Quantum Entanglement and Bell Inequality Violation at High Energies

1

Emidio Gabrielli

University of Trieste and INFN, Italy NICPB, Tallinn, Estonia

- "Entanglement" between two systems is a pure quantum phenomena
- It is induced by the interaction from which the two systems are produced
- Expected to violates Bell inequalities (set of correlation measurements)
- Violations incompatible with classical physics based on causality and local realism (locality) (EPR paradox, hidden variables theories)

 $a|0\rangle|alive\rangle + b|1\rangle|dead\rangle$

2

What is entanglement ?

classical concept of phase space $\boxed{}$ In QM replaced by $\boxed{}$ by abstract Hilbert space

makes a gap in the description of composite systems

Consider multipartite system of *n* subsystems

■ Classical description → Cartesian product of n subsystems → product of the n separate systems

Quantum description → Hilbert space H → tensorial product of subsystem spaces

$$
\text{superposition principle} \quad |\psi\rangle = \sum_{\mathbf{i}_n} c_{\mathbf{i}_n} |\mathbf{i}_n\rangle
$$
\n
$$
|\psi\rangle \quad \neq \quad |\psi_1\rangle \otimes |\psi_2\rangle \cdots |\psi_n\rangle
$$

$$
= H_1 \otimes H_2 \otimes H_3 \otimes \cdots \otimes H_n
$$

$$
\bigg|\,|\mathbf{i}_n\rangle\quad =\quad |i_1\rangle\otimes|i_2\rangle\cdots|i_n\rangle
$$

in general not possible to assign a single state vector to any of n subsystems

giving rise to the phenomenon of entanglement

 H_{\rm}

Local realism

- Based on the (classical physics) idea that objects have definite properties whether or not they are measured
- and that measurements of these properties are not affected by events taking place sufficiently far away

Einstein Locality Principle

Consider two systems **A** and **B** that have interacted in the past and are separated (space-like) far away

The results of a measurement on A is unaffected by operations on the distance system B

Based on locality principle they argue that QM is incomplete

- One may argue that the incompleteness of QM followed from EPR paradox is inherent in the probabilistic interpretation of Quantum Mechanics
- Dynamic behavior at microscopic level appears probabilistic only because some yet unknown parameters (hidden variables) have not been specified

Bell inequalities (1964):

a test to discriminate between local and non-local (QM) description of Nature

Quantum Entangled states violate Bell inequalities

measurement of spin in particle 1 induces correlation on spin measurement of particle 2

measuring spin along same directions just test property of angular momentum conservation

to check departure from Locality \rightarrow require A and B to perform correlated measurements of spin-projection in **two different** directions

Not necessarily to be orthogonal

$$
\left\{\hat{\mathbf{a}}, \quad \hat{\mathbf{b}}, \quad \hat{\mathbf{c}}\right\} \quad \Longrightarrow \quad \left[\mathbf{s}_{\hat{\mathbf{a}}}, \mathbf{s}_{\hat{\mathbf{b}}}\right] \neq 0 \quad \left[\mathbf{s}_{\hat{\mathbf{a}}}, \mathbf{s}_{\hat{\mathbf{c}}}\right] \neq 0 \quad \left[\mathbf{s}_{\hat{\mathbf{b}}}, \mathbf{s}_{\hat{\mathbf{c}}}\right] \neq 0 \quad \mathop{\longrightarrow} \quad \math
$$

 \hat{h}

 $\|$ â

Bell inequality

Locality assumption → probability independence $P(\hat{\mathbf{a}} \uparrow; \hat{\mathbf{b}} \downarrow) = P(\hat{\mathbf{a}} \uparrow; -) P(-; \hat{\mathbf{b}} \downarrow)$

For example: Alice use **a,b** directions and Bob **b,c** directions

Local deterministic theories (hidden variables) satisfies **Bell inequality**

$$
P(\hat{\mathbf{a}}\uparrow;\hat{\mathbf{b}}\uparrow) \le P(\hat{\mathbf{a}}\uparrow;\hat{\mathbf{c}}\uparrow) + P(\hat{\mathbf{c}}\uparrow;\hat{\mathbf{b}}\uparrow)
$$

Compute these probability correlations in QM for an entangled S=0 state

QM predictions

suppose observer A finds $S_1 \cdot \hat{a}$ to be positive (+) with certainty

observer B's measurement of $S_2 \cdot \hat{a}$ will find it negative (-) with certainty

In order to compute $P(\mathbf{\hat{a}}+\mathbf{;b}+)$ we must consider a new quantization axis

The probability that $\mathbf{S}_2 \cdot \mathbf{b}$ measurement yields + when particle 2 is known

to be in a eigenstate of $S_2 \cdot \hat{a}$ with + is =

$$
P(\hat{\mathbf{a}} + ; \hat{\mathbf{b}} +) = \left(\frac{1}{2}\right) \sin^2\left(\frac{\theta_{ab}}{2}\right) \quad -
$$

plug in into the Bell inequality and we get...

