�
2� + ✏03⇡0 � ✏0⇡⇡

�
e�i(�S��L)�t

���
2
⇥DCPT ,

(1.10)
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P [eK0̄(0) ! K�(�t)]

P [eK�(0) ! K0(�t)]
⇥DCPT

= (1 + 4<� + 4<x+ + 4<x�)
���1�

�
2� + ✏03⇡0 � ✏0⇡⇡

�
e�i(�S��L)�t

���
2
⇥DCPT ,

(1.11)
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P [eK�(0) ! K0(�t)]
⇥DT ,2

= (1� 4<✏+ 4<x+ + 4<y)
���1 +

�
2✏+ ✏03⇡0 + ✏0⇡⇡

�
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���
2
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The last r.h.s. equality holds with a high degree of accuracy, at leastO(10�7).
The value of D can be therefore directly evaluated from branching ratios
and lifetimes of KS,L states. They were all directly measured by the KLOE
experiment with the highest precision [24, 25, 26, 27, 28], and we consistently
use them for the evaluation of D = (0.5076± 0.0059)⇥ 10�3.

A simple Monte Carlo simulation shows that in the case of KLOE and
KLOE-2 experiments with an integrated luminosity of O(10 fb�1) the statis-
tically most populated region is for �t � ⌧S, while the region for �t < 0 has
few or no events [10]. Therefore we define eight observables (six ratios and
two double ratios) that are in practice experimentally accessible at KLOE
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Rexp
4,CPT(∆t) =

P [K̃0̄(0) → K−(∆t)]

P [K̃−(0) → K0(∆t)]
×DCPT

=

∣∣e−iλS∆t(η"+)(η3π0)− e−iλL∆t
∣∣2

|e−iλS∆t(ηππ)− e−iλL∆t(η"+)|
2 ×DCPT ,

$
∣∣∣∣
1

η"+

∣∣∣∣
2 ∣∣∣∣1 +

(
ηππ
η"+

− (η"+)(η3π0)

)
e−i(λS−λL)∆t

∣∣∣∣
2

×DCPT ,

$ |1 + 2δ + 2x+ + 2x−|2
∣∣∣1− (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2
×DCPT

= |1 + 2δ + 2x+ + 2x−|2
∣∣∣1−

(
2δ + ε′3π0 − ε′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
×DCPT ,

(4.18)

In the limit ∆t = 0 the deviation of each ratio from unity (once DCPT is factored out)

is given by the contaminating parameters %ε′3π0 , %ε′ππ, and x+, and by the x− parameter,

which is explicitly CPT violating in the ∆S &= ∆Q decay amplitudes, and can be considered

a genuine source of CPT violation:

Rexp
2,CPT(0) =

[
1 + 2%(ε′3π0 − ε′ππ) + 4%(x+ − x−)

]
×DCPT (4.19)

Rexp
4,CPT(0) =

[
1− 2%(ε′3π0 − ε′ππ) + 4%(x+ + x−)

]
×DCPT . (4.20)

In the limit ∆t ' τS we get:

Rexp
2,CPT(∆t ' τS) = (1− 4%δ + 4%x+ − 4%x−)×DCPT (4.21)

Rexp
4,CPT(∆t ' τS) = (1 + 4%δ + 4%x+ + 4%x−)×DCPT . (4.22)

These results suggest the possibility of having a measurement independent of x+ and

DCPT, directly measuring the double ratio:

Rexp
2,CPT(∆t)

Rexp
4,CPT(∆t)

$ (1− 8%δ − 8%x−)
∣∣∣1 + 2 (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2

= (1− 8%δ − 8%x−)
∣∣∣1 + 2

(
2δ + ε′3π0 − ε′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
,

(4.23)

which becomes for ∆t = 0:

Rexp
2,CPT(0)

Rexp
4,CPT(0)

= 1− 8%x− + 4%(ε′3π0 − ε′ππ) . (4.24)

and in the limit ∆t ' τS :

Rexp
2,CPT(∆t ' τS)

Rexp
4,CPT(∆t ' τS)

= 1− 8%δ − 8%x− . (4.25)

The double ratio (4.23) constitutes one of the most robust observables for our proposed

CPT test. In the limit ∆t ' τS it exhibits a pure and genuine CPT violating effect,

– 14 –

Impact of the approximations on the tests 

Assumes DS=DQ rule and negligible direct CP/CPT violation. 
In the limit ∆t ≫ τS negligible contaminations from direct CP violation.
The double ratio constitutes one of the most robust observables for the 
proposed CPT test. In the limit ∆t ≫ τS it exhibits a pure and genuine CPT 
violating effect, without assuming negligible contaminations from direct
CP violation and/or DS=DQ rule violation.

DRCPT=

CLEANEST MODEL INDEPENDENT CPT OBSERVABLE

T test

CPT test

Assumes DS=DQ rule and negligible direct CP/CPT violation. 
In the limit ∆t ≫ τS negligible contaminations from direct CP violation.

In general 𝐾*, 𝐾' and 𝐾!, @𝐾! can be non-orthogonal bases
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