QM prediction of Bell inequality

In this case Bell inequality is **violated** for

■ optimization problem → find directions where Bell inequality is maximally violated

Maximum entangled states violate Bell inequalities but may not provide the maximum violation

Bell inequality violation observed in entangled photons

QM is a non-local theory

measurements in A affects what will be measured in B, even if A and B are space-like separated apart, and no causal exchange of information between them is possible

The Nobel Prize in Physics 2022

Prize share: 1/3

Alain Aspect

Prize share: 1/3

John F. Clauser Anton Zeilinger Prize share: 1/3

The Nobel Prize in Physics 2022 was awarded jointly to Alain Aspect, John F. Clauser and Anton Zeilinger "for experiments with entangled photons, establishing the violation of Bell inequalities and pioneering quantum information science"

[2] A. Zeilinger et al., Nature 433, 230 (2005)

[3] S.J. Freedman and J.F. Clauser, Phys. Rev. Lett. 28, 938 (1972). https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.28.938

[4] A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett. 49, 1804 (1982). A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 49, $91(1982)$

[5] G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, A. Zeilinger, Phys. Rev. Lett. 81, 5039 (1998). D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger, Nature 390, 575 (1997)

[6] A. Aspect, Physics **8**, 123. (2015)

new challenge: testing entanglement and Bell inequality violation at high energies and in the presence of strong and weak interactions !

Quantifying entanglement and Bell inequality violation

- Requires the knowledge of the **polarization density matrix** of two-particles **A,B** production
- it can be fully reconstructed from the angular distributions of the single **A,B decay products**
- or analogously by measuring the complete set of helicity amplitudes
- **but it can also be computed analytically**
- knowledge of the full polarization density matrix allows to quantify (where possible) entanglement and Bell inequality violations

A. J. Barr, M. Fabbrichesi, R. Floreanini, E. Gabrielli, and L. Marzola, Quantum entanglement and Bell inequality violation at colliders, Prog. Part. Nucl. Phys. 139, 104134 $(2024).$

E n t a n g l e m e n t

Concurrency
$$
\mathscr{C}[\ket{\psi}] \equiv \sqrt{2(1 - \text{Tr}[(\rho_A)^2])} = \sqrt{2(1 - \text{Tr}[(\rho_B)^2])}
$$

\n*R* = $\rho(\sigma_2 \otimes \sigma_2) \rho^*(\sigma_2 \otimes \sigma_2)$
\n $\phi(\sigma_2 \otimes \sigma_2) = \sqrt{2(1 - \text{Tr}[(\rho_B)^2])}$

find $\rightarrow \Gamma$ square root of R eigenvalues, i=1,2,3,4 with Γ ¹ the largest one

$$
\mathscr{C}[\rho] = \max(0, r_1 - r_2 - r_3 - r_4)
$$

C.H. Bennett, D.P. Divincenzo, J.A. Smolin, W.K. Wootters, Phys. Rev. A 54 (1996) 3824

Qutrits

massive spin-1 particles

only for pure states **Entropy** $\mathcal{E}[\rho] = -\text{Tr}[\rho_A \log \rho_A] = -\text{Tr}[\rho_B \log \rho_B]$

Qutrits

Bell inequality violation

$$
\mathcal{I}_{3} = P(A_{1} = B_{1}) + P(B_{1} = A_{2} + 1) + P(A_{2} = B_{2}) + P(B_{2} = A_{1})
$$
\n
$$
-P(A_{1} = B_{1} - 1) - P(A_{1} = B_{2}) - P(A_{2} = B_{2} - 1) - P(B_{2} = A_{1} - 1)
$$
\n
$$
(A_{1}, A_{2}) \quad (B_{1}, B_{2}) \text{ each can take values } \rightarrow \{0, 1, 2\}
$$
\n
$$
\mathcal{I}_{3} = \text{Tr}[\rho \mathcal{B}]\n\qquad\n\mathcal{B} = \begin{bmatrix}\n0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -\frac{2}{\sqrt{3}} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\frac{2}{\sqrt{3}} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\frac{2}{\sqrt{3}} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{2}{\sqrt{3}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{2}{\sqrt{3}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{2}{\sqrt{3}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{2}{\sqrt{3}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{2}{\sqrt{3}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{2}{\sqrt{3}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
$$

I in order to maximize the violation of Bell inequality

 $\mathcal{B} \to (U \otimes V)^{\dagger} \cdot \mathcal{B} \cdot (U \otimes V)$ U,V are unitary 3x3 matrices

(depend on the kinematic of the process)

e x a m p l e

in CM frame massless limit

$QM \rightarrow$ non separable entangled states

$$
|\Psi\rangle = \xi_1|\tau_L^-\rangle|\tau_L^+\rangle + \xi_2|\tau_R^-\rangle|\tau_L^+\rangle + \xi_3|\tau_L^-\rangle|\tau_R^+\rangle + \xi_4|\tau_R^-\rangle|\tau_R^+\rangle
$$

Deterministic theories \rightarrow separable states (example) $|\Psi\rangle_{\text{cl}} = |\tau_R^-\rangle|\tau_L^+\rangle$

$$
\Big(\sum_i |\xi_i|^2 = 1\Big)
$$

scattering angle in the C.M. frame

relativistic massless limit

$$
|\Psi\rangle = (1 + \cos \Theta) |\tau_R^{-}\rangle |\tau_L^{+}\rangle + (1 - \cos \Theta) |\tau_L^{-}\rangle |\tau_R^{+}\rangle
$$

$$
\xi_2 = D_{1,1}^{(1)}(\Theta) \qquad \xi_3 = D_{1,-1}^{(1)}(\Theta) \qquad \text{Wigner D-matrix}
$$

 $|\tau^-_R\rangle\,|\tau^+_L\rangle$ $J = \pm 1$ $J_z = \pm 1$ $(\Theta = 0)$ separable $\frac{1}{\sqrt{2}}\left(\left|\tau_{R}^{-}\right\rangle\left|\tau_{L}^{+}\right\rangle+\left|\tau_{L}^{-}\right\rangle\left|\tau_{R}^{+}\right\rangle\right)$ $J = \pm 1$ $J_z = 0$ $(\Theta = \pi/2)$ entangled (Bell state)

e x a m p l e

massless limit

$$
-\left(1+\cos\Theta\right)\left|\tau_{R}^{-}\right\rangle\left|\tau_{L}^{+}\right\rangle+\left(1-\cos\Theta\right)\left|\tau_{L}^{-}\right\rangle\left|\tau_{R}^{+}\right\rangle
$$

Concurrence

$$
\mathcal{C}[\rho]=2|\zeta_1\zeta_4-\zeta_2\zeta_3|=\frac{\sin^2\Theta}{1+\cos^2\Theta}
$$

$$
(1 + \cos \Theta) |\tau_R^{-}\rangle |\tau_L^{+}\rangle + (1 - \cos \Theta) |\tau_L^{-}\rangle |\tau_R^{+}\rangle
$$

 $\mathfrak{m}_{12}\equiv m_1+m_2>1$ Horodecki condition

$$
\mathfrak{m}_{12} = 1 + \frac{\sin^4 \Theta}{(1 + \cos^2 \Theta)^2}
$$

courtesy of M. Fabbrichesi and the courtesy of M. Fabbrichesi and the courtesy of M. Fabbrichesi

Local deterministic models satisfy Bell inequality Quantum mechanics does not

Both Entanglement and Bell inequality can be studied at colliders

• high-energy regime

• in the presence of strong and weak interactions

Q qubits and qutrits

Where have we already seen Entanglement or Bell inequality violation at high energies?

Flavor space

$$
\overline{K^0\bar{K}^0\text{ oscillations}}
$$

✔

Bell locality condition $\mathcal{D}(f, \tau) = \mathcal{D}(f, \tau)$. Probability of finding

Probing CPT and T-reversal with entangled neutral Kaons

F. J. Bernabeu, A. Di Domenico, P. Villanueva, JHEP 10 (2015) 13 J. Bernabeu, A. Di Domenico, Phys. Rev. D 105, 116004 (2022)

state f_1 at time τ_1

Bell inequality $\mathcal{P}(f_1,\tau_1;f_2,\tau_2) - \mathcal{P}(f_1,\tau_1;f_4,\tau_2) + \mathcal{P}(f_3,\tau_1;f_2,\tau_2) + \mathcal{P}(f_3,\tau_1;f_4,\tau_2)$ $\leq \mathcal{P}(f_3,\tau_1;-, \tau_2) + \mathcal{P}(-,\tau_1;f_2,\tau_2)$

a non vanishing value of epsilon'/epsilon (direct CP violation) implies Bell inequality violation

F. Benatti, R. Floreanini Phys. Rev. D57 (1998); Eur. Phys. J C13 (2000) 267

$$
B^0\bar{B}^0\;\text{oscillations}
$$

$$
\psi\rangle=\frac{1}{\sqrt{2}}\left[\left|B^{0}\right\rangle_{1}\otimes\left|\overline{B}^{0}\right\rangle_{2}-\left|\overline{B}^{0}\right\rangle_{1}\otimes\left|\overline{B}^{0}\right\rangle_{2}\right]
$$

Asymmetry

$$
A(\Delta t) = (R_{\rm OF} - R_{\rm SF})/(R_{\rm OF} + R_{\rm SF})
$$

 $R_{\text{OF/SF}} =$ rate of Opposite/Same – Flavor

A Go, Belle Collaboration, Phys. Rev. Lett . 99 (2007) 131802

Data favour QM over SD at 13 σ and over PS model (locality, hidden variables) at 5.1σ

Flavor space

$$
|\nu_{\alpha}\rangle = \sum_{k} U_{\alpha k}^{*} | \nu_{k} \rangle
$$

flavor states
mass states

$$
\hat{Q}(t) \, \equiv \, \hat{U}^{\dagger}(t) \hat{Q} \hat{U}(t)
$$

Minos (6σ)

JA Formaggio, DI Kaiser, MM Murskyj and TE Weiss, Phys. Rev. Lett. 117 (2016) 050402

Dune, Nova, T2K

Violation of LG inequality occurs over a distance of 735km.

J Naikoo et al, *Phys. Rev. D 99 (2019) 095001*

2 **spin-1 qutrits B meson decays** B → M1 M²

 $\left|\Psi\right\rangle=\frac{1}{\sqrt{|H|^2}}\Big[h_{+}\left|\mathbf{V_{1}}(+)\mathbf{V_{2}}(-)\right\rangle+h_{0}\left|\mathbf{V_{1}}(0)\mathbf{V_{2}}(0)\right\rangle+h_{-}\left|\mathbf{V_{1}}(-)\mathbf{V_{2}}(+)\right\rangle\Big]$

 h_i = helicity amplitudes $|H|^2 = |h_0|^2 + |h_+|^2 + |h_-|^2$

R. Aaij et al. [LHCb], Phys. Rev. Lett. 131, no.17, 171802 (2023) [arXiv:2304.06198 [hep-ex]].

M. Fabbrichesi, R. Floreanini, EG, L. Marzola, Phys. Rev. D 109 (2024) 3, L031104 EG and L. Marzola, Symmetry 6 (2024) 8, 1036

FIT of coefficients h_k

2 **B meson decays**

M. Fabbrichesi, R. Floreanini, EG, L. Marzola, Phys. Rev. D 109 (2024) 3, L031104 EG and L. Marzola, Symmetry 6 (2024) 8, 1036

K. Chen et al, Eur. Phys. J. C 84 (2024) 580

$$
\overrightarrow{B_c^{\pm}} \to J/\psi \, \rho^{\pm}
$$

Entanglement in pairs of top quarks

$$
D=\frac{1}{3}\operatorname{Tr}C_{ij}\quad \, \mathscr{C}[\rho]=\max[-1-3D,\,0]/2
$$

D **< -1/3** sufficient condition for entanglement

 \rightarrow also sensitive to Toponium formation

ATLAS Collaboration, Nature 633 (2024) 542

Y. Afik and J.R.M. de Nova, Eur. Phys. J. Plus 136 (2021) 907

 ϕ is the angle between the respective leptons as computed in the rest frame of the decaying top and anti-top $340 \,\text{GeV} < m_{t\bar{t}} < 380 \,\text{GeV}$

4 **qubits, qutrits Charmonium**

Qubits (spin $\frac{1}{2}$)

$\Lambda(\rightarrow p\pi^{-})\bar{\Lambda}(\rightarrow \bar{p}\pi^{+})$

W

 $d\sigma \propto \mathcal{W}(\xi) d\cos\theta d\Omega_1 d\Omega_2$

 $\xi = (\theta, \Omega_1, \Omega_2)$

 $\mathcal{F}_0(\xi) = 1$

 $\mathcal{F}_1(\xi) = \sin^2 \theta \sin \theta_1 \sin \theta_2 \cos \phi_1 \cos \phi_2 + \cos^2 \theta \cos \theta_1 \cos \theta_2$

 $\mathcal{F}_2(\xi)$ = sin θ cos θ (sin θ_1 cos θ_2 cos ϕ_1 + cos θ_1 sin θ_2 cos ϕ_2)

 $\mathcal{F}_3(\xi) = \sin \theta \cos \theta \sin \theta_1 \sin \phi_1$

 $\mathcal{F}_4(\xi) = \sin \theta \cos \theta \sin \theta_2 \sin \phi_2$

 $\mathcal{F}_5(\mathcal{E}) = \cos^2 \theta$

 $\mathcal{F}_6(\xi) = \cos \theta_1 \cos \theta_2 - \sin^2 \theta \sin \theta_1 \sin \theta_2 \sin \phi_1 \sin \phi_2$. (6.56)

$$
\begin{aligned} (\xi) &= \mathcal{F}_0(\xi) + \alpha \mathcal{F}_5(\xi) \\ &+ \alpha_1 \alpha_2 \left(\mathcal{F}_1(\xi) + \sqrt{1 - \alpha^2} \cos(\Delta \Phi) \mathcal{F}_2(\xi) + \alpha \mathcal{F}_6(\xi) \right) \\ &+ \sqrt{1 - \alpha^2} \sin(\Delta \Phi) \left(\alpha_1 \mathcal{F}_3(\xi) + \alpha_2 \mathcal{F}_4(\xi) \right), \end{aligned}
$$

$$
w_{\frac{1}{2}\frac{1}{2}} = w_{-\frac{1}{2}-\frac{1}{2}} = \frac{\sqrt{1-\alpha}}{\sqrt{2}}
$$

$$
w_{\frac{1}{2} - \frac{1}{2}} = w_{-\frac{1}{2}\frac{1}{2}} = \sqrt{1 + \alpha} \, \exp[-i\Delta\Phi]
$$

maximum likelihood fit

 $\alpha = 0.4748 \pm 0.0022$ _{stat} ± 0.0031 _{syst} $\Delta \Phi = 0.7521 \pm 0.0042$ _{stat} ± 0.0066 _{syst} to extract helicity amplitudes $\Theta \equiv \theta$ $\rho_{\lambda_1\lambda_2,\lambda'_1\lambda'_2} \propto \boxed{w_{\lambda_1\lambda_2}w_{\lambda'_1\lambda'_2}^*} \sum D_{k,\lambda_1-\lambda_2}^{(J)*}(0,\Theta,0)D_{k,\lambda'_1-\lambda'_2}^{(J)}(0,\Theta,0)$

Charmonium spin-0 states

Qubits (spin $\frac{1}{2}$) Qutrits (spin 1) $\chi^0_c \rightarrow \phi + \phi$ $\eta_c \to \Lambda + \bar{\Lambda} \quad \text{and} \quad \chi_c^0 \to \Lambda + \bar{\Lambda}$ $|\Psi\rangle = w_{-1-1} | -1, -1 \rangle + w_{00} | 0 0 \rangle + w_{11} | 1, 1 \rangle$ $|\psi_0\rangle \propto w_{\frac{1}{2}-\frac{1}{2}} |\frac{1}{2},\frac{1}{2}\rangle \otimes |\frac{1}{2},-\frac{1}{2}\rangle + w_{-\frac{1}{2},\frac{1}{2}} |\frac{1}{2},-\frac{1}{2}\rangle \otimes |\frac{1}{2},\frac{1}{2}\rangle$ $\left|\frac{w_{1,1}}{w_{0\,0}}\right| = 0.299 \pm 0.003|_{\text{stat}} \, \pm 0.019|_{\text{syst}}$ $\rho_{\Lambda\,\Lambda}=|\psi_0\rangle\langle\psi_0|=\frac{1}{2}\begin{pmatrix} 0 & 0 & 0 & 0 \ 0 & 1 & \pm 1 & 0 \ 0 & \pm 1 & 1 & 0 \ 0 & 0 & 0 & 0 \end{pmatrix}$ BesIII Collaboration, JHEP 05 (2023) 069 [arXiv:2301.12922] $\rho_{\phi\phi}=\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & |w_{_{-1-1}}|^2 & 0 & w_{_{-1-1}}w_{_{00}}^* & 0 & w_{_{-1-1}}w_{_{11}}^* \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & w_{_{00}}w_{_{-1,-1}}^* & 0 & |w_{_{00}}|^2 & 0 & w_{_{00}}w_{_{11}}^* & 0 \\ 0 & 0 & w_{_{11}}w_{_{-1-1$ $0 \quad 0$ $\begin{matrix} 0 & 0 \\ 0 & 0 \end{matrix}$ $0 \quad 0$ $0 \quad 0$ **Concurrence Horodecki condition** $0\quad 0$ $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ $\mathfrak{m}_{12}=2$ $\mathscr{C}[\rho]=1$ $\mathcal{E}[\rho] = 0.531 \pm 0.040$ **(13,3** s**) • maximum violation of Bell inequality O** data not yet available to assess significance **CGLMP I³** $\text{Tr } \rho_{\phi\phi} \mathcal{B} = 2.296 \pm 0.034$ (8,8 σ) N.A. Tornqvist, Phys. 11 (1981) 171-177 $\overline{}$ N.A. Tornqvist, Phys. Lett. A 117 (1986) 1 4 S.P. Baranov, Phys. G 35 (2008) 075002 ✔

Charmonium spin-1 states

✔

 $\mathscr{C}[\rho] = 0.475 \pm 0.004$ **(118,76)**

Horodecki condition

$$
\mathfrak{m}_{12}=1.225\pm0.004\,(\textbf{56,3}\textbf{0})
$$

ongoing work

Analysis under way

 $pp \rightarrow tt$

LHC, data already available Analysis under way

 $pp\to H\to ZZ^*$

LHC, data already available Analysis under way

While waiting -- let us see some simulations

Entanglement and Bell inequality violation at Belle II

-
$$
e^- \rightarrow \tau^- + \tau^+
$$
 | \sqrt{s} = 10 GeV at SuperKEKB

$$
\mathscr{C}[\rho] = \frac{\left(s - 4\,m_{\tau}^2\right)\sin^2\Theta}{4\,m_{\tau}^2\sin^2\Theta + s\left(\cos^2\Theta + 1\right)}
$$

$$
\rho_{\tau\bar{\tau}} = \lambda \rho^{(+)} + (1 - \lambda) \rho_{\text{mix}}^{(1)} \quad \text{with} \quad \lambda = \frac{\beta_{\tau}^{2}}{2 - \beta_{\tau}^{2}}
$$
\n
$$
\tilde{\rho}_{\text{mix}}^{(2)} = \frac{1}{2} \Big(|RR\rangle\langle RR| + |LL\rangle\langle LL| \Big)
$$
\n
$$
\tilde{\rho}^{(+)} = |\tilde{\psi}^{(+)}\rangle\langle\tilde{\psi}^{(+)}| \ , \qquad |\tilde{\psi}^{(+)}\rangle = \frac{1}{\sqrt{2}} \Big(|+-\rangle + |-+\rangle \Big)
$$

 e^+

$$
\mathfrak{m}_{12} = 1 + \left(\frac{\left(s - 4\,m_{\tau}^2\right)\sin^2\Theta}{4\,m_{\tau}^2\sin^2\Theta + s\left(\cos^2\Theta + 1\right)}\right)^2
$$

at threshold $\beta_{\tau} \simeq 0$ the state is a mixed one, with no quantum correlations at relativistic regime $\beta_{\tau} \rightarrow 1$ the state is maximally entangled

$e^+ + e^- \rightarrow \tau^- + \tau^+$ Montecarlo simulations for Belle II

Assuming data set of about 200million of events. Analysis based on six decay channels

$$
\pi^+\pi^-,~\pi^\pm\rho^\mp,~\pi^\pm a_1^\mp,~\rho^+\rho^-,~\rho^\pm a_1^\mp~a_1^+a_1^-
$$

Spin orientation reconstructed using the polarimeter vector method

S. Jadach, J. H. Kühn, and Z. Was, "TAUOLA: a library of Monte Carlo programs to simulate decays of polarized tau leptons," Comput. Phys. Commun. 64 (1990) 275.

V. Cherepanov and C. Veelken, "The polarimeter vector for $\tau \to 3\pi\nu_{\tau}$ decays," arXiv:2311.10490 [hep-ex].

Events passing selection cuts $|\cos(\vartheta)| < 0.40$

Observation of Quantum entanglement and Bell inequality violation

expected with a significance well above 5s

K. Ehataht, M. Fabbrichesi, L. Marzola, C. Veelken, Phys. Rev. D. 109 (2024) 3, 032005; [arXiv: 2311.17555]

Entanglement at work for New Physics search at Belle II

$$
\Gamma^{\mu}(\tau) = \left[\gamma^{\mu} F_1(q^2) + \frac{i \sigma^{\mu \nu} q_{\nu}}{2 m_{\tau}} F_2(q^2) + \frac{\sigma^{\mu \nu} \gamma_5 q_{\nu}}{2 m_{\tau}} F_3(q^2) \right] \longrightarrow \text{EM tau-vertex}
$$

$$
a_{\tau} = F_2(0)
$$
 and $d_{\tau} = \frac{e}{2m_{\tau}} F_3(0)$ $\mathcal{L} = e[\overline{\tau}\Gamma^{\mu} \tau] A_{\mu}$

• NP can arise from the following 3 contact-interactions (CI) dim. 5 operators

$$
\hat{O}_1 = e \frac{c_1}{m_\tau^2} \bar{\tau} \gamma^\mu \tau D^\nu F_{\mu\nu} \begin{bmatrix} \hat{O}_2 = e \frac{c_2 v}{2m_\tau^2} \bar{\tau} \sigma^{\mu\nu} \tau F_{\mu\nu} \end{bmatrix} \begin{bmatrix} \hat{O}_3 = e \frac{c_3 v}{2m_\tau^2} \bar{\tau} \sigma^{\mu\nu} \gamma_5 \tau F_{\mu\nu} \end{bmatrix}
$$

$$
F_1(q^2) = 1 + c_1 \frac{q^2}{m_\tau^2} + \dots \qquad F_{2,3}(0) = 2 c_{2,3} \frac{v}{m_\tau}
$$

• Three observables $\mathscr{O}_i(a_{\tau},d_{\tau},c_1)$ employed to constrain NP

$$
\mathscr{C}_{odd} = \frac{1}{2} \sum_{\substack{i,j \\ i **Concurrency** $\mathscr{C}[\rho]$ **Total cross section**
$$

Entanglement at work for New Physics search at Belle II

M. Fabbrichesi, L. Marzola, Phys. Rev. D 109 (2024) 9, 095026; [arXiv:2401.04449]

K. Ehataht M. Fabbrichesi, L. Marzola, C. Veelken, Phys. Rev. D. 109 (2024) 3, 032005; [arXiv: 2311.17555]

Bell inequality violation in top-antitop production at LHC

 $C_{ij}[m_{t\bar{t}},\,\Theta]$ can be extracted by fitting the double angle distribution

$$
\mathbf{\hat{n}} = \frac{1}{\sin \Theta} \left(\mathbf{\hat{p}} \times \mathbf{\hat{k}} \right)
$$

$$
\hat{\mathbf{r}} = \frac{1}{\sin \Theta} \left(\hat{\mathbf{p}} - \cos \Theta \hat{\mathbf{k}} \right)
$$

angles computed in the corresponding rest frame of the decaying top or antitop

Montecarlo simulations

M. Fabbrichesi, R. Floreanini, G. Panizzo, Phys. Rev. Letters 127 (2021), 2102.11883 [hep-ph]

R. Aoude, E. Madge, F. Maltoni, L. Mantani, Phys. Rev. D 106 (2022) 5, 055007; [arXiv:2203.05619] C. Severi, E. Vryonidou, JHEP 01 (2023) 148; [arXiv:2210.09339]

M. Fabbrichesi, EG, R. Floreanini, EPJC 83 (2023) 2,162; [arXiv:2208.11723]

Entanglement and Bell inequality violation in Higgs \rightarrow ZZ^{*}

$$
H\longrightarrow V(k_1,\lambda_1)\stackrel{\sum\limits_{k_1\underset{k_2\underset{k_1}{\underset{k_2}{\underset{k_1}{\underset{k_2}{\underset{k_1}{\underset{k_2}{\underset{k_2}{\underset{k_2}{\underset{k_2}{\underset{k_1}{\underset{k_2}{\underset{k_1}{\underset{k_2}{\underset{k_1}{\underset{k_2}{\underset{k_2}{\underset{k_1}{\underset{k_2}{\underset{k_1}{\underset{k_2}{\underset{k_1}{\underset{k_2}{\underset{k_1}{\underset{k_2}{\underset{k_1}{\underset{k_2}{\underset{k_1}{\underset{k_2}{\underset{k_1}{\underset{k_2}{\underset{k_1}{\underset{k_2}{\underset{k_1}{\underset
$$

$$
V_1
$$
\n
\n
$$
V_2
$$
\n
\n
$$
V_1
$$
\n
\n
$$
V_1
$$
\n
\n
$$
\hat{F}
$$
\n
\n
$$
V_1
$$
\n
\n
$$
\hat{F}
$$
\n
\n
$$
V_1
$$
\n
\n
$$
\hat{F}
$$
\n
\n
$$
V_1
$$
\n
\n
$$
V_2
$$
\n
\n
$$
W_3
$$
\n
\n
$$
V_3
$$
\n
\n
$$
V_1
$$
\n
\n
$$
W_2
$$
\n
\n
$$
W_3
$$
\n
\n
$$
W_1
$$
\n
\n
$$
W_2
$$
\n
\n
$$
W_3
$$
\n
\n
$$
W_4
$$
\n
\n
$$
W_5
$$
\n
\n
$$
W_5
$$
\n
\n
$$
W_6
$$
\n
\n
$$
W_7
$$
\n
\n
$$
W_8
$$
\n
\n
$$
W_9
$$
\n
\n
$$
W_9
$$
\n
\n
$$
W_1
$$
\n
\n
$$
W_2
$$
\n
\n
$$
W_3
$$
\n
\n
$$
W_5
$$
\n
\n
$$
W_7
$$
\n
\n
$$
W_8
$$
\n
\n
$$
W_9
$$
\n

 $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ θ O) $\begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 \end{matrix}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ 0 h_{44} 0 h_{16} 0 h_{44} $\boldsymbol{0}$ $0 \quad 0$ $\begin{bmatrix} 0 \end{bmatrix}$ $\overline{0}$ $\overline{0}$ θ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\rho_H=2$ $\begin{array}{c|c} 0 \end{array}$ h_{16} 0 $\overline{0}$ $2\,h_{33}$ $0 \; h_{16}$ $\overline{0}$ $,$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\begin{array}{|c|cccc|} \hline 0 & h_{44} & 0 & h_{16} & 0 & h_{44} \ \hline 0 & 0 & 0 & 0 & 0 & 0 \ \hline \end{array}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ Ω $\overline{0}$ $\overline{0}$ Ω θ $\overline{0}$ Ω Ω $\overline{0}$

 $2fM_V^2$

maximum entanglement for $\chi=1$ (ZZ^* both at rest)

$$
\rho_H = |\Psi\rangle\langle\Psi|
$$

$$
\rho_H^2 = \rho_H \qquad \text{pure state}
$$

M. Fabbrichesi, EG, R. Floreanini, L. Marzola EPJC 83 (2023) 9,823; [arXiv:2302.00683]

$H \to Z Z^*$

SM expectations

M. Fabbrichesi, EG, R. Floreanini, L. Marzola EPJC 83 (2023) 9,823

Quantum entanglement (Entropy)

Bell inequality violation ($I₃$ **>2)**

Montecarlo simulation

Luminosity of 3ab⁻¹ (Hi-Lumi at LHC) MADGRAPH5 AMC@NLO Expected significance for observing the Bell inequality violation is 4.50

J.A. Aguilar-Saavedra, A. Bernal, J.A. Casas, J.M. Moreno, Phys . Rev. D 107 1 (2023) 016012, [arXiv:2209.13441] R. Ashby-Pickering, A.J. Barr, A. Wierzchucka, JHEP 05 (2023) 020; [arXiv:2209.13990]

Gell-Mann basis 40 tensor basis

Entanglement at work for Higgs anomalous couplings

$$
\mathcal{L}_{HVV} = g M_W W^+_{\mu} W^{-\mu} H + \frac{g}{2 \cos \theta_W} M_Z Z_{\mu} Z^{\mu} H
$$
\n
$$
- \frac{g}{M_W} \left[\frac{a_W}{2} W^+_{\mu\nu} W^{-\mu\nu} + \frac{\tilde{a}_W}{2} W^+_{\mu\nu} \widetilde{W}^{-\mu\nu} + \frac{a_Z}{4} Z_{\mu\nu} Z^{\mu\nu} + \frac{\tilde{a}_Z}{4} Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \right] H
$$
\n
$$
\mathcal{E}_{ent} = -\text{Tr} \left[\rho_A \log \rho_A \right] \underbrace{\mathcal{E}_2}_{\sigma_i} \qquad \mathcal{E}_2 = \frac{\mathcal{E}_{odd}}{\sigma_d} = \frac{1}{2} \sum_{a,b} \left| h_{ab} - h_{ba} \right| \implies 3 \text{ observables}
$$
\n
$$
\sum_i \left[\frac{O_i(a_V, \tilde{a}_V) - O_i(0, 0)}{\sigma_i} \right]^2 \le 5.991 \qquad \chi^2 \text{ test with 3 dof} \text{ estimate uncertainties}
$$
\n
$$
\mathcal{E}_{g2} = \frac{\sigma_2}{\sigma} |a_V|^2, \qquad \text{and} \qquad f_{g3} = \frac{\sigma_3}{\sigma} |\tilde{a}_V|^2
$$
\n
$$
\text{ours} \qquad \mathcal{E}_{g2} < 7.8 \times 10^{-6}, \qquad f_{g3}^Z < 1.5 \times 10^{-5} \qquad \text{Q 95%. C.L.}
$$
\n
$$
\text{CMS} \text{ includes statistical, systematically}
$$
\n
$$
\text{CMS} \qquad \mathcal{E}_{g2} < 3.4 \times 10^{-3}, \qquad f_{g3}^V < 1.4 \times 10^{-2} \qquad \text{uncertainties + background}
$$

M. Fabbrichesi, R. Floreanini, EG, L. Marzola, JHEP 09 (2023) 195; [arXiv:2304.02403]

Backup slides

Closing the locality loophole (LL)

One must consider decays in which the produced particles are identical as in the $\mathbf{B} \rightarrow \mathbf{\phi} \mathbf{\phi}$ (so their life time is also the same)

we need to check how many events satisfies the space-like condition

$$
\frac{|t_1 - t_2| c}{(t_1 + t_2) v} < 1
$$

 $t_{1,2} \rightarrow$ time of decays

decay times follow the PDF distribution $P(t) \sim Exp[-\gamma \beta t]$

 $\beta \rightarrow$ the velocity in unit of c $\gamma \rightarrow$ the Lorentz factor

 \bullet For $\bullet \rightarrow \bullet \bullet$ we find that almost 90% of events satisfies this condition

O the two bases used in measuring the polarization are arbitrarily chosen (U V diagonalization)

 $\bullet \rightarrow$ provides a set-up where orientations of polarimeters can be freely and arbitrarily choser

So locality loophole can be closed!

M. Fabbrichesi, R. Floreanini, EG, L. Marzola, Phys. Rev. D 109 (2024) 3, L031104 EG and L. Marzola, Symmetry 6 (2024) 8, 1036

Closing the detection loophole (DL)

- **O** DL exploits the fact that detectors are not 100% efficient
- **Already for qubit the DL is closed if efficiency is more than 80%**
- **This requirement above is even lower for states belonging to larger Hilbert space as qutrits**
- **O** The efficiency of LHCb detector for pion, Kaons, and muons is more than 90%

● So also detection loophole is closed for LHCb !

How to Extract density matrix of Two-Qutrits from data

W W

 Γ_{+}

$$
p p \to V_1 + V_2 + X \to \ell^+ \ell^- + \text{jets} + E_T^{\text{miss}}
$$

Differential cross section

$$
\frac{1}{\sigma \, d\Omega^+ d\Omega^-} = \left(\frac{3}{4\pi}\right)^2 \operatorname{Tr} \left[\rho_{V_1 V_2} \left(\Gamma_+ \otimes \Gamma_-\right)\right] \overset{\text{depend on the invariant mass } m_{VV} \text{ (or velocity }\beta)}{\text{and scattering angle }\Theta}
$$
\n
$$
d\Omega^{\pm} = \sin \theta^{\pm} d\theta^{\pm} d\phi^{\pm}
$$
\n
$$
\downarrow \qquad \qquad \downarrow \qquad \
$$

Density matrices that describe the polarization of the two decaying W into final leptons (the charged ones assumed to be massless)

these are projectors in the case of the W-bosons because of their chiral couplings to leptons

R. Ashby-Pickering, A.J. Barr, A. Wierzchucka, JHEP 05 (2023) 020; [arXiv:2209.13990]

can be computed by rotating to an arbitrary polar axis the spin states of gauge bosons from the ones given in the **k-direction** quantization axis

$$
\Gamma_{\pm} = \frac{1}{3}\, \mathbb{1} + \sum_{i=1}^8 \mathfrak{q}^a_{\pm} \, T^a \Bigg\vert \overbrace{\hspace{15cm}}^{\text{Density matrices for W-bosons}}
$$

 \mathfrak{q}^a_+ (Wigner q-symbols) are functions of the corresponding spherical coordinates

set of polynomials of spherical coordindates (see backup slide)

$$
h_{ab} = \frac{1}{\sigma} \int \int \frac{d\sigma}{d\Omega^{+} d\Omega^{-}} \mathfrak{p}_{+}^{a} \mathfrak{p}_{-}^{b} d\Omega^{+} d\Omega^{-}
$$

$$
f_{a} = \frac{1}{\sigma} \int \frac{d\sigma}{d\Omega^{+}} \mathfrak{p}_{+}^{a} d\Omega^{+}
$$

$$
g_{a} = \frac{1}{\sigma} \int \frac{d\sigma}{d\Omega^{-}} \mathfrak{p}_{-}^{a} d\Omega^{-}
$$

a particular set of orthogonal functions (see next slide)

$$
\bigg\rangle \;\left(\frac{3}{4\,\pi}\right) \int \mathfrak{p}^n_\pm\, \mathfrak{q}^m_\pm\, \mathrm{d}\Omega^\pm = \delta^{nm}
$$

For **ZZ** case, the set of functions are linear combinations of $\mathfrak{q}^a_+ \to$ see backup slides

Wigner's *Q symbols*

$$
\begin{aligned}\n\mathbf{q}_{\pm}^{1} &= \frac{1}{\sqrt{2}} \sin \theta^{\pm} \left(\cos \theta^{\pm} \pm 1 \right) \cos \phi^{\pm}, \\
\mathbf{q}_{\pm}^{2} &= \frac{1}{\sqrt{2}} \sin \theta^{\pm} \left(\cos \theta^{\pm} \pm 1 \right) \sin \phi^{\pm}, \\
\mathbf{q}_{\pm}^{3} &= \frac{1}{8} \left(1 \pm 4 \cos \theta^{\pm} + 3 \cos 2\theta^{\pm} \right), \\
\mathbf{q}_{\pm}^{4} &= \frac{1}{2} \sin^{2} \theta^{\pm} \cos 2 \phi^{\pm}, \\
\mathbf{q}_{\pm}^{5} &= \frac{1}{2} \sin^{2} \theta^{\pm} \sin 2 \phi^{\pm}, \\
\mathbf{q}_{\pm}^{6} &= \frac{1}{\sqrt{2}} \sin \theta^{\pm} \left(-\cos \theta^{\pm} \pm 1 \right) \cos \phi^{\pm}, \\
\mathbf{q}_{\pm}^{7} &= \frac{1}{\sqrt{2}} \sin \theta^{\pm} \left(-\cos \theta^{\pm} \pm 1 \right) \sin \phi^{\pm}, \\
\mathbf{q}_{\pm}^{8} &= \frac{1}{8\sqrt{3}} \left(-1 \pm 12 \cos \theta^{\pm} - 3 \cos 2\theta^{\pm} \right)\n\end{aligned}
$$

$$
\mathfrak{p}_{\pm}^{1} = \sqrt{2} \sin \theta^{\pm} \left(5 \cos \theta^{\pm} \pm 1 \right) \cos \phi^{\pm}, \n\mathfrak{p}_{\pm}^{2} = \sqrt{2} \sin \theta^{\pm} \left(5 \cos \theta^{\pm} \pm 1 \right) \sin \phi^{\pm}, \n\mathfrak{p}_{\pm}^{3} = \frac{1}{4} \left(5 \pm 4 \cos \theta^{\pm} + 15 \cos 2\theta^{\pm} \right), \n\mathfrak{p}_{\pm}^{4} = 5 \sin^{2} \theta^{\pm} \cos 2 \phi^{\pm}, \n\mathfrak{p}_{\pm}^{5} = 5 \sin^{2} \theta^{\pm} \sin 2 \phi^{\pm}, \n\mathfrak{p}_{\pm}^{6} = \sqrt{2} \sin \theta^{\pm} \left(-5 \cos \theta^{\pm} \pm 1 \right) \cos \phi^{\pm}, \n\mathfrak{p}_{\pm}^{7} = \sqrt{2} \sin \theta^{\pm} \left(-5 \cos \theta^{\pm} \pm 1 \right) \sin \phi^{\pm}, \n\mathfrak{p}_{\pm}^{8} = \frac{1}{4\sqrt{3}} \left(-5 \pm 12 \cos \theta^{\pm} - 15 \cos 2\theta^{\pm} \right).
$$